Heterogeneous population dynamics and scaling laws near epidemic outbreaks

  • Received: 01 August 2015 Accepted: 29 June 2018 Published: 01 July 2016
  • MSC : 34C60, 34D23, 37N25, 45J05, 91B69, 92B05.

  • In this paper, we focus on the influence of heterogeneity and stochasticity of the population on thedynamical structure of a basic susceptible-infected-susceptible (SIS) model. Firstwe prove that, upon a suitable mathematical reformulation of the basic reproduction number, thehomogeneous system and the heterogeneous system exhibit a completely analogous globalbehaviour. Then we consider noise terms to incorporate the fluctuation effects and therandom import of the disease into the population and analyse the influence of heterogeneityon warning signs for critical transitions (or tipping points). This theory shows that one maybe able to anticipate whether a bifurcation point is close before it happens. We use numericalsimulations of a stochastic fast-slow heterogeneous population SIS model and show various aspectsof heterogeneity have crucial influences on the scaling laws that are used as early-warningsigns for the homogeneous system. Thus, although the basic structural qualitative dynamicalproperties are the same for both systems, the quantitative features for epidemic predictionare expected to change and care has to be taken to interpret potential warning signs for diseaseoutbreaks correctly.

    Citation: Andreas Widder, Christian Kuehn. Heterogeneous population dynamics and scaling laws near epidemic outbreaks[J]. Mathematical Biosciences and Engineering, 2016, 13(5): 1093-1118. doi: 10.3934/mbe.2016032

    Related Papers:

    [1] Ping Yan, Gerardo Chowell . Modeling sub-exponential epidemic growth dynamics through unobserved individual heterogeneity: a frailty model approach. Mathematical Biosciences and Engineering, 2024, 21(10): 7278-7296. doi: 10.3934/mbe.2024321
    [2] Marcin Choiński, Mariusz Bodzioch, Urszula Foryś . A non-standard discretized SIS model of epidemics. Mathematical Biosciences and Engineering, 2022, 19(1): 115-133. doi: 10.3934/mbe.2022006
    [3] Meici Sun, Qiming Liu . An SIS epidemic model with time delay and stochastic perturbation on heterogeneous networks. Mathematical Biosciences and Engineering, 2021, 18(5): 6790-6805. doi: 10.3934/mbe.2021337
    [4] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [5] Marcin Choiński . An inherently discrete–time $ SIS $ model based on the mass action law for a heterogeneous population. Mathematical Biosciences and Engineering, 2024, 21(12): 7740-7759. doi: 10.3934/mbe.2024340
    [6] Liqiong Pu, Zhigui Lin . A diffusive SIS epidemic model in a heterogeneous and periodically evolvingenvironment. Mathematical Biosciences and Engineering, 2019, 16(4): 3094-3110. doi: 10.3934/mbe.2019153
    [7] Sara Y. Del Valle, J. M. Hyman, Nakul Chitnis . Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1475-1497. doi: 10.3934/mbe.2013.10.1475
    [8] Benjamin H. Singer, Denise E. Kirschner . Influence of backward bifurcation on interpretation of $R_0$ in a model of epidemic tuberculosis with reinfection. Mathematical Biosciences and Engineering, 2004, 1(1): 81-93. doi: 10.3934/mbe.2004.1.81
    [9] Peter Rashkov, Ezio Venturino, Maira Aguiar, Nico Stollenwerk, Bob W. Kooi . On the role of vector modeling in a minimalistic epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 4314-4338. doi: 10.3934/mbe.2019215
    [10] Ning Yu, Xue Zhang . Discrete stage-structured tick population dynamical system with diapause and control. Mathematical Biosciences and Engineering, 2022, 19(12): 12981-13006. doi: 10.3934/mbe.2022606
  • In this paper, we focus on the influence of heterogeneity and stochasticity of the population on thedynamical structure of a basic susceptible-infected-susceptible (SIS) model. Firstwe prove that, upon a suitable mathematical reformulation of the basic reproduction number, thehomogeneous system and the heterogeneous system exhibit a completely analogous globalbehaviour. Then we consider noise terms to incorporate the fluctuation effects and therandom import of the disease into the population and analyse the influence of heterogeneityon warning signs for critical transitions (or tipping points). This theory shows that one maybe able to anticipate whether a bifurcation point is close before it happens. We use numericalsimulations of a stochastic fast-slow heterogeneous population SIS model and show various aspectsof heterogeneity have crucial influences on the scaling laws that are used as early-warningsigns for the homogeneous system. Thus, although the basic structural qualitative dynamicalproperties are the same for both systems, the quantitative features for epidemic predictionare expected to change and care has to be taken to interpret potential warning signs for diseaseoutbreaks correctly.


    [1] Journal of Biological Dynamics, 3 (2009), 73-86.
    [2] Physical Review X, 4 (2014), 021024.
    [3] Ecology Letters, 9 (2006), 467-484.
    [4] Mathematical Modelling of Natural Phenomena, 7 (2012), 12-27.
    [5] Wiley, 1974.
    [6] Journal of the Royal Society Interface, 4 (2007), 879-891.
    [7] Journal of Biological Dynamics, 4 (2010), 478-489.
    [8] Journal of Differential Equations, 191 (2003), 1-54.
    [9] Springer, 2006.
    [10] Springer, New York, 2012.
    [11] Vol. 1945, Springer, 2008.
    [12] Mathematical Biosciences, 225 (2010), 24-35.
    [13] Mathematical Medicine and Biology, 8 (1991), 1-29.
    [14] Ecology Letters, 9 (2006), 311-318.
    [15] SIAM Journal on Applied Mathematics, 56 (1996), 494-508.
    [16] Journal of Mathematical Biology, 67 (2013), 963-978.
    [17] Mathematical and Computer Modelling, 30 (1999), 97-115.
    [18] Social Networks, 29 (2007), 539-554.
    [19] Vol. 146. Wiley, Chichester, 2000.
    [20] Journal of Mathematical Biology, 28 (1990), 365-382.
    [21] Theoretical Population Biology, 56 (1999), 325-335.
    [22] Mathematical Population Studies, 11 (2004), 3-28.
    [23] 4th edition, Springer, Berlin Heidelberg, Germany, 2009.
    [24] Journal of Infectious Diseases, 174 (1996), 150-161.
    [25] Ecological Monographs, 72 (2002), 185-202.
    [26] Physical Review Letters, 96 (2006), 208701.
    [27] Journal of Mathematical Biology, 60 (2010), 347-386.
    [28] Mathematical Biosciences, 28 (1976), 335-356.
    [29] Journal of Theoretical Biology, 350 (2014), 70-80.
    [30] SIAM Review, 43 (2001), 525-546.
    [31] Mathematical Biosciences, 181 (2003), 85-106.
    [32] Proceedings of the Royal Society B, 277 (2010), 3827-3835.
    [33] PLoS Computational Biology, 6 (2010), e1000968, 15pp.
    [34] Journal of The Royal Society Interface, 8 (2011), 63-73.
    [35] Mathematical Biosciences, 90 (1988), 415-473.
    [36] Mathematical Biosciences, 201 (2006), 15-47.
    [37] Ecosphere, 3 (2012), 1-15.
    [38] in Dynamical Systems, Springer, 1609 (1995), 44-118.
    [39] Bulletin of Mathematical Biology, 77 (2015), 319-338.
    [40] Journal of the Royal Society Interface, 2 (2005), 295-307.
    [41] Princeton University Press, 2008.
    [42] in Proceedings. 1991 IEEE Computer Society Symposium on Research in Security and Privacy, 1991, 343-359.
    [43] Proceedings of the Royal Society London A, 115 (1927), 700-721.
    [44] Nonlinearity, 14 (2001), 1473-1491.
    [45] Journal of Nonlinear Science, 23 (2013), 457-510.
    [46] Springer, 2015.
    [47] Theoretical Ecology, 6 (2013), 295-308.
    [48] Scientific reports, 5 (2015), art.nr. 13190.
    [49] Bulletin of Mathematical Biology, 75 (2013), 1157-1180.
    [50] Mathematical Biosciences, 28 (1976), 221-236.
    [51] The European Physical Journal B-Condensed Matter and Complex Systems, 26 (2002), 521-529.
    [52] Advances in Applied Probability, 28 (1996), 895-932.
    [53] Mathematical Modelling of Natural Phenomena, 7 (2012), 147-167.
    [54] Mathematical Biosciences, 215 (2008), 177-185.
    [55] Theoretical Ecology, 6 (2013), 333-357.
    [56] New England Journal of Medicine, 352 (2005), 1839-1842.
    [57] Journal of Differential Equations, 60 (1985), 131-141.
    [58] Nature, 461 (2009), 53-59.
    [59] Physical Review E, 77 (2008), 066101, 10pp.
    [60] Physica A, 387 (2008), 2133-2144.
    [61] Journal of Mathematical Biology, 51 (2005), 123-143.
    [62] Journal of Mathematical Analysis and Applications, 346 (2008), 227-242.
    [63] Journal of Statistical Physics, 38 (1985), 1071-1097.
    [64] Computational statistics & data analysis, 45 (2004), 3-23.
    [65] Physica A, 390 (2011), 2408-2413.
    [66] Sexually transmitted diseases, 5 (1978), 51-56.
  • This article has been cited by:

    1. Aníbal Coronel, Luis Friz, Ian Hess, María Zegarra, On the existence and uniqueness of an inverse problem in epidemiology, 2021, 100, 0003-6811, 513, 10.1080/00036811.2019.1608964
    2. Hildeberto Jardón-Kojakhmetov, Christian Kuehn, Andrea Pugliese, Mattia Sensi, A geometric analysis of the SIR, SIRS and SIRWS epidemiological models, 2021, 58, 14681218, 103220, 10.1016/j.nonrwa.2020.103220
    3. Tobias S. Brett, Eamon B. O’Dea, Éric Marty, Paige B. Miller, Andrew W. Park, John M. Drake, Pejman Rohani, Mercedes Pascual, Anticipating epidemic transitions with imperfect data, 2018, 14, 1553-7358, e1006204, 10.1371/journal.pcbi.1006204
    4. Leonhard Horstmeyer, Christian Kuehn, Stefan Thurner, Balancing Quarantine and Self-Distancing Measures in Adaptive Epidemic Networks, 2022, 84, 0092-8240, 10.1007/s11538-022-01033-3
    5. Stefano Bonaccorsi, Stefania Ottaviano, A stochastic differential equation SIS model on network under Markovian switching, 2022, 0736-2994, 1, 10.1080/07362994.2022.2146590
    6. Ji Li, Ping Li, THE EFFECT OF AN ADDITIVE NOISE ON SOME SLOW-FAST EQUATION NEAR A TRANSCRITICAL POINT, 2023, 13, 2156-907X, 1632, 10.11948/20220433
    7. Aníbal Coronel, Fernando Huancas, Ian Hess, Alex Tello, The diffusion identification in a SIS reaction-diffusion system, 2023, 21, 1551-0018, 562, 10.3934/mbe.2024024
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3765) PDF downloads(559) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog