Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks

  • Received: 01 April 2004 Accepted: 29 June 2018 Published: 01 July 2004
  • MSC : 92D30, 37A25, 37D45, 37N25, 05C80.

  • We consider systems that are well modelled as networks that evolve in time, which we call Moving Neighborhood Networks. These models are relevant in studying cooperative behavior of swarms and other phenomena where emergent interactions arise from ad hoc networks. In a natural way, the time-averaged degree distribution gives rise to a scale-free network. Simulations show that although the network may have many noncommunicating components, the recent weighted time-averaged communication is sufficient to yield robust synchronization of chaotic oscillators. In particular, we contend that such time-varying networks are important to model in the situation where each agent carries a pathogen (such as a disease) in which the pathogen's life-cycle has a natural time-scale which competes with the time-scale of movement of the agents, and thus with the networks communication channels.

    Citation: Joseph D. Skufca, Erik M. Bollt. Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks[J]. Mathematical Biosciences and Engineering, 2004, 1(2): 347-359. doi: 10.3934/mbe.2004.1.347

    Related Papers:

    [1] F. S. Vannucchi, S. Boccaletti . Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences and Engineering, 2004, 1(1): 49-55. doi: 10.3934/mbe.2004.1.49
    [2] Jun Hyung Bae, Sang-Mook Lee . Investigation of SIS epidemics on dynamic network models with temporary link deactivation control schemes. Mathematical Biosciences and Engineering, 2022, 19(6): 6317-6330. doi: 10.3934/mbe.2022295
    [3] Mingli Lei, Daijun Wei . A measure of identifying influential community based on the state of critical functionality. Mathematical Biosciences and Engineering, 2020, 17(6): 7167-7191. doi: 10.3934/mbe.2020368
    [4] Meili Tang, Qian Pan, Yurong Qian, Yuan Tian, Najla Al-Nabhan, Xin Wang . Parallel label propagation algorithm based on weight and random walk. Mathematical Biosciences and Engineering, 2021, 18(2): 1609-1628. doi: 10.3934/mbe.2021083
    [5] Sridevi Sriram, Hayder Natiq, Karthikeyan Rajagopal, Ondrej Krejcar, Hamidreza Namazi . Dynamics of a two-layer neuronal network with asymmetry in coupling. Mathematical Biosciences and Engineering, 2023, 20(2): 2908-2919. doi: 10.3934/mbe.2023137
    [6] Andrew Omame, Sarafa A. Iyaniwura, Qing Han, Adeniyi Ebenezer, Nicola L. Bragazzi, Xiaoying Wang, Woldegebriel A. Woldegerima, Jude D. Kong . Dynamics of Mpox in an HIV endemic community: A mathematical modelling approach. Mathematical Biosciences and Engineering, 2025, 22(2): 225-259. doi: 10.3934/mbe.2025010
    [7] Bernhard Voelkl . Quantitative characterization of animal social organization: Applications for epidemiological modelling. Mathematical Biosciences and Engineering, 2020, 17(5): 5005-5026. doi: 10.3934/mbe.2020271
    [8] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
    [9] Dario Madeo, Chiara Mocenni, Jean Carlo Moraes, Jorge P. Zubelli . The role of self-loops and link removal in evolutionary games on networks. Mathematical Biosciences and Engineering, 2019, 16(5): 5287-5306. doi: 10.3934/mbe.2019264
    [10] Changwei Gong, Bing Xue, Changhong Jing, Chun-Hui He, Guo-Cheng Wu, Baiying Lei, Shuqiang Wang . Time-sequential graph adversarial learning for brain modularity community detection. Mathematical Biosciences and Engineering, 2022, 19(12): 13276-13293. doi: 10.3934/mbe.2022621
  • We consider systems that are well modelled as networks that evolve in time, which we call Moving Neighborhood Networks. These models are relevant in studying cooperative behavior of swarms and other phenomena where emergent interactions arise from ad hoc networks. In a natural way, the time-averaged degree distribution gives rise to a scale-free network. Simulations show that although the network may have many noncommunicating components, the recent weighted time-averaged communication is sufficient to yield robust synchronization of chaotic oscillators. In particular, we contend that such time-varying networks are important to model in the situation where each agent carries a pathogen (such as a disease) in which the pathogen's life-cycle has a natural time-scale which competes with the time-scale of movement of the agents, and thus with the networks communication channels.


  • This article has been cited by:

    1. Mi Jiang, Ping Ma, Coherence resonance induced by rewiring in complex networks, 2009, 19, 1054-1500, 013115, 10.1063/1.3076398
    2. Paul So, Bernard C. Cotton, Ernest Barreto, Synchronization in interacting populations of heterogeneous oscillators with time-varying coupling, 2008, 18, 1054-1500, 037114, 10.1063/1.2979693
    3. Sourav K. Bhowmick, R. E. Amritkar, Syamal K. Dana, Experimental evidence of synchronization of time-varying dynamical network, 2012, 22, 1054-1500, 023105, 10.1063/1.3701949
    4. Soumik Sarkar, Kushal Mukherjee, Asok Ray, Distributed decision propagation in mobile-agent proximity networks, 2013, 86, 0020-7179, 1118, 10.1080/00207179.2013.782511
    5. Russell Jeter, Maurizio Porfiri, Igor Belykh, 2019, Chapter 15, 978-3-030-23494-2, 269, 10.1007/978-3-030-23495-9_15
    6. Xinbiao Lu, Buzhi Qin, 2010, Adaptive global synchronization of directed networks with fast switching topologies, 978-1-4244-6712-9, 1991, 10.1109/WCICA.2010.5554663
    7. Synchronization in Complex Networks With Stochastically Switching Coupling Structures, 2012, 57, 0018-9286, 754, 10.1109/TAC.2011.2166665
    8. Sayantan Nag Chowdhury, Soumen Majhi, Dibakar Ghosh, Awadhesh Prasad, Convergence of chaotic attractors due to interaction based on closeness, 2019, 383, 03759601, 125997, 10.1016/j.physleta.2019.125997
    9. Shang Yi-Lun, Multi-agent coordination in directed moving neighbourhood random networks, 2010, 19, 1674-1056, 070201, 10.1088/1674-1056/19/7/070201
    10. R. E. Amritkar, Chin-Kun Hu, Synchronized state of coupled dynamics on time-varying networks, 2006, 16, 1054-1500, 015117, 10.1063/1.2168395
    11. Soumik Sarkar, Devesh Jha, 2016, Topology control in mobile sensor networks using information space feedback, 978-1-4673-8682-1, 6405, 10.1109/ACC.2016.7526677
    12. Lei Wang, Qing-Guo Wang, Average contraction and synchronization of complex switched networks, 2012, 45, 1751-8113, 205101, 10.1088/1751-8113/45/20/205101
    13. Rong Zhang, Manfeng Hu, Zhenyuan Xu, Synchronization in complex networks with adaptive coupling, 2007, 368, 03759601, 276, 10.1016/j.physleta.2007.04.016
    14. Yan-Wu Wang, Tao Bian, Jiang-Wen Xiao, Yuehua Huang, Robust synchronization of complex switched networks with parametric uncertainties and two types of delays, 2013, 23, 10498923, 190, 10.1002/rnc.1824
    15. Jonq Juang, Yu-Hao Liang, Coordinate transformation and matrix measure approach for synchronization of complex networks, 2009, 19, 1054-1500, 033131, 10.1063/1.3212941
    16. L. Chen, C. Qiu, H. B. Huang, G. X. Qi, H. J. Wang, Facilitated synchronization of complex networks through a discontinuous coupling strategy, 2010, 76, 1434-6028, 625, 10.1140/epjb/e2010-00211-6
    17. Koichiro Uriu, Luis G. Morelli, Determining the impact of cell mixing on signaling during development, 2017, 59, 0012-1592, 351, 10.1111/dgd.12366
    18. Maurizio Porfiri, Igor Belykh, Memory Matters in Synchronization of Stochastically Coupled Maps, 2017, 16, 1536-0040, 1372, 10.1137/17M111136X
    19. Alessandro Rizzo, Mattia Frasca, Maurizio Porfiri, Effect of individual behavior on epidemic spreading in activity-driven networks, 2014, 90, 1539-3755, 10.1103/PhysRevE.90.042801
    20. James H. von Brecht, Benny Sudakov, Andrea L. Bertozzi, Swarming on Random Graphs II, 2015, 158, 0022-4715, 699, 10.1007/s10955-014-0923-0
    21. Mattia Frasca, Arturo Buscarino, Alessandro Rizzo, Luigi Fortuna, Stefano Boccaletti, Synchronization of Moving Chaotic Agents, 2008, 100, 0031-9007, 10.1103/PhysRevLett.100.044102
    22. Jiang-Wen Xiao, Yuehua Huang, Yan-Wu Wang, Jingwen O. Yi, Synchronization of complex switched networks with two types of delays, 2011, 74, 09252312, 3151, 10.1016/j.neucom.2011.04.015
    23. Nikita Agarwal, A Simple Loop Dwell Time Approach for Stability of Switched Systems, 2018, 17, 1536-0040, 1377, 10.1137/16M1105062
    24. Lei Wang, Qing-guo Wang, Synchronization in complex networks with switching topology, 2011, 375, 03759601, 3070, 10.1016/j.physleta.2011.06.054
    25. Lei Wang, You-xian Sun, Pinning synchronization of a mobile agent network, 2009, 2009, 1742-5468, P11005, 10.1088/1742-5468/2009/11/P11005
    26. Stephen M. Majercik, 2012, Chapter 12, 978-3-642-28582-0, 109, 10.1007/978-3-642-28583-7_12
    27. Sayantan Nag Chowdhury, Soumen Majhi, Mahmut Ozer, Dibakar Ghosh, Matjaž Perc, Synchronization to extreme events in moving agents, 2019, 21, 1367-2630, 073048, 10.1088/1367-2630/ab2a1f
    28. Russell Jeter, Igor Belykh, Synchronization in On-Off Stochastic Networks: Windows of Opportunity, 2015, 62, 1549-8328, 1260, 10.1109/TCSI.2015.2415172
    29. Yan-Wu Wang, Hua O. Wang, Jiang-Wen Xiao, Zhi-Hong Guan, Synchronization of complex dynamical networks under recoverable attacks, 2010, 46, 00051098, 197, 10.1016/j.automatica.2009.10.024
    30. Igor Belykh, Mario di Bernardo, Jürgen Kurths, Maurizio Porfiri, Evolving dynamical networks, 2014, 267, 01672789, 1, 10.1016/j.physd.2013.10.008
    31. Xingjie Wu, Yi Liu, Jin Zhou, Pinning adaptive synchronization of general time-varying delayed and multi-linked networks with variable structures, 2015, 147, 09252312, 492, 10.1016/j.neucom.2014.06.031
    32. Tirthankar Banerjee, Abhik Basu, Active hydrodynamics of synchronization and ordering in moving oscillators, 2017, 96, 2470-0045, 10.1103/PhysRevE.96.022201
    33. Xin Biao Lu, Yue Yuan, The Effect of Battery Recharge Spat for Electric Vehicle Car on the Grid, 2013, 448-453, 1662-7482, 3177, 10.4028/www.scientific.net/AMM.448-453.3177
    34. Maurizio Porfiri, Francesca Fiorilli, Node-to-node pinning control of complex networks, 2009, 19, 1054-1500, 013122, 10.1063/1.3080192
    35. Maurizio Porfiri, Daniel J. Stilwell, Erik M. Bollt, Joseph D. Skufca, Random talk: Random walk and synchronizability in a moving neighborhood network, 2006, 224, 01672789, 102, 10.1016/j.physd.2006.09.016
    36. M. Porfiri, D.J. Stilwell, E.M. Bollt, Synchronization in Random Weighted Directed Networks, 2008, 55, 1549-8328, 3170, 10.1109/TCSI.2008.925357
    37. Mason A. Porter, James P. Gleeson, 2016, Chapter 6, 978-3-319-26640-4, 49, 10.1007/978-3-319-26641-1_6
    38. Koichiro Uriu, Saúl Ares, Andrew C. Oates, Luis G. Morelli, Dynamics of mobile coupled phase oscillators, 2013, 87, 1539-3755, 10.1103/PhysRevE.87.032911
    39. Wenlian Lu, Fatihcan M. Atay, Stability of Phase Difference Trajectories of Networks of Kuramoto Oscillators with Time-Varying Couplings and Intrinsic Frequencies, 2018, 17, 1536-0040, 457, 10.1137/16M1084390
    40. Arturo Buscarino, Mattia Frasca, Marco Branciforte, Luigi Fortuna, Julien Clinton Sprott, Synchronization of two Rössler systems with switching coupling, 2017, 88, 0924-090X, 673, 10.1007/s11071-016-3269-0
    41. Maoyin Chen, Synchronization in time-varying networks: A matrix measure approach, 2007, 76, 1539-3755, 10.1103/PhysRevE.76.016104
    42. Fernando Peruani, Gustavo J. Sibona, Reaction processes among self-propelled particles, 2019, 15, 1744-683X, 497, 10.1039/C8SM01502C
    43. Koichiro Uriu, Saúl Ares, Andrew C Oates, Luis G Morelli, Optimal cellular mobility for synchronization arising from the gradual recovery of intercellular interactions, 2012, 9, 1478-3967, 036006, 10.1088/1478-3975/9/3/036006
    44. Takashi Nishikawa, Adilson E. Motter, Synchronization is optimal in nondiagonalizable networks, 2006, 73, 1539-3755, 10.1103/PhysRevE.73.065106
    45. Lei Wang, Huan Shi, You-xian Sun, Power adaptation for a mobile agent network, 2010, 90, 0295-5075, 10001, 10.1209/0295-5075/90/10001
    46. Mattia Frasca, Arturo Buscarino, Alessandro Rizzo, Luigi Fortuna, Spatial Pinning Control, 2012, 108, 0031-9007, 10.1103/PhysRevLett.108.204102
    47. D.G. Roberson, D.J. Stilwell, 2005, Control of an autonomous underwater vehicle platoon with a switched communication network, 0-7803-9098-9, 4333, 10.1109/ACC.2005.1470661
    48. Bu Zhi Qin, Xin Biao Lu, Adaptive approach to global synchronization of directed networks with fast switching topologies, 2010, 374, 03759601, 3942, 10.1016/j.physleta.2010.07.060
    49. Maurizio Porfiri, Daniel J. Stilwell, Erik M. Bollt, Joseph D. Skufca, 2007, Stochastic synchronization over a moving neighborhood network, 1-4244-0988-8, 1413, 10.1109/ACC.2007.4282732
    50. Naoya Fujiwara, Jürgen Kurths, Albert Díaz-Guilera, Synchronization of mobile chaotic oscillator networks, 2016, 26, 1054-1500, 094824, 10.1063/1.4962129
    51. Arturo Buscarino, Luigi Fortuna, Mattia Frasca, Salvatore Frisenna, Interaction between synchronization and motion in a system of mobile agents, 2016, 26, 1054-1500, 116302, 10.1063/1.4965033
    52. Lei Wang, Huan Shi, You-xian Sun, Induced synchronization of a mobile agent network by phase locking, 2010, 82, 1539-3755, 10.1103/PhysRevE.82.046222
    53. Qingjie Cao, Alain Léger, 2017, Chapter 15, 978-3-662-53092-4, 237, 10.1007/978-3-662-53094-8_15
    54. Demian Levis, Ignacio Pagonabarraga, Albert Díaz-Guilera, Synchronization in Dynamical Networks of Locally Coupled Self-Propelled Oscillators, 2017, 7, 2160-3308, 10.1103/PhysRevX.7.011028
    55. M. Aldana, V. Dossetti, C. Huepe, V. M. Kenkre, H. Larralde, Phase Transitions in Systems of Self-Propelled Agents and Related Network Models, 2007, 98, 0031-9007, 10.1103/PhysRevLett.98.095702
    56. Jie Sun, Erik M. Bollt, Takashi Nishikawa, 2009, Chapter 90, 978-3-642-02465-8, 900, 10.1007/978-3-642-02466-5_90
    57. Huan Shi, Hua-ping Dai, You-xian Sun, Blinking adaptation for synchronizing a mobile agent network, 2011, 12, 1869-1951, 658, 10.1631/jzus.C1000338
    58. Maurizio Porfiri, Daniel J. Stilwell, Erik M. Bollt, 2007, Stochastic synchronization over weighted directed networks, 1-4244-0988-8, 2387, 10.1109/ACC.2007.4282570
    59. Chaos Synchronization in Complex Networks, 2008, 55, 1549-8328, 1335, 10.1109/TCSI.2008.916436
    60. James von Brecht, Theodore Kolokolnikov, Andrea L. Bertozzi, Hui Sun, Swarming on Random Graphs, 2013, 151, 0022-4715, 150, 10.1007/s10955-012-0680-x
    61. S. Sarkar, K. Mukherjee, A. Ray, 2012, Distributed decision propagation in mobile agent networks, 978-1-4577-1096-4, 5276, 10.1109/ACC.2012.6314846
    62. Yan-Wu Wang, Jiang-Wen Xiao, Hua O. Wang, Global synchronization of complex dynamical networks with network failures, 2010, 20, 10498923, 1667, 10.1002/rnc.1537
    63. Martin Hasler, Vladimir Belykh, Igor Belykh, Dynamics of Stochastically Blinking Systems. Part II: Asymptotic Properties, 2013, 12, 1536-0040, 1031, 10.1137/120893410
    64. Lu Xin-Biao, Qin Bu-Zhi, Lu Xin-Yu, Global Synchronization of Directed Networks with Fast Switching Topologies, 2009, 52, 0253-6102, 1019, 10.1088/0253-6102/52/6/09
    65. Fernando Peruani, Ernesto M Nicola, Luis G Morelli, Mobility induces global synchronization of oscillators in periodic extended systems, 2010, 12, 1367-2630, 093029, 10.1088/1367-2630/12/9/093029
    66. Sarbendu Rakshit, Bidesh K. Bera, Erik M. Bollt, Dibakar Ghosh, Intralayer Synchronization in Evolving Multiplex Hypernetworks: Analytical Approach, 2020, 19, 1536-0040, 918, 10.1137/18M1224441
    67. Jie Zhou, Yinzuo Zhou, Gaoxi Xiao, H Eugene Stanley, Control of mobile chaotic agents with jump-based connection adaption strategy, 2020, 22, 1367-2630, 073032, 10.1088/1367-2630/ab9851
    68. Daniel J. Stilwell, Erik M. Bollt, D. Gray Roberson, Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies, 2006, 5, 1536-0040, 140, 10.1137/050625229
    69. L. Chen, C. Qiu, H. B. Huang, Synchronization with on-off coupling: Role of time scales in network dynamics, 2009, 79, 1539-3755, 10.1103/PhysRevE.79.045101
    70. Arturo Buscarino, Luigi Fortuna, Mattia Frasca, Alessandro Rizzo, 2009, Chapter 1, 978-3-642-03198-4, 3, 10.1007/978-3-642-03199-1_1
    71. Yu-Zhong Chen, Zi-Gang Huang, Ying-Cheng Lai, Controlling extreme events on complex networks, 2015, 4, 2045-2322, 10.1038/srep06121
    72. Robert Großmann, Fernando Peruani, Markus Bär, Superdiffusion, large-scale synchronization, and topological defects, 2016, 93, 2470-0045, 10.1103/PhysRevE.93.040102
    73. Jie Zhou, Yong Zou, Shuguang Guan, Zonghua Liu, Gaoxi Xiao, S. Boccaletti, Connection adaption for control of networked mobile chaotic agents, 2017, 7, 2045-2322, 10.1038/s41598-017-16235-2
    74. Md. Sayeed Anwar, Sarbendu Rakshit, Dibakar Ghosh, Erik M. Bollt, Stability analysis of intralayer synchronization in time-varying multilayer networks with generic coupling functions, 2022, 105, 2470-0045, 10.1103/PhysRevE.105.024303
    75. Olga Golovneva, Russell Jeter, Igor Belykh, Maurizio Porfiri, Windows of opportunity for synchronization in stochastically coupled maps, 2017, 340, 01672789, 1, 10.1016/j.physd.2016.08.005
    76. Dibakar Ghosh, Mattia Frasca, Alessandro Rizzo, Soumen Majhi, Sarbendu Rakshit, Karin Alfaro-Bittner, Stefano Boccaletti, The synchronized dynamics of time-varying networks, 2022, 949, 03701573, 1, 10.1016/j.physrep.2021.10.006
    77. Yujuan Han, Wenlian Lu, Tianping Chen, Event‐triggered scheduling for pinning networks of coupled dynamical systems under stochastically fast switching, 2021, 15, 1751-8644, 1673, 10.1049/cth2.12151
    78. Gonçalo Paulo, Mykola Tasinkevych, Binary mixtures of locally coupled mobile oscillators, 2021, 104, 2470-0045, 10.1103/PhysRevE.104.014204
    79. Liang Feng, Cheng Hu, Juan Yu, Haijun Jiang, Pinning synchronization of directed networks with disconnected switching topology via averaging method, 2023, 49, 1751570X, 101369, 10.1016/j.nahs.2023.101369
    80. Md Sayeed Anwar, Dibakar Ghosh, Neuronal synchronization in time-varying higher-order networks, 2023, 33, 1054-1500, 10.1063/5.0152942
    81. Paul So, Ernest Barreto, Generating macroscopic chaos in a network of globally coupled phase oscillators, 2011, 21, 1054-1500, 10.1063/1.3638441
    82. Md Sayeed Anwar, Dibakar Ghosh, Synchronization in Temporal Simplicial Complexes, 2023, 22, 1536-0040, 2054, 10.1137/22M1525909
    83. Russell Jeter, Maurizio Porfiri, Igor Belykh, 2023, Chapter 15, 978-3-031-30398-2, 275, 10.1007/978-3-031-30399-9_15
    84. Sarbendu Rakshit, Soumen Majhi, Dibakar Ghosh, Stability analysis of synchronization in long-range temporal networks using theory of dichotomy, 2024, 34, 1054-1500, 10.1063/5.0197979
    85. Soumen Majhi, Samali Ghosh, Palash Kumar Pal, Suvam Pal, Tapas Kumar Pal, Dibakar Ghosh, Jernej Završnik, Matjaž Perc, Patterns of neuronal synchrony in higher-order networks, 2024, 15710645, 10.1016/j.plrev.2024.12.013
    86. Koichiro Uriu, Luis G. Morelli, Statistical description of mobile oscillators in embryonic pattern formation, 2025, 111, 2470-0045, 10.1103/PhysRevE.111.024407
  • Reader Comments
  • © 2004 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3601) PDF downloads(537) Cited by(86)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog