On deriving lumped models for blood flow and pressure in the systemic arteries

  • Received: 01 January 2004 Accepted: 29 June 2018 Published: 01 March 2004
  • MSC : 76205, 92C35.

  • Windkessel and similar lumped models are often used to represent blood flow and pressure in systemic arteries. The windkessel model was originally developed by Stephen Hales (1733) and Otto Frank (1899) who used it to describe blood flow in the heart. In this paper we start with the one-dimensional axisymmetric Navier-Stokes equations for time-dependent blood flow in a rigid vessel to derive lumped models relating flow and pressure. This is done through Laplace transform and its inversion via residue theory. Upon keeping contributions from one, two, or more residues, we derive lumped models of successively higher order. We focus on zeroth, first and second order models and relate them to electrical circuit analogs, in which current is equivalent to flow and voltage to pressure. By incorporating e ffects of compliance through addition of capacitors, windkessel and related lumped models are obtained. Our results show that given the radius of a blood vessel, it is possible to determine the order of the model that would be appropriate for analyzing the flow and pressure in that vessel. For instance, in small rigid vessels (R< 0.2 cm) it is adequate to use Poiseuille's law to express the relation between flow and pressure, whereas for large vessels it might be necessary to incorporate spatial dependence by using a one-dimensional model accounting for axial variations.

    Citation: Mette S. Olufsen, Ali Nadim. On deriving lumped models for blood flow and pressure in the systemic arteries[J]. Mathematical Biosciences and Engineering, 2004, 1(1): 61-80. doi: 10.3934/mbe.2004.1.61

    Related Papers:

    [1] Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93
    [2] Li Cai, Qian Zhong, Juan Xu, Yuan Huang, Hao Gao . A lumped parameter model for evaluating coronary artery blood supply capacity. Mathematical Biosciences and Engineering, 2024, 21(4): 5838-5862. doi: 10.3934/mbe.2024258
    [3] Panagiotes A. Voltairas, Antonios Charalambopoulos, Dimitrios I. Fotiadis, Lambros K. Michalis . A quasi-lumped model for the peripheral distortion of the arterial pulse. Mathematical Biosciences and Engineering, 2012, 9(1): 175-198. doi: 10.3934/mbe.2012.9.175
    [4] Lorenzo Civilla, Agnese Sbrollini, Laura Burattini, Micaela Morettini . An integrated lumped-parameter model of the cardiovascular system for the simulation of acute ischemic stroke: description of instantaneous changes in hemodynamics. Mathematical Biosciences and Engineering, 2021, 18(4): 3993-4010. doi: 10.3934/mbe.2021200
    [5] Wouter Huberts, E. Marielle H. Bosboom, Frans N. van de Vosse . A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Mathematical Biosciences and Engineering, 2009, 6(1): 27-40. doi: 10.3934/mbe.2009.6.27
    [6] Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok . Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences and Engineering, 2012, 9(1): 199-214. doi: 10.3934/mbe.2012.9.199
    [7] B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury . Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences and Engineering, 2006, 3(2): 371-383. doi: 10.3934/mbe.2006.3.371
    [8] Nattawan Chuchalerm, Wannika Sawangtong, Benchawan Wiwatanapataphee, Thanongchai Siriapisith . Study of Non-Newtonian blood flow - heat transfer characteristics in the human coronary system with an external magnetic field. Mathematical Biosciences and Engineering, 2022, 19(9): 9550-9570. doi: 10.3934/mbe.2022444
    [9] Fan He, Minru Li, Xinyu Wang, Lu Hua, Tingting Guo . Numerical investigation of quantitative pulmonary pressure ratio in different degrees of stenosis. Mathematical Biosciences and Engineering, 2024, 21(2): 1806-1818. doi: 10.3934/mbe.2024078
    [10] Alexandre Cornet . Mathematical modelling of cardiac pulse wave reflections due to arterial irregularities. Mathematical Biosciences and Engineering, 2018, 15(5): 1055-1076. doi: 10.3934/mbe.2018047
  • Windkessel and similar lumped models are often used to represent blood flow and pressure in systemic arteries. The windkessel model was originally developed by Stephen Hales (1733) and Otto Frank (1899) who used it to describe blood flow in the heart. In this paper we start with the one-dimensional axisymmetric Navier-Stokes equations for time-dependent blood flow in a rigid vessel to derive lumped models relating flow and pressure. This is done through Laplace transform and its inversion via residue theory. Upon keeping contributions from one, two, or more residues, we derive lumped models of successively higher order. We focus on zeroth, first and second order models and relate them to electrical circuit analogs, in which current is equivalent to flow and voltage to pressure. By incorporating e ffects of compliance through addition of capacitors, windkessel and related lumped models are obtained. Our results show that given the radius of a blood vessel, it is possible to determine the order of the model that would be appropriate for analyzing the flow and pressure in that vessel. For instance, in small rigid vessels (R< 0.2 cm) it is adequate to use Poiseuille's law to express the relation between flow and pressure, whereas for large vessels it might be necessary to incorporate spatial dependence by using a one-dimensional model accounting for axial variations.


  • This article has been cited by:

    1. A. Marone, J.W. Hoi, M.A. Khalil, H.K. Kim, R. Dayal, G. Shrikhande, A.H. Hielscher, 2016, Effects of Posture and Heart Rate Changes on Optical Tomographic Imaging of the Peripheral Arteries, 978-1-943580-10-1, OTh2C.5, 10.1364/OTS.2016.OTh2C.5
    2. A. Marone, J.W. Hoi, M.A. Khalil, H.K. Kim, G. Shrikhande, R. Dayal, A.H. Hielscher, 2015, Modeling of the blood flow in the lower extremities for dynamic diffuse optical tomography of Peripheral Artery Disease, 9781628417036, 95380Z, 10.1364/ECBO.2015.95380Z
    3. Stefan Bernhard, Kristine Al Zoukra, Christof Schtte, 2013, chapter 106, 9781466624559, 2069, 10.4018/978-1-4666-2455-9.ch106
    4. Taous Meriem Laleg-Kirati, Zehor Belkhatir, Fernando Diaz Ledezma, 2015, Chapter 13, 978-3-319-10794-3, 315, 10.1007/978-3-319-10795-0_13
    5. Mohsen Abdi, Alireza Karimi, Mahdi Navidbakhsh, Gila Pirzad Jahromi, Kamran Hassani, A lumped parameter mathematical model to analyze the effects of tachycardia and bradycardia on the cardiovascular system, 2015, 28, 08943370, 346, 10.1002/jnm.2010
    6. Lutz E. Kraushaar, Alexander Dressel, Alexander Massmann, A novel principled method for the measurement of vascular robustness uncovers hidden risk for premature CVD death, 2018, 125, 8750-7587, 1931, 10.1152/japplphysiol.00016.2018
    7. Brooke N. Steele, Mette S. Olufsen, Charles A. Taylor, Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions, 2007, 10, 1025-5842, 39, 10.1080/10255840601068638
    8. Robert Rapadamnaba, Franck Nicoud, Bijan Mohammadi, Augmented patient‐specific functional medical imaging by implicit manifold learning, 2020, 36, 2040-7939, 10.1002/cnm.3325
    9. Sayed Nour, Endothelial shear stress enhancements: a potential solution for critically ill Covid-19 patients, 2020, 19, 1475-925X, 10.1186/s12938-020-00835-7
    10. Alexey Yu. Naumov, Sergey A. Balashov, Arthur M. Melkumyants, Use of Input Impedance to Determine Changes in the Resistance of Arterial Vessels at Different Levels in Feline Femoral Bed, 2014, 42, 0090-6964, 1644, 10.1007/s10439-014-1016-6
    11. Maria G. C. Nestola, Alessio Gizzi, Christian Cherubini, Simonetta Filippi, Three-band decomposition analysis in multiscale FSI models of abdominal aortic aneurysms, 2016, 27, 0129-1831, 1650017, 10.1142/S0129183116500170
    12. Amy S. Garrett, Toan Pham, Denis S. Loiselle, June-Chiew Han, Andrew J. Taberner, 2017, Real-time model-based control of afterload for in vitro cardiac tissue experimentation, 978-1-5090-2809-2, 1287, 10.1109/EMBC.2017.8037067
    13. Mette S. Olufsen, Johnny T. Ottesen, Hien T. Tran, Laura M. Ellwein, Lewis A. Lipsitz, Vera Novak, Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation, 2005, 99, 8750-7587, 1523, 10.1152/japplphysiol.00177.2005
    14. ASHRAFI M. NIGER, ABBA B. GUMEL, Immune Response and Imperfect Vaccine in Malaria Dynamics, 2011, 18, 0889-8480, 55, 10.1080/08898480.2011.564560
    15. Fernando Diaz Ledezma, Taous Meriem Laleg-Kirati, Detection of Cardiovascular Anomalies: Hybrid Systems Approach, 2012, 45, 14746670, 222, 10.3182/20120606-3-NL-3011.00059
    16. Dima Abi-Abdallah, Agnès Drochon, Vincent Robin, Odette Fokapu, Pulsed magnetohydrodynamic blood flow in a rigid vessel under physiological pressure gradient, 2009, 12, 1025-5842, 445, 10.1080/10255840802687384
    17. Giacomo Gropplero, Laurent Davoust, Sébastien Arnoux, Yves Fouillet, Frédéric Revol-Cavalier, Foam-based microfluidics: experiments and modeling with lumped elements, 2016, 20, 1613-4982, 10.1007/s10404-016-1832-0
    18. Johnny T. Ottesen, Vera Novak, Mette S. Olufsen, 2013, Chapter 10, 978-3-642-32881-7, 177, 10.1007/978-3-642-32882-4_10
    19. Biljana Lazović, Sanja Mazić, Dragoslav Zikich, Dejan Žikić, The mathematical model of the radial artery blood pressure waveform through monitoring of the age-related changes, 2015, 56, 01652125, 14, 10.1016/j.wavemoti.2015.02.001
    20. J. Menacho, L. Rotllant, J. J. Molins, G. Reyes, A. A. García-Granada, M. Balcells, J. Martorell, Arterial pulse attenuation prediction using the decaying rate of a pressure wave in a viscoelastic material model, 2018, 17, 1617-7959, 589, 10.1007/s10237-017-0980-9
    21. David Ojeda, Virginie Le Rolle, Agnes Drochon, Majid Harmouche, Herve Corbineau, Jean-Phillipe Verhoye, Alfredo I. Hernandez, 2013, Multiobjective patient-specific estimation of a coronary circulation model for triple vessel disease, 978-1-4577-0216-7, 3877, 10.1109/EMBC.2013.6610391
    22. Karan Jain, Srinivasu Maka, 2016, Sensitivity analysis and parameter estimation of cardiovascular model, 978-1-4673-7666-2, 9, 10.1109/ICSMB.2016.7915076
    23. Bharat Soni, Antonio F. Miguel, Ameeya Kumar Nayak, A mathematical analysis for constructal design of tree flow networks under unsteady flow, 2020, 476, 1364-5021, 20200377, 10.1098/rspa.2020.0377
    24. Aaron Bray, Jeffrey B. Webb, Andinet Enquobahrie, Jared Vicory, Jerry Heneghan, Robert Hubal, Stephanie TerMaath, Philip Asare, Rachel B. Clipp, Pulse Physiology Engine: an Open-Source Software Platform for Computational Modeling of Human Medical Simulation, 2019, 1, 2523-8973, 362, 10.1007/s42399-019-00053-w
    25. A. Marone, J. W. Hoi, M. A. Khalil, H. K. Kim, G. Shrikhande, R. Dayal, D. R. Bajakian, A. H. Hielscher, Modeling of the hemodynamics in the feet of patients with peripheral artery disease, 2019, 10, 2156-7085, 657, 10.1364/BOE.10.000657
    26. Alena Uus, Panos Liatsis, Muhammad Moazzam Jawaid, Ronak Rajani, Elena Benderskaya, 2015, Assessment of stenosis introduced flow resistance in CCTA-reconstructed coronary arteries, 978-1-4673-8353-0, 313, 10.1109/IWSSIP.2015.7314238
    27. Piotr Kalita, Robert Schaefer, Mechanical Models of Artery Walls, 2008, 15, 1134-3060, 1, 10.1007/s11831-007-9015-5
    28. Adel A. Ashamiss, Mahmoud A. Hussien, Roger E. Salters, 2011, Blood flow and brain cell region models for Alzheimer's disease, 978-1-4577-1062-9, 369, 10.1109/CCA.2011.6044365
    29. Tobias Koeppl, Gabriele Santin, Bernard Haasdonk, Rainer Helmig, Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods, 2018, 34, 20407939, e3095, 10.1002/cnm.3095
    30. Matthew McDaniel, Jonathan M. Keller, Steven White, Austin Baird, A Whole-Body Mathematical Model of Sepsis Progression and Treatment Designed in the BioGears Physiology Engine, 2019, 10, 1664-042X, 10.3389/fphys.2019.01321
    31. O. Ghasmelizadeh, M. R. Mirzaee, B. Firoozabadi, B. Sajadi, A. Zolfonoon, 2009, Chapter 68, 978-3-540-89207-6, 276, 10.1007/978-3-540-89208-3_68
    32. PAOLA CAUSIN, FRANCESCA MALGAROLI, A MATHEMATICAL AND COMPUTATIONAL MODEL OF BLOOD FLOW REGULATION IN MICROVESSELS: APPLICATION TO THE EYE RETINA CIRCULATION, 2015, 15, 0219-5194, 1540027, 10.1142/S0219519415400278
    33. Andreas H. Hielscher, Alessandro Marone, Mirella L. Altoé, Danielle R. Bajakian, Kevin Kalinsky, Dawn L. Hershman, Hyun K. Kim, 2019, 9780323480673, 353, 10.1016/B978-0-323-48067-3.00014-7
    34. Mona Abdolrazaghi, Mahdi Navidbakhsh, Kamran Hassani, Mathematical Modelling and Electrical Analog Equivalent of the Human Cardiovascular System, 2010, 10, 1567-8822, 45, 10.1007/s10558-010-9093-0
    35. M. Maasrani, I. Abouliatim, V.G. Ruggieri, H. Corbineau, J. Ph. Verhoye, A. Drochon, 2010, Simulations of fluxes in diseased coronary network using an electrical model, 978-1-4244-4174-7, 1, 10.1109/ICELMACH.2010.5608460
    36. Mohsen Abdi, Mehdi Navidbakhsh, 2012, Modeling internal carotid aneurysm utilizing lumped method to assess the effect of anatomical variation on efferent arteries pressures, 978-1-4673-3130-2, 266, 10.1109/ICBME.2012.6519693
    37. Sayed Nour, Daniel Carbognani, Juan Carlos Chachques, Circulatory Flow Restoration Versus Cardiopulmonary Resuscitation: New Therapeutic Approach in Sudden Cardiac Arrest, 2017, 41, 0160564X, E356, 10.1111/aor.12984
    38. Sayed Nour, Jia Liu, Gang Dai, Daniel Carbognani, Daya Yang, Guifu Wu, Qinmei Wang, Juan Carlos Chachques, Shear Stress, Energy Losses, and Costs: A Resolved Dilemma of Pulsatile Cardiac Assist Devices, 2014, 2014, 2314-6133, 1, 10.1155/2014/651769
    39. Agnès Drochon, Amedeo Anselmi, Majid Harmouche, Hervé Corbineau, Jean-Philippe Verhoye, 2016, Chapter 33, 978-3-319-26513-1, 403, 10.1007/978-3-319-26515-5_33
    40. Po-Lin Hsu, Sean J. Cheng, Richard C. Saumarez, William N. Dawes, Richard A. McMahon, An Extended Computational Model of the Circulatory System for Designing Ventricular Assist Devices, 2008, 54, 1058-2916, 594, 10.1097/MAT.0b013e318185e1ce
    41. Bing-Yuh Lu, Huey-Dong Wu, Shyang-Rong Shih, Fok-Ching Chong, Meng-Lun Hsueh, Yu-Luen Chen, Combination of frequency and amplitude-modulated model for the synthesis of normal and wheezing sounds, 2011, 34, 0158-9938, 449, 10.1007/s13246-011-0105-1
    42. ALVARO VALENCIA, FRANCISCO TORRES, EFFECTS OF HYPERTENSION AND PRESSURE GRADIENT IN A HUMAN CEREBRAL ANEURYSM USING FLUID STRUCTURE INTERACTION SIMULATIONS, 2017, 17, 0219-5194, 1750018, 10.1142/S021951941750018X
    43. Rudolf Huttary, Leonid Goubergrits, Christof Schütte, Stefan Bernhard, Simulation, identification and statistical variation in cardiovascular analysis (SISCA) – A software framework for multi-compartment lumped modeling, 2017, 87, 00104825, 104, 10.1016/j.compbiomed.2017.05.021
    44. Georgios Giannoukos, Mart Min, Mathematical and physical modelling of the dynamic fluidic impedance of arteries using electrical impedance equivalents, 2014, 37, 01704214, 711, 10.1002/mma.2829
    45. Z. Belkhatir, T. M. Laleg-Kirati, M. Tadjine, 2014, Residual generator for cardiovascular anomalies detection, 978-3-9524269-1-3, 1862, 10.1109/ECC.2014.6862573
    46. Y. Kiran Kumar, Shashi B. Mehta, Manjunath Ramachandra, Multimodality Vessel Modeling Analysis for Cerebral Arteriovenous Malformation, 2014, 04, 2160-5866, 23, 10.4236/jbbs.2014.41003
    47. Sayed Nour, Gang Dai, Daniel Carbognani, Minze Feng, Daya Yang, Nermine Lila, Juan Carlos Chachques, Guifu Wu, Intrapulmonary Shear Stress Enhancement: A New Therapeutic Approach in Pulmonary Arterial Hypertension, 2012, 33, 0172-0643, 1332, 10.1007/s00246-012-0322-8
    48. Yoshiki Yamakoshi, Kazuhiko Kotani, Nobuyuki Taniguchi, Takashi Miwa, Characterization of skin dermis microcirculation in flow-mediated dilation using optical sensor with pressurization mechanism, 2013, 51, 0140-0118, 497, 10.1007/s11517-012-1017-2
    49. David Ojeda, Virginie Le Rolle, Majid Harmouche, Agnes Drochon, Herve Corbineau, Jean-Philippe Verhoye, Alfredo I. Hernandez, Sensitivity Analysis and Parameter Estimation of a Coronary Circulation Model for Triple-Vessel Disease, 2014, 61, 0018-9294, 1208, 10.1109/TBME.2013.2296971
    50. Sally Epstein, Marie Willemet, Phil J. Chowienczyk, Jordi Alastruey, Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations, 2015, 309, 0363-6135, H222, 10.1152/ajpheart.00857.2014
    51. Clara Mihaela Ionescu, 2013, Chapter 4, 978-1-4471-5387-0, 39, 10.1007/978-1-4471-5388-7_4
    52. Lutz E. Kraushaar, Alexander Dressel, Alexander Maßmann, Vascular robustness: The missing parameter in cardiovascular risk prediction, 2018, 9, 22113355, 107, 10.1016/j.pmedr.2018.01.008
    53. Fredrik E. Fossan, Jorge Mariscal-Harana, Jordi Alastruey, Leif R. Hellevik, Optimization of topological complexity for one-dimensional arterial blood flow models, 2018, 15, 1742-5689, 20180546, 10.1098/rsif.2018.0546
    54. Stefan Borik, Ivo Cap, Branko Babusiak, 2014, Analysis of nonsymetrical arterial branching using electromechanical analogy, 978-1-4799-3721-9, 522, 10.1109/ELEKTRO.2014.6848951
    55. Mona Abdolrazaghi, Mahdi Navidbakhsh, Kamran Hassani, Mathematical modelling of intra-aortic balloon pump, 2010, 13, 1025-5842, 567, 10.1080/10255840903352532
    56. Vasile Manoliu, 2015, Modeling cardiovascular hemodynamics in a model with nonlinear parameters, 978-1-4673-7544-3, 1, 10.1109/EHB.2015.7391407
    57. Yoshiki Yamakoshi, Yohei Yamanaka, Blood Outflow from Capillary under Forced Pressure: Comparison between Electric Circuit Analog and Optical Measurement, 2007, 46, 0021-4922, 7970, 10.1143/JJAP.46.7970
    58. Mahmoud Ismail, Wolfgang A. Wall, Michael W. Gee, Adjoint-based inverse analysis of windkessel parameters for patient-specific vascular models, 2013, 244, 00219991, 113, 10.1016/j.jcp.2012.10.028
    59. Latty Shazana Ismail, Saiful A. Zulkifl, Nor Hisham Hamid, 2018, Circuit Modeling and Analysis of Cardiovascular System Using Analog Circuit Analogy, 978-1-5386-7269-3, 1, 10.1109/ICIAS.2018.8540595
    60. Yongho Lee, Analytical solutions of channel and duct flows due to general pressure gradients, 2017, 43, 0307904X, 279, 10.1016/j.apm.2016.10.058
    61. E. Crepeau, M. Sorine, 2005, Identifiability of a reduced model of pulsatile flow in an arterial compartment, 0-7803-9567-0, 891, 10.1109/CDC.2005.1582270
    62. Ali Jalali, C. Nataraj, 2011, A cycle-averaged model of hypoplastic left heart syndrome (HLHS), 978-1-4577-1589-1, 190, 10.1109/IEMBS.2011.6090030
    63. Nikolai Buldakov, Natalia Samochetova, Alexey Sitnikov, Sergey Suyatinov, Simulation of communication in the "heart-vessels" system, 2013, 13, 19940408, 10.7463/0113.0513571
    64. J. Boisvert, G. Poirier, L. Borgeat, G. Godin, Real-Time Blood Circulation and Bleeding Model for Surgical Training, 2013, 60, 0018-9294, 1013, 10.1109/TBME.2012.2230326
    65. Saeed Siri, Malikeh Nabaei, Nasser Fatouraee, Multiscale Modeling of Endothelium Derived Wall Shear Stress Regulation in Common Carotid Artery, 2019, 35, 1727-7191, 901, 10.1017/jmech.2019.1
    66. Robert Rapadamnaba, Franck Nicoud, Bijan Mohammadi, Backward sensitivity analysis and reduced‐order covariance estimation in noninvasive parameter identification for cerebral arteries, 2019, 35, 2040-7939, e3170, 10.1002/cnm.3170
    67. S. H. Sadraie, M. Abdi, M. Navidbakhsh, K. Hassani, G. R. Kaka, MODELING THE HEART BEAT, CIRCLE OF WILLIS AND RELATED CEREBRAL STENOSIS USING AN EQUIVALENT ELECTRONIC CIRCUIT, 2014, 26, 1016-2372, 1450052, 10.4015/S1016237214500525
    68. Tianqi Wang, Fuyou Liang, Zunqiang Zhou, Xiaolong Qi, Global sensitivity analysis of hepatic venous pressure gradient (HVPG) measurement with a stochastic computational model of the hepatic circulation, 2018, 97, 00104825, 124, 10.1016/j.compbiomed.2018.04.017
    69. Marc Hirschvogel, Marina Bassilious, Lasse Jagschies, Stephen M. Wildhirt, Michael W. Gee, A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics, 2017, 33, 20407939, e2842, 10.1002/cnm.2842
    70. OMER SAN, ANNE E. STAPLES, AN IMPROVED MODEL FOR REDUCED-ORDER PHYSIOLOGICAL FLUID FLOWS, 2012, 12, 0219-5194, 1250052, 10.1142/S0219519411004666
    71. Ali Jalali, Gerard F. Jones, Daniel J. Licht, C. Nataraj, Application of Mathematical Modeling for Simulation and Analysis of Hypoplastic Left Heart Syndrome (HLHS) in Pre- and Postsurgery Conditions, 2015, 2015, 2314-6133, 1, 10.1155/2015/987293
    72. V. O. Kheyfets, W. O'Dell, T. Smith, J. J. Reilly, E. A. Finol, Considerations for Numerical Modeling of the Pulmonary Circulation—A Review With a Focus on Pulmonary Hypertension, 2013, 135, 0148-0731, 10.1115/1.4024141
    73. Simone Balocco, Olivier Basset, Guy Courbebaisse, Enrico Boni, Alejandro F Frangi, Piero Tortoli, Christian Cachard, Estimation of the viscoelastic properties of vessel walls using a computational model and Doppler ultrasound, 2010, 55, 0031-9155, 3557, 10.1088/0031-9155/55/12/019
    74. Laura Campo-Deaño, Mónica S. N. Oliveira, Fernando T. Pinho, A Review of Computational Hemodynamics in Middle Cerebral Aneurysms and Rheological Models for Blood Flow, 2015, 67, 0003-6900, 10.1115/1.4028946
    75. Salman Sohrabi, Junda Zheng, Ender A. Finol, Yaling Liu, Numerical Simulation of Particle Transport and Deposition in the Pulmonary Vasculature, 2014, 136, 0148-0731, 10.1115/1.4028800
    76. Charlotte Debbaut, Diethard R.L. Monbaliu, Patrick Segers, Validation and Calibration of an Electrical Analog Model of Human Liver Perfusion Based on Hypothermic Machine Perfusion Experiments, 2014, 37, 0391-3988, 486, 10.5301/ijao.5000337
    77. Mahmoud Maasrani, Jean-Philippe Verhoye, Herve Corbineau, Agnes Drochon, Analog Electrical Model of the Coronary Circulation in Case of Multiple Revascularizations, 2008, 36, 0090-6964, 1163, 10.1007/s10439-008-9500-5
    78. R. Lal, F. Nicoud, E. Le Bars, J. Deverdun, F. Molino, V. Costalat, B. Mohammadi, Non Invasive Blood Flow Features Estimation in Cerebral Arteries from Uncertain Medical Data, 2017, 45, 0090-6964, 2574, 10.1007/s10439-017-1904-7
    79. Ke Chen, Jiang Li Lin, Guang Fu Yin, Yi Zheng, Shear Mechanical Properties Characterization of Material via Ultrasound Vibrometry, 2012, 488-489, 1662-8985, 826, 10.4028/www.scientific.net/AMR.488-489.826
    80. Christina Oettmeier, Hans-Günther Döbereiner, David Umulis, A lumped parameter model of endoplasm flow in Physarum polycephalum explains migration and polarization-induced asymmetry during the onset of locomotion, 2019, 14, 1932-6203, e0215622, 10.1371/journal.pone.0215622
    81. Dimitri Deserranno, Mohammad Kassemi, James D. Thomas, Incorporation of Myofilament Activation Mechanics into a Lumped Model of the Human Heart, 2007, 35, 0090-6964, 321, 10.1007/s10439-006-9234-1
    82. Mahmoud Maasrani, Issam Abouliatim, Majid Harmouche, Jean-Philippe Verhoye, Hervé Corbineau, Agnès Drochon, Patients' specific simulations of coronary fluxes in case of three-vessel disease, 2011, 04, 1937-6871, 34, 10.4236/jbise.2011.41005
    83. Emmanuelle Crépeau, Michel Sorine, A reduced model of pulsatile flow in an arterial compartment, 2007, 34, 09600779, 594, 10.1016/j.chaos.2006.03.096
    84. Clara M. Ionescu, Patrick Segers, Robin De Keyser, Mechanical Properties of the Respiratory System Derived From Morphologic Insight, 2009, 56, 0018-9294, 949, 10.1109/TBME.2008.2007807
    85. D.L. Sousa, T.D. Cordeiro, T.R. Melo, J.S. da Rocha Neto, I.A. Cestari, A.M.N. Lima, Modeling, characterization and test of a pediatric ventricular assist device, 2018, 1044, 1742-6588, 012047, 10.1088/1742-6596/1044/1/012047
    86. Tianqi Wang, Fuyou Liang, Zunqiang Zhou, Lu Shi, A computational model of the hepatic circulation applied to analyze the sensitivity of hepatic venous pressure gradient (HVPG) in liver cirrhosis, 2017, 65, 00219290, 23, 10.1016/j.jbiomech.2017.09.023
    87. Lutz E. Kraushaar, Alexander Dressel, The cardiovascular robustness hypothesis: Unmasking young adults' hidden risk for premature cardiovascular death, 2018, 112, 03069877, 51, 10.1016/j.mehy.2018.01.003
    88. Weihua Ruan, A coupled system of ODEs and quasilinear hyperbolic PDEs arising in a multiscale blood flow model, 2008, 343, 0022247X, 778, 10.1016/j.jmaa.2008.01.064
    89. Stefan Bernhard, Kristine Al Zoukra, Christof Schtte, 2012, chapter 1, 9781613501207, 1, 10.4018/978-1-61350-120-7.ch001
    90. Youssef Chahibi, Massimiliano Pierobon, Sang Ok Song, Ian F. Akyildiz, A Molecular Communication System Model for Particulate Drug Delivery Systems, 2013, 60, 0018-9294, 3468, 10.1109/TBME.2013.2271503
    91. Konstantinos P. Papadopoulos, Manolis Gavaises, Ioannis Pantos, Demosthenes G. Katritsis, Nicholas Mitroglou, Derivation of flow related risk indices for stenosed left anterior descending coronary arteries with the use of computer simulations, 2016, 38, 13504533, 929, 10.1016/j.medengphy.2016.05.016
    92. Robert Rapadamnaba, Mathieu Ribatet, Bijan Mohammadi, Global sensitivity analysis for assessing the parameters importance and setting a stopping criterion in a biomedical inverse problem, 2021, 2040-7939, 10.1002/cnm.3458
    93. Gang Peng, Jianqiao Guo, Yajun Yin, Self-Similar Functional Circuit Models of Arteries and Deterministic Fractal Operators: Theoretical Revelation for Biomimetic Materials, 2021, 22, 1422-0067, 12897, 10.3390/ijms222312897
    94. Jermiah J. Joseph, Ting-Yim Lee, Daniel Goldman, Christopher W. McIntyre, Sanjay R. Kharche, 2021, Chapter 57, 978-3-030-78709-7, 595, 10.1007/978-3-030-78710-3_57
    95. ErvinMasita Dewi, Sugondo Hadiyoso, TatiLatifah Erawati Rajab Mengko, Hasballah Zakaria, Kastam Astami, Cardiovascular system modeling using windkessel segmentation model based on photoplethysmography measurements of fingers and toes, 2022, 12, 2228-7477, 192, 10.4103/jmss.jmss_101_21
    96. Stefan Borik, Ivo Cap, Branko Babusiak, Resonant Frequencies of Small Arterial Segments as Determining Factors For Estimation of Terminal Segments in Electromechanical Arterial Tree Model, 2015, 17, 13354205, 66, 10.26552/com.C.2015.1A.66-70
    97. Cécile Daversin-Catty , Ingeborg G. Gjerde , Marie E. Rognes , Geometrically Reduced Modelling of Pulsatile Flow in Perivascular Networks, 2022, 10, 2296-424X, 10.3389/fphy.2022.882260
    98. Jermiah J. Joseph, Clara Sun, Ting-Yim Lee, Daniel Goldman, Sanjay R. Kharche, Christopher W. McIntyre, Structure (Epicardial Stenosis) and Function (Microvascular Dysfunction) That Influence Coronary Fractional Flow Reserve Estimation, 2022, 12, 2076-3417, 4281, 10.3390/app12094281
    99. Gerk Rozema, Arthur E.P. Veldman, Natasha M. Maurits, Quasi-simultaneous coupling methods for partitioned problems in computational hemodynamics, 2023, 184, 01689274, 461, 10.1016/j.apnum.2022.11.001
    100. Alexandra A. Yakusheva, Kirill R. Butov, Georgii A. Bykov, Gábor Závodszky, Anita Eckly, Fazly I. Ataullakhanov, Christian Gachet, Mikhail A. Panteleev, Pierre H. Mangin, Traumatic vessel injuries initiating hemostasis generate high shear conditions, 2022, 6, 2473-9529, 4834, 10.1182/bloodadvances.2022007550
    101. V. L. Resmi, R. G. Sriya, N. Selvaganesan, Baroreflex control model for cardiovascular system subjected to postural changes under normal and orthostatic conditions, 2022, 1025-5842, 1, 10.1080/10255842.2022.2104123
    102. K Brenner, Florent Chave, R Masson, Gradient discretization of a 3D-2D-1D mixed-dimensional diffusive model with resolved interface, application to the drying of a fractured porous medium, 2022, 0272-4979, 10.1093/imanum/drac076
    103. I. Kilen, J. Hader, S.W. Koch, J.V. Moloney, 2021, 9783527413621, 267, 10.1002/9783527807956.ch9
    104. Duc-Manh Dinh, Jeong-Seop Shin, Eui-Young Choi, Kyehan Rhee, Analysis of the Effects of Viscoelastic Parameters and Wall Thickness on Carotid Wall Motion and Its Clinical Application, 2024, 2234-7593, 10.1007/s12541-024-01047-y
    105. Jana Korte, Ehlar Sophie Klopp, Philipp Berg, Multi-Dimensional Modeling of Cerebral Hemodynamics: A Systematic Review, 2024, 11, 2306-5354, 72, 10.3390/bioengineering11010072
    106. Mitchel J. Colebank, Pim A. Oomen, Colleen M. Witzenburg, Anna Grosberg, Daniel A. Beard, Dirk Husmeier, Mette S. Olufsen, Naomi C. Chesler, Guidelines for mechanistic modeling and analysis in cardiovascular research, 2024, 327, 0363-6135, H473, 10.1152/ajpheart.00766.2023
    107. Pak‐Wing Fok, Kun Gou, Brandon Myers, Peter Lanzer, Impact of medial calcification on arterial mechanics and haemodynamics, 2025, 0022-3751, 10.1113/JP288112
  • Reader Comments
  • © 2004 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5312) PDF downloads(1048) Cited by(106)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog