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1. Introduction

Fractional calculus is a rapidly developing area of mathematical analysis that extends classical
differentiation and integration to noninteger orders. This broader framework is well suited for modeling
nonlocal phenomena and memory-dependent processes, which arise in numerous applications such
as diffusion process, viscoelasticity, control theory, biological systems, immune systems, financial
modeling, etc. A detailed treatment of the theory and applications of fractional calculus can be found
in [1–3].

Fractional integrals and derivatives play a central role in modeling memory and nonlocal effects
across diverse fields such as physics, biology, chemistry, and finance. This wide applicability has led to
the development of numerous fractional operators tailored to different dynamical behaviors. Hilfer [4]
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introduced a unifying operator interpolating between the Riemann–Liouville and Caputo derivatives
systematically presented in [1] and elaborated its applications in physics.

Further generalizations have incorporated differentiation with respect to auxiliary functions and
extensions within k-calculus. Notable contributions include the Caputo-type derivative with respect
to another function, ψ-Hilfer derivative and (k, ψ)-fractional operators [5–7]. These operators have
recently been employed in the study of boundary value problems, coupled systems, Langevin-type
equations, variational models, and the controllability of fractional dynamical systems [8–10].

Closed boundary conditions are fundamental in the modeling of fluid flows, as they describe systems
with zero mass transfer across the boundary. They commonly represent impermeable or thermally
insulated boundaries, including free-slip configurations that allow tangential motion while restricting
normal flow. Such boundary conditions arise in a wide range of applications, including gravitational
and radiative processes, elastic wave propagation, and heat transfer, and they are extensively used in
computational fluid dynamics, image processing, and transport phenomena in structured media [11–
13]. Although the settings in these studies differ from those examined here, they demonstrate the
widespread applicability and practical importance of closed boundary formulations in both theoretical
and applied contexts.

The study of boundary value problems associated with fractional differential equations and
differential inclusions subject to closed boundary conditions was first developed in [14]. In that work,
the authors focused on the analysis of the following family of problems:

CDµy(t) = f (t, y(t)), t ∈ J := [0, T ],

CDµy(t) ∈ F(t, y(t)), t ∈ J := [0, T ],

y(T ) = p1y(0) + p2Ty′(0),
Ty′(T ) = q1y(0) + q2Ty′(0),

where CDµ denotes the Caputo fractional derivative of order µ, f : [0,T ] × R → R is a continuous
function, F : [0,T ] × R → P(R) is a multivalued map (here we denote the family of all nonempty
subsets of R by P(R)), and p1, p2, q1, q2 ∈ R.

In [15], the authors studied a system of nonlinear Caputo fractional differential equations
supplemented with coupled closed boundary conditions,

CDq1φ(t) = ρ1(t, φ(t), ψ(t)), t ∈ J = [0, T ],

CDq2ψ(t) = ρ2(t, φ(t), ψ(t)), t ∈ J = [0, T ],

φ(T ) = α1ψ(0) + β1Tψ′(0), Tφ′(T ) = γ1ψ(0) + δ1Tψ′(0),

ψ(T ) = α2φ(0) + β2Tφ′(0), Tψ′(T ) = γ2φ(0) + δ2Tφ′(0),

where CDq1 , CDq2 denote the Caputo fractional derivatives of order q1, q2, 1 < q1, q2 < 2,
respectively, α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R, T > 0, and ρ1, ρ2 ∈ C(J × R × R,R).

A comprehensive overview of fractional boundary value problems with closed-type boundary
conditions is available in the recent survey reported in [16].
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Moreover, the authors of [16] analyzed sufficient criteria ensuring the existence and uniqueness of
solutions to a (k, ψ)-Caputo fractional differential equation equipped with multipoint fractional closed
boundary conditions of the form

k,CDϑ;ψ
a+ φ(κ) = ν(κ, φ(κ)), a ≤ κ ≤ b,

φ(b) =
m∑

i=1

(
ηi φ(ξi) + b µi

k,CDσi;ψ
a+ φ(ζi)

)
,

b k,CDγ;ψ
a+ φ(b) =

m∑
i=1

(
pi φ(ξi) + b qi

k,CDσi;ψ
a+ φ(ζi)

)
,

(1.1)

where k,CDϑ;ψ
a+ and k,CDγ;ψ

a+ represent the (k, ψ)-Caputo fractional derivatives of orders satisfying 1 <

ϑ/k < 2 and 0 < γ/k < 1, respectively. For a fixed k > 0, the operator k,CDσi;ψ
a+ denotes the (k, ψ)-

Caputo fractional derivative of order 0 < σi/k < 1, for each ι̇ = 1, 2, . . . ,m. The interior points are
chosen such that a < ξ1 < ξ2 < · · · < ξm < b and a < ζ1 < ζ2 < · · · < ζm < b. All coefficients
ηi, µi, pi, qi are real constants, and the nonlinear term ν : [a, b] × R→ R is assumed to be continuous.

The aim of this study is to further develop the current body of research by analyzing the coupled
framework associated with problem (1.1). In precise terms, we investigate a system of coupled (k, ψ)-
Caputo fractional differential equations subject to multipoint closed fractional boundary conditions of
the following type: 

k1,CDϑ1;ψ1
a+ x1(t) = ν1(t, x1(t), x2(t)), a ≤ t ≤ b,

k2,CDϑ2;ψ2
a+ x2(t) = ν2(t, x1(t), x2(t)), a ≤ t ≤ b,

x1(b) =
m∑

i=1

(
ηi x2(ξi) + b µi

k2,CDσi;ψ2
a+ x2(ζi)

)
,

x2(b) =
m∑

i=1

(
βi x1(ξi) + bαi

k1,CDφi;ψ1
a+ x1(ζi)

)
,

b k1,CDγ1;ψ1
a+ x1(b) =

m∑
i=1

(
pi x2(ξi) + b qi

k2,CDσi;ψ2
a+ x2(ζi)

)
,

b k2,CDγ2;ψ2
a+ x2(b) =

m∑
i=1

(
ri x1(ξi) + b si

k1,CDφi;ψ1
a+ x1(ζi)

)
,

(1.2)

where k j,CDϑ j;ψ j

a+ , k j,CDγ j;ψ j

a+ denote the (k j, ψ j)-Caputo fractional derivative operators of orders 1 < ϑ j

k j
< 2

and 0 < γ j

k j
< 1 for j = 1, 2, respectively, and k j,CDσi;ψ j

a+ , k j,CDφi;ψ j

a+ represent the (k j, ψ j)-Caputo fractional
derivative operators of orders 0 < σi

k1
< 1 and 0 < φi

k2
< 1 for all i = 1, 2, · · · ,m and j = 1, 2,

respectively, for each k > 0. Moreover, a < ξ1 < ξ2 < · · · < ξm < b, a < ζ1 < ζ2 < · · · < ζm < b,
ηi, µi, βi, αi, pi, qi, ri, si ∈ R for all i = 1, 2, · · · ,m, and x1, x2 : [a, b] × R × R→ R are given continuous
functions.

Systems of coupled fractional differential equations are of considerable importance in modeling
complex processes encountered in financial mathematics, bioengineering and fractional dynamics [2,
17, 18]. Several relevant analytical results for such coupled frameworks have been reported in the
literature; see, for example, [19, 20].
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It is worth noting that, for specific choices of ψ and k, the (k, ψ)-Caputo fractional derivative reduces
to several well-known operators. For instance, setting ψ(t) = t and k = 1 recovers the classical Caputo
derivative, whereas choosing ψ(t) = log t with k = 1 yields the Caputo–Hadamard derivative. The
present study is motivated by the aim of unifying two key features:

(i) a coupled system of fractional differential equations formulated via the (k, ψ)-Caputo operator,
and

(ii) closed fractional boundary conditions applied at multiple points— a setting that, to the best of our
knowledge, has not yet been explored in the literature.

The findings obtained in this work are original and constitute a meaningful addition to the existing
literature on coupled fractional systems, especially those characterized by fractional closed boundary
conditions.

The paper is structured as follows. In Section 2, we present the essential background from
fractional calculus, along with the notation, definitions, and core concepts required for the subsequent
analysis. Section 3 focuses on the solvability of the proposed system, where uniqueness of solutions
is established through Banach’s contraction principle, and the existence result is derived by means of
the Leray–Schauder alternative. Finally, Section 4 contains examples that illustrate the relevance and
practical applicability of the obtained theoretical results.

2. Preliminaries

In this section, we recall some related definitions of fractional calculus required to obtain our main
results.

Definition 2.1. [21]. For ϑ ∈ C with a positive real part and k ∈ R+, the k-gamma function is
defined by

Γk(ϑ) =
∫ ∞

0
τϑ−1e−

τk
k dτ.

Moreover, the following relations hold:

Γ(ϑ) = lim
k→1
Γk(ϑ), Γk(ϑ) = k

ϑ
k −1Γ

(
ϑ

k

)
and ϑ Γk(ϑ) = Γk(ϑ + k).

Definition 2.2. [22]. Let x : [a, b] → R be an integrable function. Also, let ψ be an increasing
and positive function on (a, b], having a continuous derivative ψ′ on (a, b). Then, the (k, ψ)-
Riemann–Liouville fractional integral of a function x with respect to another function ψ on [a, b] of
order ϑ and k > 0 is defined by

kI
ϑ;ψ
a+ x(t) =

1
kΓk(ϑ)

∫ t

a
ψ′(τ) (ψ(t) − ψ(τ))

ϑ
k −1 x (τ) dτ, t > a.

Definition 2.3. [7]. Let ϑ, k ∈ R+, ψ ∈ Cn([a, b],R) be such that ψ is increasing, and ψ′(t) > 0 for all
t ∈ [a, b] and x ∈ Cn([a, b],R). Then, the (k, ψ)-Caputo fractional derivative of order ϑ for a function
x is defined by

k,CDϑ;ψ
a+ x(t) =

1
kΓk(nk − ϑ)

∫ t

a
ψ′(τ)(ψ(t) − ψ(τ))n− ϑk −1

(
k

ψ′(τ)
d
dτ

)n

x(τ) dτ,
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where n =
⌈
ϑ
k

⌉
is the ceiling function of ϑ

k .

Lemma 2.4. [23]. Let ϑ, k ∈ R+ and n =
⌈
ϑ
k

⌉
. Suppose that x ∈ Cn([a, b],R), Then,

(
kIϑ;ψ

a+
k,CDϑ;ψ

a+ x
)

(t) = x(t) −
n−1∑
ȷ̇=0

(ψ(t) − ψ(a)) j

Γk( ȷ̇k + k)

( k
ψ′(t)

d
dt

) ȷ̇
x(t)


t=a

.

Lemma 2.5. [23]. Let ϑ1, ϑ2, k ∈ R+ with ϑ2 > ϑ1. Then

k,CDϑ1;ψ
a+

kI
ϑ2;ψ
a+ x(t) = kI

ϑ2−ϑ1;ψ
a+ x(t).

Lemma 2.6. [23]. Let ϑ, k ∈ R+ and µ ∈ R such that µ

k > −1; then,

k,CDϑ;ψ
a+ (ψ(t) − ψ(a))

µ
k =

Γk(µ + k)
Γk(µ + k − ϑ)

(ψ(t) − ψ(a))
µ−ϑ

k .

The following lemma, dealing with a linear variant of the coupled system (1.2), plays an important
role in the forthcoming analysis.

Lemma 2.7. Assume that ∆ , 0; k j > 0; 1 <
ϑ j

k j
< 2; 0 <

γ j

k j
< 1; for j = 1, 2; a < ξ1 < ξ2 < · · · <

ξm < b; a < ζ1 < ζ2 < · · · < ζm < b; ηi, µi, βi, αi, pi, qi, ri, si ∈ R; 0 < σi
k1
< 1; and 0 < φi

k2
< 1 for all

i = 1, 2, · · · ,m, and z j ∈ C([a, b],R) for j = 1, 2. Then, the solution of the linear system

k1,CDϑ1;ψ1
a+ x1(t) = z1(t), a ≤ t ≤ b,

k2,CDϑ2;ψ2
a+ x2(t) = z2(t) a ≤ t ≤ b,

x1(b) =
m∑

i=1

(
ηi x2(ξi) + b µi

k2,CDσi;ψ2
a+ x2(ζi)

)
,

x2(b) =
m∑

i=1

(
βi x1(ξi) + bαi

k1,CDφi;ψ1
a+ x1(ζi)

)
,

b k1,CDγ1;ψ1
a+ x1(b) =

m∑
i=1

(
pi x2(ξi) + b qi

k2,CDσi;ψ2
a+ x2(ζi)

)
,

b k2,CDγ2;ψ2
a+ x2(b) =

m∑
i=1

(
ri x1(ξi) + b si

k1,CDφi;ψ1
a+ x1(ζi)

)
,

(2.1)

is given by a pair of the integral equations,

x1(t) = k1 Iϑ1;ψ1
a+ z1(t) +

1
∆

[
Υ1 + Υ2

(ψ1(t) − ψ1(a))
Γk1(2k1)

]{
k1 Iϑ1;ψ1

a+ z1(b)

−

m∑
i=1

(
ηi

k2 Iϑ2;ψ2
a+ z2(ξi) + b µi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

) }
+

1
∆

[
Υ3 + Υ4

(ψ1(t) − ψ1(a))
Γk1(2k1)

]{
k2 Iϑ2;ψ2

a+ z2(b)

AIMS Mathematics Volume 11, Issue 1, 2722–2746.



2727

−

m∑
i=1

(
βi

k1 Iϑ1;ψ1
a+ z1(ξi) + bαi

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

) }
+

1
∆

[
Υ5 + Υ6

(ψ1(t) − ψ1(a))
Γk1(2k1)

]{
b k1 Iϑ1−γ1;ψ1

a+ z1(b)

−

m∑
i=1

(
pi

k2 Iϑ2;ψ2
a+ z2(ξi) + b qi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

) }
+

1
∆

[
Υ7 + Υ8

(ψ1(t) − ψ1(a))
Γk1(2k1)

]{
b k2 Iϑ2−γ2;ψ2

a+ z2(b)

−

m∑
i=1

(
ri

k1 Iϑ1;ψ1
a+ z1(ξi) + b si

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

) }
, (2.2)

and

x2(t) = k2 Iϑ2;ψ2
a+ z2(t) +

1
∆

[
Υ9 + Υ10

(ψ2(t) − ψ2(a))
Γk2(2k2)

]{
k1 Iϑ1;ψ1

a+ z1(b)

−

m∑
i=1

(
ηi

k2 Iϑ2;ψ2
a+ z2(ξi) + b µi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

) }
+

1
∆

[
Υ11 + Υ12

(ψ2(t) − ψ2(a))
Γk2(2k2)

]{
k2 Iϑ2;ψ2

a+ z2(b)

−

m∑
i=1

(
βi

k1 Iϑ1;ψ1
a+ z1(ξi) + bαi

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

) }
+

1
∆

[
Υ13 + Υ14

(ψ2(t) − ψ2(a))
Γk2(2k2)

]{
b k1 Iϑ1−γ1;ψ1

a+ z1(b)

−

m∑
i=1

(
pi

k2 Iϑ2;ψ2
a+ z2(ξi) + b qi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

) }
+

1
∆

[
Υ15 + Υ16

(ψ2(t) − ψ2(a))
Γk2(2k2)

]{
b k2 Iϑ2−γ2;ψ2

a+ z2(b)

−

m∑
i=1

(
ri

k1 Iϑ1;ψ1
a+ z1(ξi) + b si

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

) }
, (2.3)

where

Υ1 =
[
− Q5Q8Q12 + Q7Q12 − Q9Q11 + Q6Q8Q11

]
,

Υ2 =
[
− Q1Q8Q12 + Q2Q7Q12 − Q2Q9Q11 + Q3Q8Q11

]
,

Υ3 =
[
− Q1Q12 + Q2Q5Q12 − Q2Q6Q11 + Q3Q11

]
,

Υ4 =
[
− Q1Q9 + Q1Q6Q8 + Q2Q5Q9 − Q2Q6Q7 − Q3Q5Q8 + Q3Q7

]
,

Υ5 =
[
Q4Q8Q12 + Q9Q10 − Q6Q8Q10

]
,

Υ6 =
[
Q8Q12 + Q2Q9Q10 − Q3Q8Q10

]
,
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Υ7 =
[
Q12 − Q2Q4Q12 + Q2Q6Q10 − Q3Q10

]
,

Υ8 =
[
Q9 − Q6Q8 − Q2Q4Q9 + Q3Q4Q8

]
,

Υ9 =
[
Q4Q7Q12 − Q4Q9Q11 + Q5Q9Q10 − Q6Q7Q10

]
,

Υ10 =
[
Q7Q12 − Q9Q11 + Q1Q9Q10 − Q3Q7Q10

]
,

Υ11 =
[
Q5Q12 − Q6Q11 − Q1Q4Q12 + Q1Q6Q10 + Q3Q4Q11 − Q3Q5Q10

]
,

Υ12 =
[
Q5Q9 − Q6Q7 − Q1Q4Q9 + Q3Q4Q7

]
,

Υ13 =
[
Q4Q8Q11 − Q5Q8Q10 + Q7Q10

]
,

Υ14 =
[
Q8Q11 − Q1Q8Q10 + Q2Q7Q10

]
,

Υ15 =
[
Q11 − Q1Q10 − Q2Q4Q11 + Q2Q5Q10

]
,

Υ16 =
[
− Q5Q8 + Q7 + Q1Q4Q8 − Q2Q4Q7

]
, (2.4)

with

Q1 =
(ψ1(b) − ψ1(a))
Γk1(2k1)

,

Q2 =

m∑
i=1

ηi,

Q3 =

m∑
i=1

ηi
(ψ2(ξi) − ψ2(a))
Γk2(2k2)

+b µi
(ψ2(ζi) − ψ2(a))1−σi

k2

Γk2(2k2 − σi)

 ,
Q4 =

m∑
i=1

βi,

Q5 =

m∑
i=1

βi
(ψ1(ξi) − ψ1(a))
Γk1(2k1)

+bαi
(ψ1(ζi) − ψ1(a))1− φi

k1

Γk1(2k1 − φi)

 ,
Q6 =

(ψ2(b) − ψ2(a))
Γk2(2k2)

,

Q7 = b
(ψ1(b) − ψ1(a))1− γ1

k1

Γk1(2k1 − γ1)
,

Q8 =

m∑
i=1

pi,

Q9 =

m∑
i=1

pi
(ψ2(ξi) − ψ2(a))
Γk2(2k2)

+b qi
(ψ2(ζi) − ψ2(a))1−σi

k2

Γk2(2k2 − σi)

 ,
Q10 =

m∑
i=1

ri,

Q11 =

m∑
i=1

ri
(ψ1(ξi) − ψ1(a))
Γk1(2k1)

+b si
(ψ1(ζi) − ψ1(a))1− φi

k1

Γk1(2k1 − φi)

 ,
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Q12 = b
(ψ2(b) − ψ2(a))1− γ2

k2

Γk2(2k2 − γ2)
, (2.5)

and

∆ = Q5Q8Q12 − Q7Q12 + Q9Q11 − Q6Q8Q11 − Q1Q4Q8Q12 − Q1Q9Q10 + Q1Q6Q8Q10

+ Q2Q4Q7Q12 − Q2Q4Q9Q11 + Q2Q5Q9Q10 − Q2Q6Q7Q10 + Q3Q4Q8Q11

− Q3Q5Q8Q10 + Q3Q7Q10.

Proof. Applying the (k j, ψ j)-Riemann fractional integral for j = 1, 2 to both sides of Eq (1.2) and using
Lemma 2.4, we obtain

x1(t) = k1 Iϑ1;ψ1
a+ z1(t) + c0 +

(ψ1(t) − ψ1(a))
Γk1(2k1)

c1 (2.6)

and

x2(t) = k2 Iϑ2;ψ2
a+ z2(t) + d0 +

(ψ2(t) − ψ2(a))
Γk2(2k2)

d1, (2.7)

where

c0 = [z1(t)]t=a , c1 =

[(
k1

ψ′1(t)
d
dt

)
z1(t)

]
t=a

,

d0 = [z2(t)]t=a , d1 =

[(
k2

ψ′2(t)
d
dt

)
z2(t)

]
t=a

.

Now, using (2.6) and (2.7) in the multipoint closed boundary conditions in (2.1) together with the
notations in (2.5) and Lemma 2.5, we obtain the following system:

−c0 − Q1 c1 + Q2 d0 + Q3 d1 =
k1 Iϑ1;ψ1

a+ z1(b) −
m∑

i=1

(
ηi

k2 Iϑ2;ψ2
a+ z2(ξi) + b µi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

)
,

Q4 c0 + Q5 c1 − d0 − Q6 d1 =
k2 Iϑ2;ψ2

a+ z2(b) −
m∑

i=1

(
βi

k1 Iϑ1;ψ1
a+ z1(ξi) + bαi

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

)
,

−Q7 c1 + Q8 d0 + Q9 d1 = b k1 Iϑ1−γ1;ψ1
a+ z1(b) −

m∑
i=1

(
pi

k2 Iϑ2;ψ2
a+ z2(ξi) + b qi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

)
,

Q10 c0 + Q11 c1 − Q12 d1 = b k2 Iϑ2−γ2;ψ2
a+ z2(b) −

m∑
i=1

(
ri

k1 Iϑ1;ψ1
a+ z1(ξi) + b si

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

)
.

(2.8)

Solving system (2.8) for c0, c1, d0, and d1 and using the notations in (2.4), we find that

c0 =
1
∆

[
Υ1

{
k1 Iϑ1;ψ1

a+ z1(b) −
m∑

i=1

(
ηi

k2 Iϑ2;ψ2
a+ z2(ξi) + b µi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

)
+ Υ3

{
k2 Iϑ2;ψ2

a+ z2(b) −
m∑

i=1

(
βi

k1 Iϑ1;ψ1
a+ z1(ξi) + bαi

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

) }
+ Υ5

{
b k1 Iϑ1−γ1;ψ1

a+ z1(b) −
m∑

i=1

(
pi

k2 Iϑ2;ψ2
a+ z2(ξi) + b qi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

) }
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+ Υ7

{
b k2 Iϑ2−γ2;ψ2

a+ z2(b) −
m∑

i=1

(
ri

k1 Iϑ1;ψ1
a+ z1(ξi) + b si

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

) }]
,

c1 =
1
∆

[
Υ2

{
k1 Iϑ1;ψ1

a+ z1(b) −
m∑

i=1

(
ηi

k2 Iϑ2;ψ2
a+ z2(ξi) + b µi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

)
+ Υ4

{
k2 Iϑ2;ψ2

a+ z2(b) −
m∑

i=1

(
βi

k1 Iϑ1;ψ1
a+ z1(ξi) + bαi

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

) }
+ Υ6

{
b k1 Iϑ1−γ1;ψ1

a+ z1(b) −
m∑

i=1

(
pi

k2 Iϑ2;ψ2
a+ z2(ξi) + b qi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

) }
+ Υ8

{
b k2 Iϑ2−γ2;ψ2

a+ z2(b) −
m∑

i=1

(
ri

k1 Iϑ1;ψ1
a+ z1(ξi) + b si

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

) }]
,

d0 =
1
∆

[
Υ9

{
k1 Iϑ1;ψ1

a+ z1(b) −
m∑

i=1

(
ηi

k2 Iϑ2;ψ2
a+ z2(ξi) + b µi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

)
+ Υ11

{
k2 Iϑ2;ψ2

a+ z2(b) −
m∑

i=1

(
βi

k1 Iϑ1;ψ1
a+ z1(ξi) + bαi

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

) }
+ Υ13

{
b k1 Iϑ1−γ1;ψ1

a+ z1(b) −
m∑

i=1

(
pi

k2 Iϑ2;ψ2
a+ z2(ξi) + b qi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

) }
+ Υ15

{
b k2 Iϑ2−γ2;ψ2

a+ z2(b) −
m∑

i=1

(
ri

k1 Iϑ1;ψ1
a+ z1(ξi) + b si

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

) }]
,

and

d1 =
1
∆

[
Υ10

{
k1 Iϑ1;ψ1

a+ z1(b) −
m∑

i=1

(
ηi

k2 Iϑ2;ψ2
a+ z2(ξi) + b µi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

)
+ Υ12

{
k2 Iϑ2;ψ2

a+ z2(b) −
m∑

i=1

(
βi

k1 Iϑ1;ψ1
a+ z1(ξi) + bαi

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

) }
+ Υ14

{
b k1 Iϑ1−γ1;ψ1

a+ z1(b) −
m∑

i=1

(
pi

k2 Iϑ2;ψ2
a+ z2(ξi) + b qi

k2 Iϑ2−σi;ψ2
a+ z2(ζi)

) }
+ Υ16

{
b k2 Iϑ2−γ2;ψ2

a+ z2(b) −
m∑

i=1

(
ri

k1 Iϑ1;ψ1
a+ z1(ξi) + b si

k1 Iϑ1−φi;ψ1
a+ z1(ζi)

) }]
.

Replacing c0, c1, d0, and d1 in (2.6) and (2.7) with the above values, we obtain the solution of (2.2)
and (2.3). The converse of the lemma can be verified by direct computation. Thus, the proof is
completed. □

3. Main results

Let us introduce the space X1 = {x1(t) | x1(t) ∈ C([a, b],R)} endowed with the norm ∥x1∥X1 =

sup{|x1(t)| : t ∈ [a, b]}. Obviously,
(
X1, ∥·∥X1

)
is a Banach space, and consequently, the product space
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X1 × X2, ∥·∥X1×X2

)
is also a Banach space with the norm ∥(x1, x2)∥X1×X2

= ∥x1∥X1 + ∥x2∥X2 for (x1, x2) ∈
X1 × X2, where X2 = {x2(t) | x2(t) ∈ C([a, b],R)}, and ∥x2∥X2 = sup{|x2(t)| : t ∈ [a, b]}.

According to Lemma 2.7, we define an operator T : X1 × X2 → X1 × X2 associated with the coupled
system (1.2) by

T (x1, x2) (t) =
(
T1 (x1, x2) (t)
T2 (x1, x2) (t)

)
, (3.1)

where

T1 (x1, x2) (t) = k1 Iϑ1;ψ1
a+ ν1(t, x1(t), x2(t)) +

1
∆

[
Υ1 + Υ2

(ψ1(t) − ψ1(a))
Γk1(2k1)

]
×

{
k1 Iϑ1;ψ1

a+ ν1(b, x1(b), x2(b)) −
m∑

i=1

(
ηi

k2 Iϑ2;ψ2
a+ ν2(ξi, x1(ξi), x2(ξi))

+ b µi
k2 Iϑ2−σi;ψ2

a+ ν2(ζi, x1(ζi), x2(ζi))
)}
+

1
∆

[
Υ3 + Υ4

(ψ1(t) − ψ1(a))
Γk1(2k1)

]
×

{
k2 Iϑ2;ψ2

a+ ν2(b, x1(b), x2(b)) −
m∑

i=1

(
βi

k1 Iϑ1;ψ1
a+ ν1(ξi, x1(ξi), x2(ξi))

+ bαi
k1 Iϑ1−φi;ψ1

a+ ν1(ζi, x1(ζi), x2(ζi))
)}
+

1
∆

[
Υ5 + Υ6

(ψ1(t) − ψ1(a))
Γk1(2k1)

]
×

{
b k1 Iϑ1−γ1;ψ1

a+ ν1(b, x1(b), x2(b)) −
m∑

i=1

(
pi

k2 Iϑ2;ψ2
a+ ν2(ξi, x1(ξi), x2(ξi))

+ b qi
k2 Iϑ2−σi;ψ2

a+ ν2(ζi, x1(ζi), x2(ζi))
)}
+

1
∆

[
Υ7 + Υ8

(ψ1(t) − ψ1(a))
Γk1(2k1)

]
×

{
b k2 Iϑ2−γ2;ψ2

a+ ν2(b, x1(b), x2(b)) −
m∑

i=1

(
ri

k1 Iϑ1;ψ1
a+ ν1(ξi, x1(ξi), x2(ξi))

+ b si
k1 Iϑ1−φi;ψ1

a+ ν1(ζi, x1(ζi), x2(ζi))
)}
, t ∈ [a, b], (3.2)

and

T2 (x1, x2) (t) = k2 Iϑ2;ψ2
a+ ν2(t, x1(t), x2(t)) +

1
∆

[
Υ9 + Υ10

(ψ2(t) − ψ2(a))
Γk2(2k2)

]
×

{
k1 Iϑ1;ψ1

a+ ν1(b, x1(b), x2(b)) −
m∑

i=1

(
ηi

k2 Iϑ2;ψ2
a+ ν2(ξi, x1(ξi), x2(ξi))

+ b µi
k2 Iϑ2−σi;ψ2

a+ ν2(ζi, x1(ζi), x2(ζi))
)}
+

1
∆

[
Υ11 + Υ12

(ψ2(t) − ψ2(a))
Γk2(2k2)

]
×

{
k2 Iϑ2;ψ2

a+ ν2(b, x1(b), x2(b)) −
m∑

i=1

(
βi

k1 Iϑ1;ψ1
a+ ν1(ξi, x1(ξi), x2(ξi))

+ bαi
k1 Iϑ1−φi;ψ1

a+ ν1(ζi, x1(ζi), x2(ζi))
)}
+

1
∆

[
Υ13 + Υ14

(ψ2(t) − ψ2(a))
Γk2(2k2)

]
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×

{
b k1 Iϑ1−γ1;ψ1

a+ ν1(b, x1(b), x2(b)) −
m∑

i=1

(
pi

k2 Iϑ2;ψ2
a+ ν2(ξi, x1(ξi), x2(ξi))

+ b qi
k2 Iϑ2−σi;ψ2

a+ ν2(ζi, x1(ζi), x2(ζi))
)}
+

1
∆

[
Υ15 + Υ16

(ψ2(t) − ψ2(a))
Γk2(2k2)

]
×

{
b k2 Iϑ2−γ2;ψ2

a+ ν2(b, x1(b), x2(b)) −
m∑

i=1

(
ri

k1 Iϑ1;ψ1
a+ ν1(ξi, x1(ξi), x2(ξi))

+ b si
k1 Iϑ1−φi;ψ1

a+ ν1(ζi, x1(ζi), x2(ζi))
)}
, t ∈ [a, b], (3.3)

where Υi (i = 1, 2, . . . , 16) are given in (2.4).

For the sake of computational convenience, we set

Ω1 =

6∑
j=1

Φ j, Ω2 =

12∑
j=7

Φ j, (3.4)

where

Φ1 =
(ψ1(b) − ψ1(a))

ϑ1
k1

Γk1(ϑ1 + k1)

[
1 + Θ1

]
+ |b|

(ψ1(b) − ψ1(a))
ϑ1−γ1

k1

Γk1(ϑ1 − γ1 + k1)
Θ3,

Φ2 =
(ψ1(b) − ψ1(a))

ϑ1
k1

Γk1(ϑ1 + k1)
Θ5 + |b|

(ψ1(b) − ψ1(a))
ϑ1−γ1

k1

Γk1(ϑ1 − γ1 + k1)
Θ7,

Φ3 =

m∑
i=1

[
Θ2 |βi| + Θ4|ri|

] (ψ1(ξi) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)
,

Φ4 =

m∑
i=1

[
Θ6 |βi| + Θ8|ri|

] (ψ1(ξi) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)
,

Φ5 = |b|
m∑

i=1

[
Θ2 |αi| + Θ4|si|

] (ψ1(ζi) − ψ1(a))
ϑ1−φi

k1

Γk1(ϑ1 − φi + k1)
,

Φ6 = |b|
m∑

i=1

[
Θ6 |αi| + Θ8|si|

] (ψ1(ζi) − ψ1(a))
ϑ1−φi

k1

Γk1(ϑ1 − φi + k1)
, (3.5)

Φ7 =

m∑
i=1

[
Θ1 |ηi| + Θ3|pi|

] (ψ2(ξi) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)
,

Φ8 =

m∑
i=1

[
Θ5 |ηi| + Θ7|pi|

] (ψ2(ξi) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)
,

Φ9 = |b|
m∑

i=1

[
Θ1 |µi| + Θ3 |qi|

] (ψ2(ζi) − ψ2(a))
ϑ2−σi

k2

Γk2(ϑ2 − σi + k2)
,

Φ10 = |b|
m∑

i=1

[
Θ5 |µi| + Θ7|qi|

] (ψ2(ζi) − ψ2(a))
ϑ2−σi

k2

Γk2(ϑ2 − σi + k2)
,
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Φ11 =
(ψ2(b) − ψ2(a))

ϑ2
k2

Γk2(ϑ2 + k2)
Θ2 + |b|

(ψ2(b) − ψ2(a))
ϑ2−γ2

k2

Γk2(ϑ2 − γ2 + k2)
Θ4,

Φ12 =
(ψ2(b) − ψ2(a))

ϑ2
k2

Γk2(ϑ2 + k2)
[
1 + Θ6

]
+ |b|

(ψ2(b) − ψ2(a))
ϑ2−γ2

k2

Γk2(ϑ2 − γ2 + k2)
Θ8

with

Θi =
1
|∆|

[
|Υ2i−1| + |Υ2i|

(ψ1(b) − ψ1(a))
Γk1(2k1)

]
, i = 1, 2, 3, 4,

Θ j =
1
|∆|

[
|Υ2 j−1| + |Υ2 j|

(ψ2(b) − ψ2(a))
Γk2(2k2)

]
, j = 5, 6, 7, 8. (3.6)

3.1. Uniqueness result via Banach’s contraction mapping principle

In this subsection, we prove the existence of a unique solution to the coupled system (1.2) by
employing Banach’s contraction mapping principle (see [24]).

Theorem 3.1. Suppose that ∆ , 0, and let ν1, ν2 : [a, b]×R×R→ R be continuous mappings satisfying
the following condition:

(A1) There exist constants L1, L2 > 0 such that

|ν1(t, x1, x2) − ν1(t, x1, x2)| ≤ L1 (|x1 − x1| + |x2 − x2|) ,
|ν2(t, x1, x2) − ν2(t, x1, x2)| ≤ L2 (|x1 − x1| + |x2 − x2|) ,

for all t ∈ [a, b] and xi, xi ∈ R, i = 1, 2.

Then the coupled system (1.2) admits a unique solution on the interval [a, b], provided that

L1Ω1 + L2Ω2 < 1, (3.7)

where the constants Ω1 and Ω2 are defined in (3.4).

Proof. Let us define a closed ball Br1 = {(x1, x2) ∈ X1 × X2 : ∥(x1, x2)∥X1×X2
≤ r1} with

r1 ≥
M1Ω1 + M2Ω2

1 −
(
L1Ω1 + L2Ω2

) , (3.8)

where M1 = sup
t∈[a,b]
|ν1(t, 0, 0)| < ∞, and M2 = sup

t∈[a,b]
|ν2(t, 0, 0)| < ∞. In the first step, we show that

T (Br1) ⊆ Br1 , where T : Br1 → X1 × X2 is defined by (3.1). By using the assumption (A1), for each
(x1, x2) ∈ Br1 , we have

|ν1(t, x1(t), x2(t))| ≤ |ν1(t, x1(t), x2(t)) − ν1(t, 0, 0)| + |ν1(t, 0, 0)|

≤ L1(∥ν1∥X1 + ∥ν2∥X2) + M1 = L1 ∥(ν1, ν2)∥X1×X2
+ M1 ≤ L1 r1 + M1.

Similarly, we have |ν2(t, x1(t), x2(t))| ≤ L2 r1+M2. By virtue of the above inequalities and the notations
in (3.6), we obtain
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|T1 (x1, x2) (t)| ≤ k1 Iϑ1;ψ1
a+ |ν1(t, x1(t), x2(t))| +

1
|∆|

[
|Υ1| + |Υ2|

(ψ1(t) − ψ1(a))
Γk1(2k1)

]
×

{
k1 Iϑ1;ψ1

a+ |ν1(b, x1(b), x2(b))| +
m∑

i=1

(
|ηi|

k2 Iϑ2;ψ2
a+ |ν2(ξi, x1(ξi), x2(ξi))|

+|b| |µi|
k2 Iϑ2−σi;ψ2

a+ |ν2(ζi, x1(ζi), x2(ζi))|
)}
+

1
|∆|

[
|Υ3| + |Υ4|

(ψ1(t) − ψ1(a))
Γk1(2k1)

]
×

{
k2 Iϑ2;ψ2

a+ |ν2(b, x1(b), x2(b))| +
m∑

i=1

(
|βi|

k1 Iϑ1;ψ1
a+ |ν1(ξi, x1(ξi), x2(ξi))|

+|b| |αi|
k1 Iϑ1−φi;ψ1

a+ |ν1(ζi, x1(ζi), x2(ζi))|
)}
+

1
|∆|

[
|Υ5| + |Υ6|

(ψ1(t) − ψ1(a))
Γk1(2k1)

]
×

{
|b| k1 Iϑ1−γ1;ψ1

a+ |ν1(b, x1(b), x2(b))| +
m∑

i=1

(
|pi|

k2 Iϑ2;ψ2
a+ |ν2(ξi, x1(ξi), x2(ξi))|

+|b| |qi|
k2 Iϑ2−σi;ψ2

a+ |ν2(ζi, x1(ζi), x2(ζi))|
)}
+

1
|∆|

[
|Υ7| + |Υ8|

(ψ1(t) − ψ1(a))
Γk1(2k1)

]
×

{
|b| k2 Iϑ2−γ2;ψ2

a+ |ν2(b, x1(b), x2(b))| +
m∑

i=1

(
|ri|

k1 Iϑ1;ψ1
a+ |ν1(ξi, x1(ξi), x2(ξi))|

+|b| |si|
k1 Iϑ1−φi;ψ1

a+ |ν1(ζi, x1(ζi), x2(ζi))|
)}

≤
(
L1 r1 + M1

) (ψ1(b) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)
+

1
|∆|

[
|Υ1| + |Υ2|

(ψ1(b) − ψ1(a))
Γk1(2k1)

]

×

{(
L1 r1 + M1

) (ψ1(b) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)
+

(
L2 r1 + M2

) m∑
i=1

(
|ηi|

(ψ2(ξi) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)

+|b| |µi|
(ψ2(ζi) − ψ2(a))

ϑ2−σi
k2

Γk2(ϑ2 − σi + k2)

)}
+

1
|∆|

[
|Υ3| + |Υ4|

(ψ1(b) − ψ1(a))
Γk1(2k1)

]

×

{(
L2 r1 + M2

) (ψ2(b) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)
+

(
L1 r1 + M1

) m∑
i=1

(
|βi|

(ψ1(ξi) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)

+|b| |αi|
(ψ1(ζi) − ψ1(a))

ϑ1−φi
k1

Γk1(ϑ1 − φi + k1)

)}
+

1
|∆|

[
|Υ5| + |Υ6|

(ψ1(b) − ψ1(a))
Γk1(2k1)

]

×

{(
L1 r1 + M1

)
|b|

(ψ1(b) − ψ1(a))
ϑ1−γ1

k1

Γk1(ϑ1 − γ1 + k1)
+

(
L2 r1 + M2

) m∑
i=1

(
|pi|

(ψ2(ξi) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)

+|b| |qi|
(ψ2(ζi) − ψ2(a))

ϑ2−σi
k2

Γk2(ϑ2 − σi + k2)

)}
+

1
|∆|

[
|Υ7| + |Υ8|

(ψ1(b) − ψ1(a))
Γk1(2k1)

]
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×

{(
L2 r1 + M2

)
|b|

(ψ2(b) − ψ2(a))
ϑ2−γ2

k2

Γk2(ϑ2 − γ2 + k2)
+

(
L1 r1 + M1

) m∑
i=1

(
|ri|

(ψ1(ξi) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)

+|b| |si|
(ψ1(ζi) − ψ1(a))

ϑ1−φi
k1

Γk1(ϑ1 − φi + k1)

)}

=
(
L1 r1 + M1

)[ (ψ1(b) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)
+

(ψ1(b) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)
Θ1

+|b|
(ψ1(b) − ψ1(a))

ϑ1−γ1
k1

Γk1(ϑ1 − γ1 + k1)
Θ3 +

m∑
i=1

[
Θ2 |βi| + Θ4|ri|

] (ψ1(ξi) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)

+|b|
m∑

i=1

[
Θ2 |αi| + Θ4|si|

] (ψ1(ζi) − ψ1(a))
ϑ1−φi

k1

Γk1(ϑ1 − φi + k1)

]

+
(
L2 r1 + M2

)[ m∑
i=1

[
Θ1 |ηi| + Θ3|pi|

] (ψ2(ξi) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)

+|b|
m∑

i=1

[
Θ1 |µi| + Θ3 |qi|

] (ψ2(ζi) − ψ2(a))
ϑ2−σi

k2

Γk2(ϑ2 − σi + k2)
+

(ψ2(b) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)
Θ2

+|b|
(ψ2(b) − ψ2(a))

ϑ2−γ2
k2

Γk2(ϑ2 − γ2 + k2)
Θ4

]
.

In view of the notations in (3.5), the above inequality takes the form

∥T1 (x1, x2)∥X1 ≤ (Φ1 + Φ3 + Φ5)
(
L1 r1 + M1

)
+ (Φ7 + Φ9 + Φ11)

(
L2 r1 + M2

)
. (3.9)

In the same way, we find that

∥T2 (x1, x2)∥X2 ≤ (Φ2 + Φ4 + Φ6)
(
L1 r1 + M1

)
+ (Φ8 + Φ10 + Φ12)

(
L2 r1 + M2

)
. (3.10)

Combining the inequalities (3.9) and (3.10) and using (3.8), we get

∥T (x1, x2)∥X1×X2 = ∥T1 (x1, x2)∥X1 + ∥T2 (x1, x2)∥X2

≤ r1
(
L1

(
Φ1 + Φ2 + Φ3 + Φ4 + Φ5 + Φ6

)
+ L2

(
Φ7 + Φ8 + Φ9 + Φ10 + Φ11 + Φ12

))
+ M1

(
Φ1 + Φ2 + Φ3 + Φ4 + Φ5 + Φ6

)
+ M2

(
Φ7 + Φ8 + Φ9 + Φ10 + Φ11 + Φ12

)
= r1

(
L1Ω1 + L2Ω7

)
+ M1Ω1 + M2Ω2

≤ r1,

which implies that T (Br1) ⊆ Br1 .
Next, we will show that the operator T is a contraction. For each pair of elements (x1, x2), (x1, x2) ∈

Br1 and for any t ∈ [a, b], we have
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|T1(x1, x2)(t) − T1(x1, x2)(t)|

≤ k1 Iϑ1;ψ1
a+ |ν1(t, x1(t), x2(t)) − ν1(t, x1(t), x2(t))|

+
1
|∆|

[
|Υ1| + |Υ2|

(ψ1(t) − ψ1(a))
Γk1(2k1)

]{
k1 Iϑ1;ψ1

a+ |ν1(b, x1(b), x2(b)) − ν1(b, x1(b), x2(b))|

+

m∑
i=1

(
|ηi|

k2 Iϑ2;ψ2
a+ |ν2(ξi, x1(ξi), x2(ξi)) − ν2(ξi, x1(ξi), x2(ξi))|

+ |b| |µi|
k2 Iϑ2−σi;ψ2

a+ |ν2(ζi, x1(ζi), x2(ζi)) − ν2(ζi, x1(ζi), x2(ζi))|
)}

+
1
|∆|

[
|Υ3| + |Υ4|

(ψ1(t) − ψ1(a))
Γk1(2k1)

]{
k2 Iϑ2;ψ2

a+ |ν2(b, x1(b), x2(b)) − ν2(b, x1(b), x2(b))|

+

m∑
i=1

(
|βi|

k1 Iϑ1;ψ1
a+ |ν1(ξi, x1(ξi), x2(ξi)) − ν1(ξi, x1(ξi), x2(ξi))|

+ |b| |αi|
k1 Iϑ1−φi;ψ1

a+ |ν1(ζi, x1(ζi), x2(ζi)) − ν1(ζi, x1(ζi), x2(ζi))|
)}

+
1
|∆|

[
|Υ5| + |Υ6|

(ψ1(t) − ψ1(a))
Γk1(2k1)

]{
|b| k1 Iϑ1−γ1;ψ1

a+ |ν1(b, x1(b), x2(b)) − ν1(b, x1(b), x2(b))|

+

m∑
i=1

(
|pi|

k2 Iϑ2;ψ2
a+ |ν2(ξi, x1(ξi), x2(ξi)) − ν2(ξi, x1(ξi), x2(ξi))|

+ |b| |qi|
k2 Iϑ2−σi;ψ2

a+ |ν2(ζi, x1(ζi), x2(ζi)) − ν2(ζi, x1(ζi), x2(ζi))|
)}

+
1
|∆|

[
|Υ7| + |Υ8|

(ψ1(t) − ψ1(a))
Γk1(2k1)

]{
|b| k2 Iϑ2−γ2;ψ2

a+ |ν2(b, x1(b), x2(b)) − ν2(b, x1(b), x2(b))|

+

m∑
i=1

(
|ri|

k1 Iϑ1;ψ1
a+ |ν1(ξi, x1(ξi), x2(ξi)) − ν1(ξi, x1(ξi), x2(ξi))|

+ |b| |si|
k1 Iϑ1−φi;ψ1

a+ |ν1(ζi, x1(ζi), x2(ζi)) − ν1(ζi, x1(ζi), x2(ζi))|
)}

≤ L1

(
∥x1 − x1∥X1 + ∥x2 − x2∥X2

)[ (ψ1(b) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)
+

(ψ1(b) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)
Θ1

+ |b|
(ψ1(b) − ψ1(a))

ϑ1−γ1
k1

Γk1(ϑ1 − γ1 + k1)
Θ3 +

m∑
i=1

[
Θ2 |βi| + Θ4|ri|

] (ψ1(ξi) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)

+ |b|
m∑

i=1

[
Θ2 |αi| + Θ4|si|

] (ψ1(ζi) − ψ1(a))
ϑ1−φi

k1

Γk1(ϑ1 − φi + k1)

]
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+ L2

(
∥x1 − x1∥X1 + ∥x2 − x2∥X2

)[ m∑
i=1

[
Θ1 |ηi| + Θ3|pi|

] (ψ2(ξi) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)

+ |b|
m∑

i=1

[
Θ1 |µi| + Θ3 |qi|

] (ψ2(ζi) − ψ2(a))
ϑ2−σi

k2

Γk2(ϑ2 − σi + k2)
+

(ψ2(b) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)
Θ2

+ |b|
(ψ2(b) − ψ2(a))

ϑ2−γ2
k2

Γk2(ϑ2 − γ2 + k2)
Θ4

]
,

which yields

∥T1(x1, x2) − T1(x1, x2)∥X1
≤ L1

(
Φ1 + Φ3 + Φ5

)(
∥x1 − x1∥X1 + ∥x2 − x2∥X2

)
+ L2

(
Φ7 + Φ9 + Φ11

)(
∥x1 − x1∥X1 + ∥x2 − x2∥X2

)
.

(3.11)

In a similar manner, one can find that

∥T2(x1, x2) − T2(x1, x2)∥X2
≤ L1

(
Φ2 + Φ4 + Φ6

)(
∥x1 − x1∥X1 + ∥x2 − x2∥X2

)
+ L2

(
Φ8 + Φ10 + Φ12

)(
∥x1 − x1∥X1 + ∥x2 − x2∥X2

)
.

(3.12)

From (3.11) and (3.12), we deduce that

|T (x1, x1)(t) − T (x1, x2)(t)|

≤ L1
(
Φ1 + Φ2 + Φ3 + Φ4 + Φ5 + Φ6

)(
∥x1 − x1∥X1 + ∥x2 − x2∥X2

)
+ L2

(
Φ7 + Φ8 + Φ9 + Φ10 + Φ11 + Φ12

)(
∥x1 − x1∥X1 + ∥x2 − x2∥X2

)
.

Consequently, it follows by using the notations in (3.4) that

∥T (x1, x2) − T (x1, x2)∥X1×X2
≤

(
L1Ω1 + L2Ω2

)(
∥x1 − x1∥X1 + ∥x2 − x2∥X2

)
.

By the assumption (3.7), it follows from the above inequality that the operator T is a contraction.
An application of Banach’s contraction principle guarantees that the operator T possesses a single fixed
point in Br1 . Consequently, this fixed point represents the unique solution to the coupled system (1.2)
on the interval [a, b], thereby concluding the proof. □

3.2. Existence result via Leray–Schauder alternative

In this subsection, we address the existence of solutions to the coupled system (1.2) through the use
of the Leray–Schauder alternative (see [25]).

Theorem 3.2. Let ∆ , 0, and suppose that the functions ν1, ν2 : [0, b] × R × R → R are continuous
and satisfy the following condition:

(A2) There exist constants fi, gi ≥ 0, i = 1, 2 and f0 > 0, g0 > 0 such that

|ν1(t, x1, x2)| ≤ f0 + f1 |x1| + f2 |x2| ,

|ν2(t, x1, x2)| ≤ g0 + g1 |x1| + g2 |x2| .
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Then, the coupled system (1.2) has at least one solution on [a, b], provided that

Ω1 f1 + Ω2 g1 < 1 and Ω1 f2 + Ω2 g2 < 1, (3.13)

where Ω1 and Ω2 are given in (3.4).

Proof. Let us first show that the operator T : X1×X2 → X1×X2 is completely continuous. Because the
functions ν1 and ν2 are continuous, it follows that the operators T1 and T2 are continuous. Consequently,
the operator T is continuous. Let Br2 ⊆ X1 × X2 be a bounded set. By (A2), we have

|ν1(t, x1, x2)| ≤ f0 + f1∥x1∥X1 + f2∥x2∥X2

≤ f0 + ( f1 + f2)(∥x1∥X1 + ∥x2∥X2)
= f0 + ( f1 + f2)∥(x1, x2)∥
≤ f0 + ( f1 + f2)r2 := N1.

Similarly, we have |ν2(t, x1, x2)| ≤ g0 + (g1 + g2)∥(x1, x2)∥ ≤ g0 + (g1 + g2)r2 := N2. Then, for any
(x1, x2) ∈ Br2 , we obtain

|T1 (x1, x2) (t)| ≤ N1

[
(ψ1(b) − ψ1(a))

ϑ1
k1

Γk1(ϑ1 + k1)
+

(ψ1(b) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)
Θ1 + |b|

(ψ1(b) − ψ1(a))
ϑ1−γ1

k1

Γk1(ϑ1 − γ1 + k1)
Θ3

+

m∑
i=1

[
Θ2 |βi| + Θ4|ri|

] (ψ1(ξi) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)

+ |b|
m∑

i=1

[
Θ2 |αi| + Θ4|si|

] (ψ1(ζi) − ψ1(a))
ϑ1−φi

k1

Γk1(ϑ1 − φi + k1)

]

+ N2

[ m∑
i=1

[
Θ1 |ηi| + Θ3|pi|

] (ψ2(ξi) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)

+ |b|
m∑

i=1

[
Θ1 |µi| + Θ3 |qi|

] (ψ2(ζi) − ψ2(a))
ϑ2−σi

k2

Γk2(ϑ2 − σi + k2)
+

(ψ2(b) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)
Θ2

+ |b|
(ψ2(b) − ψ2(a))

ϑ2−γ2
k2

Γk2(ϑ2 − γ2 + k2)
Θ4

]
,

which leads to
∥T1(x1, x2)∥X1

≤
(
Φ1 + Φ3 + Φ5

)
N1 +

(
Φ7 + Φ9 + Φ11

)
N2.

In the same way, we have

∥T2(x1, x2)∥X2
≤

(
Φ2 + Φ4 + Φ6

)
N1 +

(
Φ8 + Φ10 + Φ12

)
N2.

Thus,
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∥T (x1, x2)∥X1×X2
= ∥T1(x1, x2)∥X1

+ ∥T2(x1, x2)∥X2

≤
(
Φ1 + Φ3 + Φ5 + Φ2 + Φ4 + Φ6

)
N1

+
(
Φ7 + Φ9 + Φ11 + Φ8 + Φ10 + Φ12

)
N2,

which means that the operator T (Br2) is uniformly bounded.
Next, we show that the operator T is equicontinuous. Let t1, t2 ∈ [a, b] with t1 < t2. Then, we have

|T1(x1, x2)(t2) − T1(x1, x2)(t1)|

≤
1

k1 Γk1(ϑ1)

∣∣∣∣∣∣
∫ t1

a
ψ′1(z)

(
(ψ1(t2) − ψ1(z))

ϑ1
k1
−1
− (ψ1(t1) − ψ1(z))

ϑ1
k1
−1

)
ν1(z, x1(z), x2(z))dz

+

∫ t2

t1
ψ′1(z) (ψ1(t2) − ψ1(z))

ϑ1
k1
−1
ν1(z, x1(z), x2(z))dz

∣∣∣∣∣∣ + (ψ1(t2) − ψ1(t1))
|∆| Γk1(2k1)

×

[
|Υ2|

{
k1 Iϑ1;ψ1

a+ |ν1(b, x1(b), x2(b))| +
m∑

i=1

(
|ηi|

k2 Iϑ2;ψ2
a+ |ν2(ξi, x1(ξi), x2(ξi))|

+ |b| |µi|
k2 Iϑ2−σi;ψ2

a+ |ν2(ζi, x1(ζi), x2(ζi))|
)}
+ |Υ4|

{
k2 Iϑ2;ψ2

a+ |ν2(b, x1(b), x2(b))|

+

m∑
i=1

(
|βi|

k1 Iϑ1;ψ1
a+ |ν1(ξi, x1(ξi), x2(ξi))| + |b| |αi|

k1 Iϑ1−φi;ψ1
a+ |ν1(ζi, x1(ζi), x2(ζi))|

)}
+ |Υ6|

{
|b| k1 Iϑ1−γ1;ψ1

a+ |ν1(b, x1(b), x2(b))| +
m∑

i=1

(
|pi|

k2 Iϑ2;ψ2
a+ |ν2(ξi, x1(ξi), x2(ξi))|

+ |b| |qi|
k2 Iϑ2−σi;ψ2

a+ |ν2(ζi, x1(ζi), x2(ζi))|
)}
+ |Υ8|

{
|b| k2 Iϑ2−γ2;ψ2

a+ |ν2(b, x1(b), x2(b))|

+

m∑
i=1

(
|ri|

k1 Iϑ1;ψ1
a+ |ν1(ξi, x1(ξi), x2(ξi))| + |b| |si|

k1 Iϑ1−φi;ψ1
a+ |ν1(ζi, x1(ζi), x2(ζi))|

)}]
≤

N1

k1 Γk1(ϑ1)

∣∣∣∣∣∣
∫ t1

a
ψ′1(z)

(
(ψ1(t2) − ψ1(z))

ϑ1
k1
−1
− (ψ1(t1) − ψ1(z))

ϑ1
k1
−1

)
dz

+

∫ t2

t1
ψ′1(z) (ψ1(t2) − ψ1(z))

ϑ1
k1
−1 dz

∣∣∣∣∣∣ + (ψ1(t2) − ψ1(t1))
|∆| Γk1(2k1)

{
N1

[
(ψ1(b) − ψ1(a))

ϑ1
k1

Γk1(ϑ1 + k1)
|Υ2|

+ |b|
(ψ1(b) − ψ1(a))

ϑ1−γ1
k1

Γk1(ϑ1 − γ1 + k1)
|Υ6| +

m∑
i=1

[
|Υ4| |βi| + |Υ8| |ri|

] (ψ1(ξi) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)

+ |b|
m∑

i=1

[
|Υ4| |αi| + |Υ8| |si|

] (ψ1(ζi) − ψ1(a))
ϑ1−φi

k1

Γk1(ϑ1 − φi + k1)

]

+ N2

[ m∑
i=1

[
|Υ2| |ηi| + |Υ6||pi|

] (ψ2(ξi) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)
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+ |b|
m∑

i=1

[
|Υ2| |µi| + |Υ6| |qi|

] (ψ2(ζi) − ψ2(a))
ϑ2−σi

k2

Γk2(ϑ2 − σi + k2)
+

(ψ2(b) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)
|Υ4|

+ |b|
(ψ2(b) − ψ2(a))

ϑ2−γ2
k2

Γk2(ϑ2 − γ2 + k2)
|Υ8|

]}
≤

N1

k1 Γk1(ϑ1 + k1)

{
2 (ψ1(t2) − ψ1(t1))

ϑ1
k1 +

∣∣∣∣ (ψ1(t2) − ψ1(a))
ϑ1
k1 − (ψ1(t1) − ψ1(a))

ϑ1
k1

∣∣∣∣}

+
(ψ1(t2) − ψ1(t1))
|∆| Γk1(2k1)

{
N1

[
(ψ1(b) − ψ1(a))

ϑ1
k1

Γk1(ϑ1 + k1)
|Υ2| + |b|

(ψ1(b) − ψ1(a))
ϑ1−γ1

k1

Γk1(ϑ1 − γ1 + k1)
|Υ6|

+

m∑
i=1

[
|Υ4| |βi| + |Υ8| |ri|

] (ψ1(ξi) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)

+ |b|
m∑

i=1

[
|Υ4| |αi| + |Υ8| |si|

] (ψ1(ζi) − ψ1(a))
ϑ1−φi

k1

Γk1(ϑ1 − φi + k1)

]

+ N2

[ m∑
i=1

[
|Υ2| |ηi| + |Υ6||pi|

] (ψ2(ξi) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)

+ |b|
m∑

i=1

[
|Υ2| |µi| + |Υ6| |qi|

] (ψ2(ζi) − ψ2(a))
ϑ2−σi

k2

Γk2(ϑ2 − σi + k2)
+

(ψ2(b) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)
|Υ4|

+ |b|
(ψ2(b) − ψ2(a))

ϑ2−γ2
k2

Γk2(ϑ2 − γ2 + k2)
|Υ8|

]}
,

which implies that

|T1(x1, x2)(t2) − T1(x1, x2)(t1)| → 0, as t1 → t2,

independently of (x1, x2) ∈ Br2 . Analogously, one can obtain

|T2(x1, x2)(t2) − T2(x1, x2)(t1)|

≤
N2

k2 Γk2(ϑ2 + k2)

{
2 (ψ2(t2) − ψ2(t1))

ϑ2
k2 +

∣∣∣∣ (ψ2(t2) − ψ2(a))
ϑ2
k2 − (ψ2(t1) − ψ2(a))

ϑ2
k2

∣∣∣∣}

+
(ψ1(t2) − ψ1(t1))
|∆| Γk1(2k1)

{
N1

[
(ψ1(b) − ψ1(a))

ϑ1
k1

Γk1(ϑ1 + k1)
|Υ10|

+ |b|
(ψ1(b) − ψ1(a))

ϑ1−γ1
k1

Γk1(ϑ1 − γ1 + k1)
|Υ14| +

m∑
i=1

[
|Υ12| |βi| + |Υ16| |ri|

] (ψ1(ξi) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)

+ |b|
m∑

i=1

[
|Υ12| |αi| + |Υ16| |si|

] (ψ1(ζi) − ψ1(a))
ϑ1−φi

k1

Γk1(ϑ1 − φi + k1)

]

+ N2

[ m∑
i=1

[
|Υ10| |ηi| + |Υ14||pi|

] (ψ2(ξi) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)
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+ |b|
m∑

i=1

[
|Υ10| |µi| + |Υ14| |qi|

] (ψ2(ζi) − ψ2(a))
ϑ2−σi

k2

Γk2(ϑ2 − σi + k2)
+

(ψ2(b) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)
|Υ12|

+ |b|
(ψ2(b) − ψ2(a))

ϑ2−γ2
k2

Γk2(ϑ2 − γ2 + k2)
|Υ16|

]}
,

which implies that

|T2(x1, x2)(t2) − T2(x1, x2)(t1)| → 0, as t1 → t2;

independently of (x1, x2) ∈ Br2 . Hence, the set T (Br2) is equicontinuous. By applying the Arzelà–Ascoli
theorem, T (Br2) is relatively compact, which implies that the operator T is completely continuous.

It remains to show that the set

U = {(x1, x2) ∈ X1 × X2 : (x1, x2) = λT (x1, x2), 0 < λ < 1}

is bounded. Let (x1, x2) ∈ U; then, (x1, x2) = λT (x1, x2). For any t ∈ [a, b], we have

x1(t) = λT1(x1, x2)(t), x2(t) = λT2(x1, x2)(t).

Then, we get

∥x1∥X1 ≤
(

f0 + f1∥x1∥X1 + f2∥x2∥X2

)[ (ψ1(b) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)
+

(ψ1(b) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)
Θ1

+ |b|
(ψ1(b) − ψ1(a))

ϑ1−γ1
k1

Γk1(ϑ1 − γ1 + k1)
Θ3 +

m∑
i=1

[
Θ2 |βi| + Θ4|ri|

] (ψ1(ξi) − ψ1(a))
ϑ1
k1

Γk1(ϑ1 + k1)

+ |b|
m∑

i=1

[
Θ2 |αi| + Θ4|si|

] (ψ1(ζi) − ψ1(a))
ϑ1−φi

k1

Γk1(ϑ1 − φi + k1)

]

+
(
g0 + g1∥x1∥X1 + g2∥x2∥X2

)[ m∑
i=1

[
Θ1 |ηi| + Θ3|pi|

] (ψ2(ξi) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)

+ |b|
m∑

i=1

[
Θ1 |µi| + Θ3 |qi|

] (ψ2(ζi) − ψ2(a))
ϑ2−σi

k2

Γk2(ϑ2 − σi + k2)
+

(ψ2(b) − ψ2(a))
ϑ2
k2

Γk2(ϑ2 + k2)
Θ2

+ |b|
(ψ2(b) − ψ2(a))

ϑ2−γ2
k2

Γk2(ϑ2 − γ2 + k2)
Θ4

]
≤

(
Φ1 + Φ3 + Φ5

)
f0 +

(
Φ7 + Φ9 + Φ11

)
g0

+
((
Φ1 + Φ3 + Φ5

)
f1 +

(
Φ7 + Φ9 + Φ11

)
g1

)
∥x1∥X1

+
((
Φ1 + Φ3 + Φ5

)
f2 +

(
Φ7 + Φ9 + Φ11

)
g2

)
∥x2∥X2 ,

and similarly,
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∥x2∥X2 ≤
(
Φ2 + Φ4 + Φ6

)
f0 +

(
Φ8 + Φ10 + Φ12

)
g0

+
((
Φ2 + Φ4 + Φ6

)
f1 +

(
Φ8 + Φ10 + Φ12

)
g1

)
∥x1∥X1

+
((
Φ2 + Φ4 + Φ6

)
f2 +

(
Φ8 + Φ10 + Φ12

)
g2

)
∥x2∥X2 ,

which leads to

∥x1∥X1 + ∥x2∥X2 ≤ Ω1 f0 + Ω2 g0 +
(
Ω1 f1 + Ω2 g1

)
∥x1∥X1 +

(
Ω1 f2 + Ω2 g2

)
∥x2∥X2 .

Consequently,

∥(x1, x2)∥X1×X2
≤

Ω1 f0 + Ω2 g0

min
{
1 − [Ω1 f1 + Ω2 g1], 1 − [Ω1 f2 + Ω2 g2]

} ,
which proves that U is bounded. In consequence, we deduce by the Leray–Schauder alternative that
there exists at least one fixed point for the operator T . Therefore, the coupled system (1.2) has at least
one solution on [a, b]. This completes the proof. □

4. Illustrative examples

In this section, we present examples that illustrate the practical application of our theoretical results.
Consider a coupled system of the form:

4
3 ,CD

8
5 ;t2+t+1
0+ x1(t) = ν1(t, x1(t), x2(t)), 0 ≤ t ≤ 1

2 ,

5
4 ,CD

7
4 ;et

0+ x2(t) = ν2(t, x1(t), x2(t)), 0 ≤ t ≤ 1
2 ,

x1

(
1
2

)
= x2

(
1
4

)
+

5
4 ,CD

2
3 ;et

0+ x2

(
1
6

)
,

x2

(
1
2

)
= 3 x1

(
1
4

)
+ 2

4
3 ,CD

2
5 ;t2

0+ x1

(
1
6

)
,

1
2

4
3 ,CD

1
3 ;t2

0+ x1

(
1
2

)
=

1
4

x2

(
1
4

)
+

1
6

5
4 ,CD

2
3 ;et

0+ x2

(
1
6

)
,

1
2

5
4 ,CD

1
5 ;et

0+ x2

(
1
2

)
=

1
2

x1

(
1
4

)
+

1
2

4
3 ,CD

2
5 ;t2

0+ x1

(
1
6

)
,

(4.1)

where a = 0, b = 1
2 , k1 =

4
3 , k2 =

5
4 , ψ1(t) = t2 + t + 1, ψ2(t) = et, ϑ1 =

8
5 , ϑ2 =

7
4 , γ1 =

1
3 , γ2 =

1
5 , m = 1,

ξ1 =
1
4 , ζ1 =

1
6 , σ1 =

2
3 , φ1 =

2
5 , η1 = 1, µ1 = 2, β1 = 3, α1 = 4, p1 =

1
4 , q1 =

1
3 , r1 =

1
2 , and s1 = 1.

Using the given data, we find that Q1 = 0.5625, Q2 = 1, Q3 ≈ 0.685908, Q4 = 3, Q5 ≈ 1.275049,
Q6 ≈ 0.518977, Q7 ≈ 0.353359, Q8 = 0.25, Q9 ≈ 0.133253, Q10 = 0.5, Q11 ≈ 0.260168, Q12 ≈

0.305746, ∆ ≈ 0.219434, Υ1 ≈ 0.009664, Υ2 ≈ 0.074987, Υ3 ≈ 0.261289, Υ4 ≈ 0.008275, Υ5 ≈

0.231063, Υ6 ≈ 0.0573245, Υ7 ≈ −0.694957, Υ8 ≈ 0.11818, Υ9 ≈ 0.213369, Υ10 ≈ −0.010338, Υ11 ≈
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−0.017093, Υ12 ≈ 0.488769, Υ13 ≈ 0.212424, Υ14 ≈ 0.171408, Υ15 ≈ −0.164061, Υ16 ≈ −0.603605,
Θ1 ≈ 0.236263, Θ2 ≈ 1.211952, Θ3 ≈ 1.199941, Θ4 ≈ 3.469987, Θ5 ≈ 0.99681, Θ6 ≈ 1.233869,
Θ7 ≈ 1.373446, Θ8 ≈ 2.175224, Φ1 ≈ 0.917005, Φ2 ≈ 0.8593, Φ3 ≈ 0.854737, Φ4 ≈ 0.762174,
Φ5 ≈ 0.764504, Φ6 ≈ 0.653558, Φ7 ≈ 0.0542264, Φ8 ≈ 0.13552, Φ9 ≈ 0.086113, Φ10 ≈ 0.241949,
Φ11 ≈ 1.072353, Φ12 ≈ 1.145989, Ω1 ≈ 4.811278, and Ω2 ≈ 2.736151.

Case I. Let ν1, ν2 :
[
0, 1

2

]
× R × R→ R be given nonlinear functions defined by

ν1(t, x1, x2) =
e−(1−2t)

3√
729 + t3

(
|x1|

1 + |x1|
+ sin |x2| + 2

)
(4.2)

and

ν2(t, x1, x2) =
cos2(πt)
3(t + 2)

(
tan−1 |x1| +

|x2|

1 + |x2|
+ 1

)
. (4.3)

It is easy to verify that ν1 and ν2 satisfy the Lipschitz condition. Indeed,

|ν1(t, x1, x2) − ν1(t, x1, x2)| ≤
1
9

(
|x1 − x1| + |x2 − x2|

)
, (4.4)

and

|ν2(t, x1, x2) − ν2(t, x1, x2)| ≤
1
6

(
|x1 − x1| + |x2 − x2|

)
. (4.5)

Accordingly, the corresponding Lipschitz constants are L1 =
1
9 and L2 =

1
6 . Hence, the functions ν1

and ν2 fulfill assumption (A1) of Theorem 3.1. Moreover, a direct computation yields

L1Ω1 + L2Ω2 ≈ 0.990611 < 1,

showing that condition (3.7) is met. Because all hypotheses of Theorem 3.1 are satisfied, its conclusion
applies to the coupled system (4.1) with ν1 and ν2 defined by (4.4) and (4.5), respectively.

Case II. Let the functions ν1, ν2 :
[
0, 1

2

]
× R × R→ R be defined by

ν1(t, x1, x2) = sin(πt) +
cos4 x2

2(t + 5)
x1 +

e−x2
1

√
t2 + 121

(
x2

2

1 + |x2|

)
(4.6)

and

ν2(t, x1, x2) =
1
6
+

1
7(t + 1)2

(
x2

1

1 + |x1|

)
+

tan−1 x2
1

4π
sin |x2|. (4.7)

A straightforward estimation shows that

|ν1(t, x1, x2)| ≤ 1 +
1

10
|x1| +

1
11
|x2| ,

and

|ν2(t, x1, x2)| ≤
1
6
+

1
7
|x1| +

1
8
|x2| .
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Accordingly, selecting the constants f0 = 1, f1 =
1
10 , f2 =

1
11 , g0 =

1
6 , g1 =

1
7 , and g2 =

1
8 from the set

of admissible parameters, we obtain

Ω1 f1 + Ω2 g1 ≈ 0.872006 < 1 and Ω1 f2 + Ω2 g2 ≈ 0.779407 < 1. (4.8)

These inequalities confirm that condition (3.13) is fulfilled. Hence, all assumptions of Theorem 3.2 are
satisfied. As a result, Theorem 3.2 ensures that the coupled system (4.1) with nonlinearities ν1 and ν2

specified in (4.6) and (4.7), admits at least one solution on the interval
[
0, 1

2

]
.

5. Conclusions

This article addresses the solvability of a coupled system of (k, ψ)-Caputo fractional differential
equations subject to multipoint fractional closed boundary conditions. The existence and uniqueness
of the results are established through the use of classical fixed-point techniques, including Banach’s
contraction principle and the Leray–Schauder alternative. Numerical examples are presented to
validate the theoretical analysis. The findings are original and provide a meaningful extension of
the current literature on coupled systems involving (k, ψ)-Hilfer-type fractional derivative operators.
In our next work, we will extend the present work to multivalued maps and nonlinear contractions.
Extensions to more general fractional operators, variable-order derivatives, and higher-dimensional
systems also remain topics for future research.
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