Loading [Contrib]/a11y/accessibility-menu.js

Effect of branchings on blood flow in the system of human coronary arteries

  • Received: 01 October 2010 Accepted: 29 June 2018 Published: 01 December 2011
  • MSC : Primary: 92C10; Secondary: 92C50.

  • In this work, we investigate the behavior of the pulsatile blood flow in the system of human coronary arteries. Blood is modeled as an incompressible non-Newtonian fluid. The transient phenomena of blood flow through the coronary system are simulated by solving the three dimensional unsteady state Navier-Stokes equations and continuity equation. Distributions of velocity, pressure and wall shear stresses are determined in the system under pulsatile conditions on the boundaries. Effect of branching vessel on the flow problem is investigated. The numerical results show that blood pressure in the system with branching vessels of coronary arteries is lower than the one in the system with no branch. The magnitude of wall shear stresses rises at the bifurcation.

    Citation: Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok. Effect of branchings on blood flow in the system of human coronary arteries[J]. Mathematical Biosciences and Engineering, 2012, 9(1): 199-214. doi: 10.3934/mbe.2012.9.199

    Related Papers:

    [1] Nattawan Chuchalerm, Wannika Sawangtong, Benchawan Wiwatanapataphee, Thanongchai Siriapisith . Study of Non-Newtonian blood flow - heat transfer characteristics in the human coronary system with an external magnetic field. Mathematical Biosciences and Engineering, 2022, 19(9): 9550-9570. doi: 10.3934/mbe.2022444
    [2] Li Cai, Qian Zhong, Juan Xu, Yuan Huang, Hao Gao . A lumped parameter model for evaluating coronary artery blood supply capacity. Mathematical Biosciences and Engineering, 2024, 21(4): 5838-5862. doi: 10.3934/mbe.2024258
    [3] Honghui Zhang, Jun Xia, Yinlong Yang, Qingqing Yang, Hongfang Song, Jinjie Xie, Yue Ma, Yang Hou, Aike Qiao . Branch flow distribution approach and its application in the calculation of fractional flow reserve in stenotic coronary artery. Mathematical Biosciences and Engineering, 2021, 18(5): 5978-5994. doi: 10.3934/mbe.2021299
    [4] B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury . Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences and Engineering, 2006, 3(2): 371-383. doi: 10.3934/mbe.2006.3.371
    [5] Xintong Wu, Yingyi Geng, Xinhong Wang, Jucheng Zhang, Ling Xia . Continuous extraction of coronary artery centerline from cardiac CTA images using a regression-based method. Mathematical Biosciences and Engineering, 2023, 20(3): 4988-5003. doi: 10.3934/mbe.2023231
    [6] Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93
    [7] Fan He, Minru Li, Xinyu Wang, Lu Hua, Tingting Guo . Numerical investigation of quantitative pulmonary pressure ratio in different degrees of stenosis. Mathematical Biosciences and Engineering, 2024, 21(2): 1806-1818. doi: 10.3934/mbe.2024078
    [8] Ziyu Jin, Ning Li . Diagnosis of each main coronary artery stenosis based on whale optimization algorithm and stacking model. Mathematical Biosciences and Engineering, 2022, 19(5): 4568-4591. doi: 10.3934/mbe.2022211
    [9] Panagiotes A. Voltairas, Antonios Charalambopoulos, Dimitrios I. Fotiadis, Lambros K. Michalis . A quasi-lumped model for the peripheral distortion of the arterial pulse. Mathematical Biosciences and Engineering, 2012, 9(1): 175-198. doi: 10.3934/mbe.2012.9.175
    [10] Mette S. Olufsen, Ali Nadim . On deriving lumped models for blood flow and pressure in the systemic arteries. Mathematical Biosciences and Engineering, 2004, 1(1): 61-80. doi: 10.3934/mbe.2004.1.61
  • In this work, we investigate the behavior of the pulsatile blood flow in the system of human coronary arteries. Blood is modeled as an incompressible non-Newtonian fluid. The transient phenomena of blood flow through the coronary system are simulated by solving the three dimensional unsteady state Navier-Stokes equations and continuity equation. Distributions of velocity, pressure and wall shear stresses are determined in the system under pulsatile conditions on the boundaries. Effect of branching vessel on the flow problem is investigated. The numerical results show that blood pressure in the system with branching vessels of coronary arteries is lower than the one in the system with no branch. The magnitude of wall shear stresses rises at the bifurcation.


  • This article has been cited by:

    1. S. Divya Ganga, C. Pon Selvi, Sikkandar Mohamed Yacin, 2015, Hemodynamic analysis in left coronary artery using lumped parameter model, 978-1-4799-9985-9, 1, 10.1109/CONECCT.2015.7383909
    2. Saeed Bahrami, Mahmood Norouzi, A numerical study on hemodynamics in the left coronary bifurcation with normal and hypertension conditions, 2018, 17, 1617-7959, 1785, 10.1007/s10237-018-1056-1
    3. Saeed Bahrami, Mahmood Norouzi, Hemodynamic impacts of hematocrit level by two-way coupled FSI in the left coronary bifurcation, 2020, 76, 13860291, 9, 10.3233/CH-200854
    4. Mengyang Cong, Xingming Xu, Jianfeng Qiu, Shun Dai, Chuanzhi Chen, Xiuqing Qian, Hongbin Zhang, Shengxue Qin, Huihui Zhao, Influence of malformation of right coronary artery originating from the left sinus in hemodynamic environment, 2020, 19, 1475-925X, 10.1186/s12938-020-00804-0
    5. M. Simão, J. M. Ferreira, J. Mora-Rodriguez, H. M. Ramos, Identification of DVT diseases using numerical simulations, 2016, 54, 0140-0118, 1591, 10.1007/s11517-015-1446-9
    6. Mongkol Kaewbumrung, Somsak Orankitjaroen, Pichit Boonkrong, Buraskorn Nuntadilok, Benchawan Wiwatanapataphee, Numerical Simulation of Dispersed Particle-Blood Flow in the Stenosed Coronary Arteries, 2018, 2018, 1687-9643, 1, 10.1155/2018/2593425
    7. Mehdi Toluey, Samad Ghaffari, Arezou Tajlil, Babak Nasiri, Ali Rostami, The impact of cigarette smoking on infarct location and in-hospital outcome following acute ST-elevation myocardial infarction, 2019, 11, 2008-5117, 209, 10.15171/jcvtr.2019.35
    8. Janina C. V. Schwarz, Monique G. J. T. B. van Lier, Jeroen P. H. M. van den Wijngaard, Maria Siebes, Ed VanBavel, Topologic and Hemodynamic Characteristics of the Human Coronary Arterial Circulation, 2020, 10, 1664-042X, 10.3389/fphys.2019.01611
    9. A. Abbas Nejad, Z. Talebi, D. Cheraghali, A. Shahbani-Zahiri, M. Norouzi, Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases, 2018, 154, 01692607, 109, 10.1016/j.cmpb.2017.11.016
    10. Yan Zhang, Haiwei Xie, The effect of a bifurcation structure on the heat transfer and temperature distribution of pulsatile blood flow, 2018, 118, 00179310, 663, 10.1016/j.ijheatmasstransfer.2017.11.055
    11. Guilherme S. Souza, Enzo D. Giustina, Marcus V. Carvalho, Raquel J. Lobosco, 2021, Chapter 2, 978-3-030-57565-6, 17, 10.1007/978-3-030-57566-3_2
    12. David G. Owen, Diana C. de Oliveira, Emma K. Neale, Duncan E. T. Shepherd, Daniel M. Espino, Fang-Bao Tian, Numerical modelling of blood rheology and platelet activation through a stenosed left coronary artery bifurcation, 2021, 16, 1932-6203, e0259196, 10.1371/journal.pone.0259196
    13. Nattawan Chuchalerm, Wannika Sawangtong, Benchawan Wiwatanapataphee, Thanongchai Siriapisith, Study of Non-Newtonian blood flow - heat transfer characteristics in the human coronary system with an external magnetic field, 2022, 19, 1551-0018, 9550, 10.3934/mbe.2022444
    14. Yash T. Katakia, Satyadevan Kanduri, Ritobrata Bhattacharyya, Srinandini Ramanathan, Ishan Nigam, Bhanu Vardhan Reddy Kuncharam, Syamantak Majumder, Angular difference in human coronary artery governs endothelial cell structure and function, 2022, 5, 2399-3642, 10.1038/s42003-022-04014-3
    15. Rupali Pandey, Manoj Kumar, Vivek Kumar Srivastav, Numerical Studies of Blood Flow in Left Coronary Model, 2021, 13, 26662558, 1228, 10.2174/2666255813666190923102644
    16. Souvik Pabi, Mohd. Kaleem Khan, Sachin Kumar Jain, Ashis Kumar Sen, Abhishek Raj, Effect of stenotic shapes and arterial wall elasticity on the hemodynamics, 2023, 35, 1070-6631, 10.1063/5.0169575
    17. Pedram Hanafizadeh, Nima Mirkhani, Mohammad Reza Davoudi, Mahtab Masouminia, Keyvan Sadeghy, Non‐Newtonian Blood Flow Simulation of Diastolic Phase in Bileaflet Mechanical Heart Valve Implanted in a Realistic Aortic Root Containing Coronary Arteries, 2016, 40, 0160-564X, 10.1111/aor.12787
    18. Zubeir Allum Saib, Farid Abed, Mergen H. Ghayesh, Marco Amabili, A review of fluid-structure interaction: blood flow in arteries, 2025, 9, 26670992, 100171, 10.1016/j.bea.2025.100171
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3302) PDF downloads(579) Cited by(18)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog