1.
|
Frank M. Hilker,
Population collapse to extinction: the catastrophic combination of parasitism and Allee effect,
2010,
4,
1751-3758,
86,
10.1080/17513750903026429
|
|
2.
|
Rajivganthi Chinnathambi, Fathalla A. Rihan, Hebatallah J. Alsakaji,
A fractional‐order model with time delay for tuberculosis with endogenous reactivation and exogenous reinfections,
2019,
0170-4214,
10.1002/mma.5676
|
|
3.
|
David J. Gerberry,
Practical aspects of backward bifurcation in a mathematical model for tuberculosis,
2016,
388,
00225193,
15,
10.1016/j.jtbi.2015.10.003
|
|
4.
|
D.P. Moualeu, A. Nana Yakam, S. Bowong, A. Temgoua,
Analysis of a tuberculosis model with undetected and lost-sight cases,
2016,
41,
10075704,
48,
10.1016/j.cnsns.2016.04.012
|
|
5.
|
Ram Singh, Madhu Jain, Shoket Ali,
2016,
Mathematical analysis of transmission dynamics of tuberculosis with recurrence based on treatment,
978-1-4673-9939-5,
3995,
10.1109/ICEEOT.2016.7755464
|
|
6.
|
Ram Singh, Madhu Jain, Shoket Ali,
2016,
Mathematical analysis of transmission dynamics of tuberculosis with recurrence based on treatment,
978-1-4673-9939-5,
2990,
10.1109/ICEEOT.2016.7755248
|
|
7.
|
M. Gabriela M. Gomes, Paula Rodrigues, Frank M. Hilker, Natalia B. Mantilla-Beniers, Marion Muehlen, Ana Cristina Paulo, Graham F. Medley,
Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions,
2007,
248,
00225193,
608,
10.1016/j.jtbi.2007.06.005
|
|
8.
|
S. MUSHAYABASA, C. P. BHUNU,
MODELING THE IMPACT OF VOLUNTARY TESTING AND TREATMENT ON TUBERCULOSIS TRANSMISSION DYNAMICS,
2012,
05,
1793-5245,
1250029,
10.1142/S1793524511001726
|
|
9.
|
Jin Wang, Shu Liao,
A generalized cholera model and epidemic–endemic analysis,
2012,
6,
1751-3758,
568,
10.1080/17513758.2012.658089
|
|
10.
|
Sk Shahid Nadim, Joydev Chattopadhyay,
Occurrence of backward bifurcation and prediction of disease transmission with imperfect lockdown: A case study on COVID-19,
2020,
140,
09600779,
110163,
10.1016/j.chaos.2020.110163
|
|
11.
|
Y. Ma, C. R. Horsburgh, L. F. White, H. E. Jenkins,
Quantifying TB transmission: a systematic review of reproduction number and serial interval estimates for tuberculosis,
2018,
146,
0950-2688,
1478,
10.1017/S0950268818001760
|
|
12.
|
Oluwaseun Y. Sharomi, Mohammad A. Safi, Abba B. Gumel, David J. Gerberry,
Exogenous re-infection does not always cause backward bifurcation in TB transmission dynamics,
2017,
298,
00963003,
322,
10.1016/j.amc.2016.11.009
|
|
13.
|
Jose L. Segovia-Juarez, Suman Ganguli, Denise Kirschner,
Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model,
2004,
231,
00225193,
357,
10.1016/j.jtbi.2004.06.031
|
|
14.
|
Nicolas Bacaër, Rachid Ouifki, Carel Pretorius, Robin Wood, Brian Williams,
Modeling the joint epidemics of TB and HIV in a South African township,
2008,
57,
0303-6812,
557,
10.1007/s00285-008-0177-z
|
|
15.
|
Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng,
2019,
Chapter 7,
978-1-4939-9826-5,
249,
10.1007/978-1-4939-9828-9_7
|
|
16.
|
Hyun M Yang, Silvia M Raimundo,
Assessing the effects of multiple infections and long latency in the dynamics of tuberculosis,
2010,
7,
1742-4682,
10.1186/1742-4682-7-41
|
|
17.
|
Purvi M. Pandya, Ekta N. Jayswal, Yash Shah,
2020,
chapter 3,
9781799837411,
49,
10.4018/978-1-7998-3741-1.ch003
|
|
18.
|
Prasanta Kumar Mondal, T. K. Kar,
Optimal treatment control and bifurcation analysis of a tuberculosis model with effect of multiple re-infections,
2017,
5,
2195-268X,
367,
10.1007/s40435-015-0176-z
|
|
19.
|
T. K. Kar, Prasanta Kumar Mondal,
Global Dynamics of a Tuberculosis Epidemic Model and the Influence of Backward Bifurcation,
2012,
11,
1570-1166,
433,
10.1007/s10852-012-9210-8
|
|
20.
|
Rachid Ouifki, Jacek Banasiak,
Epidemiological models with quadratic equation for endemic equilibria—A bifurcation atlas,
2020,
43,
0170-4214,
10413,
10.1002/mma.6389
|
|
21.
|
S. Mushayabasa, C. P. Bhunu,
Modeling the impact of early therapy for latent tuberculosis patients and its optimal control analysis,
2013,
39,
0092-0606,
723,
10.1007/s10867-013-9328-6
|
|
22.
|
Caroline Colijn, Ted Cohen, Megan Murray,
Emergent heterogeneity in declining tuberculosis epidemics,
2007,
247,
00225193,
765,
10.1016/j.jtbi.2007.04.015
|
|
23.
|
Subhas Khajanchi, Dhiraj Kumar Das, Tapan Kumar Kar,
Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation,
2018,
497,
03784371,
52,
10.1016/j.physa.2018.01.014
|
|
24.
|
José Martins, Alberto Pinto, Nico Stollenwerk,
The maximum curvature reinfection threshold,
2019,
40,
1476945X,
100791,
10.1016/j.ecocom.2019.100791
|
|
25.
|
Farai Nyabadza,
A deterministic model for church growth with internal revival,
2008,
11,
0972-0502,
11,
10.1080/09720502.2008.10700539
|
|
26.
|
Ally Yeketi Ayinla, Wan Ainun Mior Othman, Musa Rabiu,
A Mathematical Model of the Tuberculosis Epidemic,
2021,
0001-5342,
10.1007/s10441-020-09406-8
|
|
27.
|
Fatima Sulayman, Mohd Hafiz Mohd, Farah Aini Abdullah,
2021,
Chapter 10,
978-981-16-2628-9,
197,
10.1007/978-981-16-2629-6_10
|
|
28.
|
Zviiteyi Chazuka, Edinah Mudimu, Dephney Mathebula,
Stability and bifurcation analysis of an HIV model with pre-exposure prophylaxis and treatment interventions,
2024,
23,
24682276,
e01979,
10.1016/j.sciaf.2023.e01979
|
|
29.
|
Olumuyiwa James Peter, Afeez Abidemi, Fatmawati Fatmawati, Mayowa M. Ojo, Festus Abiodun Oguntolu,
Optimizing tuberculosis control: a comprehensive simulation of integrated interventions using a mathematical model,
2024,
4,
2791-8564,
238,
10.53391/mmnsa.1461011
|
|