Research article Special Issues

Coupled system of $ (k, \psi) $-Caputo fractional boundary value problems involving multi-point fractional closed boundary conditions

  • Published: 28 January 2026
  • MSC : 34A08, 34B10, 34B15

  • This work is devoted to the analysis of a coupled system of $ (k, \psi) $-Caputo fractional differential equations equipped with fractional closed boundary conditions. We establish the uniqueness of solutions by applying Banach's contraction principle, and existence is obtained through the Leray–Schauder alternative. Illustrative examples are included to demonstrate the effectiveness and practical relevance of the theoretical results.

    Citation: Furkan Erkan, Nuket Aykut Hamal, Sotiris K. Ntouyas, Bashir Ahmad. Coupled system of $ (k, \psi) $-Caputo fractional boundary value problems involving multi-point fractional closed boundary conditions[J]. AIMS Mathematics, 2026, 11(1): 2722-2746. doi: 10.3934/math.2026110

    Related Papers:

  • This work is devoted to the analysis of a coupled system of $ (k, \psi) $-Caputo fractional differential equations equipped with fractional closed boundary conditions. We establish the uniqueness of solutions by applying Banach's contraction principle, and existence is obtained through the Leray–Schauder alternative. Illustrative examples are included to demonstrate the effectiveness and practical relevance of the theoretical results.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam, The Netherlands: Elsevier Science, 2006. https://doi.org/10.1016/s0304-0208(06)80001-0
    [2] H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, Fractional calculus and fractional processes with applications to financial economics: theory and application, London: Elsevier/Academic Press, 2017. https://doi.org/10.1016/b978-0-12-804248-9.50002-4
    [3] X. J. Yang, F. Gao, Y. Ju, General fractional derivatives with applications in viscoelasticity, London: Elsevier/Academic Press, 2020. https://doi.org/10.1016/b978-0-12-817208-7.00011-x
    [4] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific Publishing Company, 2000. https://doi.org/10.1142/3779
    [5] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [6] J. V. C. Sousa, E. C. De Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [7] K. D. Kucche, A. D. Mali, On the nonlinear $(k, \psi)$-Hilfer fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111335. https://doi.org/10.1016/j.chaos.2021.111335 doi: 10.1016/j.chaos.2021.111335
    [8] S. K. Ntouyas, B. Ahmad, J. Tariboon, $(k, \psi$)-Hilfer nonlocal integro-multi-point boundary value problems for fractional differential equations and inclusions, Mathematics, 10 (2022), 2615. https://doi.org/10.3390/math10152615 doi: 10.3390/math10152615
    [9] A. Samadi, S. K. Ntouyas, J. Tariboon, Nonlocal coupled system for (k, $\psi$)-Hilfer fractional differential equations, Fractal Fract., 5 (2022), 234. https://doi.org/10.3390/fractalfract6050234 doi: 10.3390/fractalfract6050234
    [10] N. Pan, Naila, A. Zada, I. L. Popa, F. Tchier, On the (k, $\varphi$)-Hilfer Langevin fractional coupled system having multi point boundary conditions and fractional integrals, Ain Shams Eng. J., 15 (2024), 103111.
    [11] E. V. Ivashkevich, Boundary height correlations in a two-dimensional Abelian sandpile, J. Phys. A: Math. Gen., 27 (1994), 3643. https://doi.org/10.1088/0305-4470/27/11/014 doi: 10.1088/0305-4470/27/11/014
    [12] X. Li, J. Robertsson, A. Curtis, D. J. van Manen, Internal absorbing boundary conditions for closed-aperture wavefield decomposition in solid media with unknown interiors, J. Acoust. Soc. Am., 152 (2022), 313–329. https://doi.org/10.1121/10.0012578 doi: 10.1121/10.0012578
    [13] M. Mohammadimehr, S. V. Okhravi, S. M. A. Alavi, Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT, J. Vib. Control, 24 (2018), 1551–1569. https://doi.org/10.1177/1077546316664022 doi: 10.1177/1077546316664022
    [14] B. Ahmad, J. J. Nieto, J. Pimentel, Some boundary value problems of fractional differential equations and inclusions, Comput. Math. Appl., 62 (2011), 1238–1250. https://doi.org/10.1016/j.camwa.2011.02.035 doi: 10.1016/j.camwa.2011.02.035
    [15] A. Alsaedi, M. Alnahdi, B. Ahmad, S. K. Ntouyas, On a nonlinear coupled Caputo-type fractional differential system with coupled closed boundary conditions, AIMS Math., 8 (2023), 17981–17995. https://doi.org/10.3934/math.2023914 doi: 10.3934/math.2023914
    [16] F. Erkan, N. A. Hamal, S. K. Ntouyas, B. Ahmad, Existence and uniqueness results for $(k, \psi)$-Caputo fractional boundary value problems involving multi-point closed boundary conditions, Foundations, 5 (2025), 37. https://doi.org/10.3390/foundations5040037 doi: 10.3390/foundations5040037
    [17] R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2024), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
    [18] G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics, Oxford, UK: Oxford University Press, 2005.
    [19] M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers stability results of a coupled system of $\hat{\psi}$-Hilfer sequential fractional differential equations, Results Appl. Math., 10 (2021), 100142. https://doi.org/10.1016/j.rinam.2021.100142 doi: 10.1016/j.rinam.2021.100142
    [20] A. Wongcharoen, S. K. Ntouyas, P. Wongsantisuk, J. Tariboon, Existence results for a nonlocal coupled system of sequential fractional differential equations involving $\hat{\psi}$-Hilfer fractional derivatives, Adv. Math. Phys., 2021 (2021), 5554619. https://doi.org/10.1155/2021/5554619 doi: 10.1155/2021/5554619
    [21] R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer $ k $-symbol, Divulgaciones Math., 15 (2007), 179–192.
    [22] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville $ k $-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. https://doi.org/10.1109/access.2018.2878266 doi: 10.1109/access.2018.2878266
    [23] F. Erkan, N. A. Hamal, S. K. Ntouyas, J. Tariboon, Existence and uniqueness analysis for $({k}, \psi)$-Hilfer and $({k}, \psi)$-Caputo sequential fractional differential equations and inclusions with non-separated boundary conditions, Fractal Fract., 9 (2025), 437. https://doi.org/10.3390/fractalfract9070437 doi: 10.3390/fractalfract9070437
    [24] K. Deimling, Nonlinear functional analysis, New York: Springer-Verlag, 1985. https://doi.org/10.1007/978-3-662-00547-7
    [25] A. Granas, J. Dugundji, Fixed point theory, Amsterdam: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(199) PDF downloads(39) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog