Synchronization between two Hele-Shaw Cells

  • Received: 01 February 2004 Accepted: 29 June 2018 Published: 01 July 2004
  • MSC : 76R10,76F70,76F45.

  • Complete synchronization between two Hele-Shaw cells is examined. The two dynamical systems are chaotic in time and spatially extended in two dimensions. It is shown that a large number of connectors are needed to achieve synchronization. In particular, we have studied how the number of connectors influences the dynamical regime that is set inside the Hele-Shaw cells.

    Citation: A. Bernardini, J. Bragard, H. Mancini. Synchronization between two Hele-Shaw Cells[J]. Mathematical Biosciences and Engineering, 2004, 1(2): 339-346. doi: 10.3934/mbe.2004.1.339

    Related Papers:

    [1] Alina Chertock, Pierre Degond, Sophie Hecht, Jean-Paul Vincent . Incompressible limit of a continuum model of tissue growth with segregation for two cell populations. Mathematical Biosciences and Engineering, 2019, 16(5): 5804-5835. doi: 10.3934/mbe.2019290
    [2] Wenxiang Liu, Thomas Hillen, H. I. Freedman . A mathematical model for M-phase specific chemotherapy including the G0-phase and immunoresponse. Mathematical Biosciences and Engineering, 2007, 4(2): 239-259. doi: 10.3934/mbe.2007.4.239
    [3] Biwen Li, Xuan Cheng . Synchronization analysis of coupled fractional-order neural networks with time-varying delays. Mathematical Biosciences and Engineering, 2023, 20(8): 14846-14865. doi: 10.3934/mbe.2023665
    [4] Aldana M. González Montoro, Ricardo Cao, Christel Faes, Geert Molenberghs, Nelson Espinosa, Javier Cudeiro, Jorge Mariño . Cross nearest-spike interval based method to measure synchrony dynamics. Mathematical Biosciences and Engineering, 2014, 11(1): 27-48. doi: 10.3934/mbe.2014.11.27
    [5] Frédérique Clément, Béatrice Laroche, Frédérique Robin . Analysis and numerical simulation of an inverse problem for a structured cell population dynamics model. Mathematical Biosciences and Engineering, 2019, 16(4): 3018-3046. doi: 10.3934/mbe.2019150
    [6] Karim El Laithy, Martin Bogdan . Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences and Engineering, 2014, 11(2): 233-256. doi: 10.3934/mbe.2014.11.233
    [7] Gayathri Vivekanandhan, Hamid Reza Abdolmohammadi, Hayder Natiq, Karthikeyan Rajagopal, Sajad Jafari, Hamidreza Namazi . Dynamic analysis of the discrete fractional-order Rulkov neuron map. Mathematical Biosciences and Engineering, 2023, 20(3): 4760-4781. doi: 10.3934/mbe.2023220
    [8] Jie Shen, Hanming Liu, Jing Wang, Xia Jia . Algorithm for frequency capture and rectification in a low-orbit satellite IoT communication network. Mathematical Biosciences and Engineering, 2021, 18(6): 7999-8023. doi: 10.3934/mbe.2021397
    [9] Sue Wang, Jing Li, Saleem Riaz, Haider Zaman, Pengfei Hao, Yiwen Luo, Alsharef Mohammad, Ahmad Aziz Al-Ahmadi, NasimUllah . Duplex PD inertial damping control paradigm for active power decoupling of grid-tied virtual synchronous generator. Mathematical Biosciences and Engineering, 2022, 19(12): 12031-12057. doi: 10.3934/mbe.2022560
    [10] Mahtab Mehrabbeik, Fatemeh Parastesh, Janarthanan Ramadoss, Karthikeyan Rajagopal, Hamidreza Namazi, Sajad Jafari . Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps. Mathematical Biosciences and Engineering, 2021, 18(6): 9394-9409. doi: 10.3934/mbe.2021462
  • Complete synchronization between two Hele-Shaw cells is examined. The two dynamical systems are chaotic in time and spatially extended in two dimensions. It is shown that a large number of connectors are needed to achieve synchronization. In particular, we have studied how the number of connectors influences the dynamical regime that is set inside the Hele-Shaw cells.


  • This article has been cited by:

    1. Yoji Kawamura, Hiroya Nakao, Phase description of oscillatory convection with a spatially translational mode, 2015, 295-296, 01672789, 11, 10.1016/j.physd.2014.12.007
    2. Shutaro Kondo, Hiroshi Gotoda, Takaya Miyano, Isao T. Tokuda, Chaotic dynamics of large-scale double-diffusive convection in a porous medium, 2018, 364, 01672789, 1, 10.1016/j.physd.2017.08.011
    3. Kazushi Takagi, Hiroshi Gotoda, Takaya Miyano, Shogo Murayama, Isao T. Tokuda, Synchronization of two coupled turbulent fires, 2018, 28, 1054-1500, 045116, 10.1063/1.5009896
    4. H. Mancini, G. Vidal, Dynamics of two coupled chaotic systems driven by external signals, 2011, 62, 1434-6060, 57, 10.1140/epjd/e2010-10314-9
    5. Yoji Kawamura, Hiroya Nakao, Collective phase description of oscillatory convection, 2013, 23, 1054-1500, 043129, 10.1063/1.4837775
    6. Yoji Kawamura, Hiroya Nakao, Noise-induced synchronization of oscillatory convection and its optimization, 2014, 89, 1539-3755, 10.1103/PhysRevE.89.012912
  • Reader Comments
  • © 2004 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2725) PDF downloads(426) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog