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1. Introduction

Fractional calculus is a rapidly developing area of mathematical analysis that extends classical
differentiation and integration to noninteger orders. This broader framework is well suited for modeling
nonlocal phenomena and memory-dependent processes, which arise in numerous applications such
as diffusion process, viscoelasticity, control theory, biological systems, immune systems, financial
modeling, etc. A detailed treatment of the theory and applications of fractional calculus can be found
in [1-3].

Fractional integrals and derivatives play a central role in modeling memory and nonlocal effects
across diverse fields such as physics, biology, chemistry, and finance. This wide applicability has led to
the development of numerous fractional operators tailored to different dynamical behaviors. Hilfer [4]
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introduced a unifying operator interpolating between the Riemann—Liouville and Caputo derivatives
systematically presented in [1] and elaborated its applications in physics.

Further generalizations have incorporated differentiation with respect to auxiliary functions and
extensions within k-calculus. Notable contributions include the Caputo-type derivative with respect
to another function, -Hilfer derivative and (k, )-fractional operators [5—7]. These operators have
recently been employed in the study of boundary value problems, coupled systems, Langevin-type
equations, variational models, and the controllability of fractional dynamical systems [8—10].

Closed boundary conditions are fundamental in the modeling of fluid flows, as they describe systems
with zero mass transfer across the boundary. They commonly represent impermeable or thermally
insulated boundaries, including free-slip configurations that allow tangential motion while restricting
normal flow. Such boundary conditions arise in a wide range of applications, including gravitational
and radiative processes, elastic wave propagation, and heat transfer, and they are extensively used in
computational fluid dynamics, image processing, and transport phenomena in structured media [11-
13]. Although the settings in these studies differ from those examined here, they demonstrate the
widespread applicability and practical importance of closed boundary formulations in both theoretical
and applied contexts.

The study of boundary value problems associated with fractional differential equations and
differential inclusions subject to closed boundary conditions was first developed in [14]. In that work,
the authors focused on the analysis of the following family of problems:

“Dy(t) = f(t,y(1), teJ:=[0,T],
CD'y(t) € F(t,y(t)), teJ:=10,T],

W(T) = p1y(0) + p,Ty'(0),
Ty (T) = q1y(0) + ¢.Ty'(0),

where ©D* denotes the Caputo fractional derivative of order y, f : [0,7] X R — R is a continuous
function, F : [0,T] x R — P(R) is a multivalued map (here we denote the family of all nonempty
subsets of R by P(R)), and py, p2,4q1,9> € R.

In [15], the authors studied a system of nonlinear Caputo fractional differential equations
supplemented with coupled closed boundary conditions,

D1 g(t) = pi(1, (1), Y1), te€J =[0,T],
CD2Y(t) = po(t, (1), ¥(1)), te€J =1[0,T],
o(T) = ayp(0) + B1iTY'(0), T¢'(T) =y1y(0) +6:Ty’(0),
Y(T) = a2p(0) + BT’ (0),  TY'(T) = y20(0) + 6:T¢'(0),

where €D, D% denote the Caputo fractional derivatives of order gi,q», 1 < qi,q» < 2,
respectively, ay, @z, 81,52, ¥1,V2,01,00 € R, T > 0, and p,p; € C(J XR X R, R).

A comprehensive overview of fractional boundary value problems with closed-type boundary
conditions is available in the recent survey reported in [16].
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Moreover, the authors of [16] analyzed sufficient criteria ensuring the existence and uniqueness of
solutions to a (k, ¥)-Caputo fractional differential equation equipped with multipoint fractional closed
boundary conditions of the form
DY p(x) = Vi p(x)), a<x<b,

ob) = > (m @& + b DI 9(), (L)

i=1
m

bEDTe(b) = ) (pié) + b4, DI (),

i=1

where D" and **D"" represent the (k,)-Caputo fractional derivatives of orders satisfying 1 <
Pk < 2and 0 < y/k < 1, respectively. For a fixed k > 0, the operator "’CDZL';‘/’ denotes the (k, ¢)-
Caputo fractional derivative of order 0 < o;/k < 1, for each i = 1,2,...,m. The interior points are
chosen such thata < & < & < -~ < ¢é, <banda < {; < & < -+ <y < b. All coefficients
ni, Mi» Pi» ¢i are real constants, and the nonlinear term v : [a, b] X R — R is assumed to be continuous.

The aim of this study is to further develop the current body of research by analyzing the coupled
framework associated with problem (1.1). In precise terms, we investigate a system of coupled (k, ¥)-
Caputo fractional differential equations subject to multipoint closed fractional boundary conditions of
the following type:

MCDM (1) = vi(t, x1 (1), xa(t), a<t<b,

LCDI (1) = valt, 11 (1), 12(1),  a <t <D,
m

xi(b) = Y (mxa(&) + b DI 0(0)
i=1
xy(b) = Z (B: x11&) + ba; " CDEY x(2). (1.2)
i=1
bk"cDZl;wlxl(b) = i (Pi x2(&) +bag; kz’CDZi;wzxz(éVi)) ,
i=1
bkz’CDZimxz(b) = Zm: (”i x1(&)+bs; k"CDZi;wlxl(fi)) ,
i=1

. P k. W . . . i
where D’ vi kJ’CDZi YJ denote the (k j» ¥ j)-Caputo fractional derivative operators of orders 1 < % <2
J

and 0 < Z—]’ < 1for j = 1,2, respectively, and kf"CDZf% , kf’CDjfwj represent the (k;, ¥ ;)-Caputo fractional

derivative operators of orders 0 < ‘kT—l‘ < land 0 < l%i < lforali=1,2,---,mand j = 1,2,
respectively, for each k > 0. Moreover,a < &€ < & < -~ <&, <b,a< 4 <O <+ <y <Db,
Nis Uis Bis @iy Pis Gis iy Si € Rforalli =1,2,--- ,m, and x1, x5 : [a,b] X R X R — R are given continuous
functions.

Systems of coupled fractional differential equations are of considerable importance in modeling
complex processes encountered in financial mathematics, bioengineering and fractional dynamics [2,
17, 18]. Several relevant analytical results for such coupled frameworks have been reported in the
literature; see, for example, [19,20].
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It is worth noting that, for specific choices of ¢ and k, the (k, ¥)-Caputo fractional derivative reduces
to several well-known operators. For instance, setting ¥(f) = ¢ and k = 1 recovers the classical Caputo
derivative, whereas choosing ¥/(t) = logt with k = 1 yields the Caputo—-Hadamard derivative. The
present study is motivated by the aim of unifying two key features:

(i) a coupled system of fractional differential equations formulated via the (k, ¥)-Caputo operator,
and

(i1) closed fractional boundary conditions applied at multiple points— a setting that, to the best of our
knowledge, has not yet been explored in the literature.

The findings obtained in this work are original and constitute a meaningful addition to the existing
literature on coupled fractional systems, especially those characterized by fractional closed boundary
conditions.

The paper is structured as follows. In Section 2, we present the essential background from
fractional calculus, along with the notation, definitions, and core concepts required for the subsequent
analysis. Section 3 focuses on the solvability of the proposed system, where uniqueness of solutions
is established through Banach’s contraction principle, and the existence result is derived by means of
the Leray—Schauder alternative. Finally, Section 4 contains examples that illustrate the relevance and
practical applicability of the obtained theoretical results.

2. Preliminaries

In this section, we recall some related definitions of fractional calculus required to obtain our main
results.

Definition 2.1. [21]. For 9 € C with a positive real part and k € R*, the k-gamma function is
defined by

00 Tk
() = f e T dr.
0

Moreover, the following relations hold:
?
e = }(in?l“k(ﬂ), [ () = ki_ll“(E) and VT (9) = T (D + k).

Definition 2.2. [22]. Let x : [a,b] — R be an integrable function. Also, let W be an increasing
and positive function on (a,b), having a continuous derivative ' on (a,b). Then, the (k,y)-
Riemann—Liouville fractional integral of a function x with respect to another function ¥ on [a, b] of
order # and k > 0 is defined by

. 1 ‘
10 () = ) fa W@ WO -y x(@dr, 1> a

Definition 2.3. [7]. Let ¢,k € R*, y € C"([a, b],R) be such that  is increasing, and y'(t) > 0 for all
t € la,b] and x € C"([a, b],R). Then, the (k,¥)-Caputo fractional derivative of order ) for a function
x is defined by

1
k' (nk —9)

d n
e E) x(t)dr,

LD a0 =

wfwmwm—wm“%(
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where n = [%1 is the ceiling function of%.

Lemma 2.4. [23]. Let 9,k € R* andn = [%-I Suppose that x € C"([a, b],R), Then,

n—-1 j .
kW kC oW _ 3 W (1) = y(a)) k d '
( I; D, X) (1) = x(1) JZ:(; TGk + k) [(w’(t) dt) ) =a '

Lemma 2.5. [23]. Let 94, %, k € R* with 9, > §,. Then

. % -9,
REDP R () = KL x().

Lemma 2.6. [23]. Let 9,k € R* and p € R such that . > —1; then,

H F p=
e D) g

k,C O _
D o) —v@) = "o

The following lemma, dealing with a linear variant of the coupled system (1.2), plays an important
role in the forthcoming analysis.

Lemma 2.7. Assume that A # 0; k; > 0; 1 < % <2;0< % <l;jforj=1,2;a<é <& <0 <
J J
En<bia<li <O < <Lw<bsmipiBi i, pi,qi-ri, i € R; 0 < Z—l’ <l;and 0 < ;%i < 1 for all

i=1,2,--- ,m,and z; € C([a,b],R) for j = 1,2. Then, the solution of the linear system

LEDI () = 21(), a<t<b,

RCDPP () = () a<t<b,

Bixi(&) + bai " DAY i (), 1)

0®) = Y (0@ + bu DI x0@),
i=1
xb) =) |
i=1

m

bk"cDZi;wlxl(b) = Z (Pi (&) +bag; kz’CDZi;wzxz(fi)) ,

i=1

BREDE by = Y (rixi(€) + b si DI x1(2),

i=1

is given by a pair of the integral equations,

. 1 - )
xi(1) = kl[jﬁ’wlzl(f) + [T + TZ(%&—ZZ;)@))]{M@,%ZI@)

A

1l
—_

(771' "21;93”222(&-) + by "21;93_‘7"””%2({1-)) }

1y 4, D =¥ (th (_2/(2 1)(“)) ] {kz 1"%2,(b)

1

p—

+_
A
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(ﬁz ky 1191 wlz &)+ ba; kllfl_‘pi;wlZl(fi))}

Ts n T(, (wlifz (_2Z1)(a))]{b kl[g:_%;w]ZI(b)

Ms

1l
—_

i

+

> =

Ms

) (P L ) + b a1 () }

o+ Ty W ifz (_2]'7{011)((1)) ]{b k> Iff—Yzzlszz(b)

> =

+

M-

—_

(r,» ki Igl;wla(fi) +b sk Ijl_%wlZl({i)) },

=

and

1
X (t) kzlﬂz szz(l) + K

'ty + T]O(lﬂz(l‘) - lﬁz(a))]{kl JUEd

rkz (2k2) at <1 (b)

(m LIV 5(E) + b P12 2(8) }

Ms

Il
—

v, 20 wzw))} {b P

+
I, (2k2)

(ﬁz ky Iﬂl V(&) + bt Igl_¢i;w'11(§i)) }

M§ D> | —

T 5+ T14(w2(t) - 'ﬁz(a))]{b ki I:il—)’l;%zl(b)

+
I, (2k>)

— =

e

Ms

) (P L ) + bai LT () }

[TIS T (lﬁzg (—2;{022)(61))]{[9 k2133—722¢2z2(b)

1l
—_

—+

> =

(r,- ki Iaﬂl;w]m &) +bsh Iaﬂl_wi;w]Z1(§i)) },

1M

where

1= [ = 050500 + 01012 — Q9011 + Q605011 ],
[ 0103012 + 0207012 — 0209011 + Q3Q8Qll]
[ 01012 + 020501 - 0206011 + 03Qu .

...%

— 0109 + 010608 + 020509 — 020607 — Q30505 + Q%Q7],

= 0405012 + Qs Q10 — Q605010
T = 03012 + Q209010 — Q3Q8Q10]

(2.2)

(2.3)
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T = [le = 0204015+ 0206010 — Q3Q10]

=1Q9 — Q608 — 020409 + Q3Q4Q8]

07012 — 0409011 + 0509010 — Q6Q7Q10]

=104

=107012 — QoQ11 + 0109010 — Q3Q7Q10]

=[0Q5012 — Q011 — Q104012 + Q106010 + 0304011 — Q3Q5Q10],
=10509 — Q607 — 010409 + Q3Q4Q7]

T3 = [Q403011 — Q503010 + Q7Q10]
T4 = |0s011 — Q103010 + Q2Q7Q10],

with

AIMS Mathematics

=011 — Q1Q10 — Q204011 + QzQsQlo],

= 0505 + Q7 + Q10405 — 020404,

W1(b) — ¥1(a))
Iy k) 7

0, = Zmlﬂi,
i=1

_ m (wz(fl) - lﬁz(a)) (WZ(Q) _ wz(a))l—k%"
- Z[ EL) +hui 1, (2k, — ) )

Qi =

i=1
m

ey

i=1

QS:}:[}wma) wm>>ba§wmay—wmmy%q

- Ty, (2ky) L'y, k1 — i)
0 = W2(b) — Ya(a))
o T,Qk)
W1(b) — (@)
= b s
Qr Ly, Cky —y1)

Os = Zmlpi,
i=1

[, @) =@, Wa@) = @)’ E
&= Z‘ [p S AT R L T )
QIO = ZI’,‘,

i=1

(@@ - @) |, W) = @) h
o Z [”i [, (2Kk1) ths [y, ki — 1) ]’

i=1

(2.4)
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Wa(b) — ya(a)' 5

=) ,
Qi T2k —72)

(2.5)

and

A= Q050301 — Q7012 + Q9011 — Qs Q3011 — Q10405012 — 0109010 + Q10608010
+ 020407012 — Q20409011 + Q20509010 — Q20607010 + Q30403011
= 030503010 + Q307010.

Proof. Applying the (k;, ¥;)-Riemann fractional integral for j = 1, 2 to both sides of Eq (1.2) and using
Lemma 2.4, we obtain

W () — lﬁl(a))cl

=Mz 2.6
x1 (1) 2t +co+ I (2K) (2.6)
and
— kZIﬂf;l,Dz d (wz(t) - ‘7”2(‘1)) 2'7
X2(2) w20 +do+ T ok di, (2.7)
where

ki d
Co = [Z](t)]t:a » €1 = |:(lfl/lét) E)ZI(I)]pa ’

— = k2 i
dy = [Zz(t)]t:a , dy = [(l//'z(t) dl‘)ZZ(t)]I:a '

Now, using (2.6) and (2.7) in the multipoint closed boundary conditions in (2.1) together with the
notations in (2.5) and Lemma 2.5, we obtain the following system:

m

—co— Q1 ¢1+ Qady+ Q3dy =5 IZJ Dz1b) - Z (m kzlff;'hzz(fi) +by; kzljffg";wzzz(é)),

i=1
m

Quco+Qscr—dy = Qedy = R L 0(b) = D (BN I 21(6) + ba M 17 21 (1),
= 2.8)
—Q7c1+ Qsdo + Qody = BRIz (b) = Y (p L (&) + b g P LT (@),
i=1
Qioco+ Qi cr — Quady = bR172(b) - Z (Vi &) + b s Ijlﬂp";w‘m(é“i))-

i=1

Solving system (2.8) for ¢y, ¢, dy, and d; and using the notations in (2.4), we find that

1 . N - o
co = K[Tl{kllfi Yz () - Z (771‘ LI &) + b L I’MZZ({"))
i=1
n Tg{kzlgf;szz(b) _ Z (:81 kl[jl;wlzl(.fi) +ba; kl]gl_‘pi;wIZI((i))}

i=1

+ Ts{b ki 131—71 R/llzl(b) _ Z (pl kzlgf;wZZZ(é:i) + bq; kzlgf_o—i;wZZZ({i)) }

i=1
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+ T7{b kzlgf—)’z;l//zzz(b) _ Z (ri ki Igl;mzl(é‘:i) +bs; ki Iaﬂi—sﬂi#’lzl(é«l_)) }]’

i=1

1 : . : o
¢ = Z[T {’“le ®B) = ) (112 + b LT 0()

i=1

{kzlﬁz wzz (b) — Z kl[’91 ‘/”Zl(.fi) +ba; kl[gl_‘pi;wlm({i))}

i=

b* Ifl Yz (b) - Z (Pi kzlff;wzzz(sci) +bg; kzlff_gi;wzb({i)) }

i=1

{ CIE ) = Y (L @) + b NI () }]

i=1

m

1 ; 9y -0
dy = Z[ S B) = Y (1P ) + b LT ()
i=1

i:l

+ T13

kllﬂl “Y1¥1 2(b) — Z ( kz[jf;wzm(&-) +bg; k2lff_ai;¢2zz(§i))}

i=1

{kz 12y = > (B 2(E) + b M 1 20 (8) }

+ 158 BRIy (b) - Z(rikllj:;wlzl(fo+bsiklljr*"“*“zl@))}},

i=1
and

m

_ - ki 7oy _ ko 23U ) ky phhr—oin :
dy = A['rlo{llm 21(b) ;(m L&) + b LT 2(2)

* le{bij“”zzZ(b) - > (BRI aE) + bay® 1;’:‘*”’*”'47,1(4-))}

i=1

+ T14{b kl[fi_wmll(b) - Z (Pi kzljf;mZz(fi) +bg; "”ff_""%(é))}

i=1

+ Tla{b P b) = Y (R &) + b s ML () }}

i=1

Replacing ¢, ¢, dy, and d; in (2.6) and (2.7) with the above values, we obtain the solution of (2.2)
and (2.3). The converse of the lemma can be verified by direct computation. Thus, the proof is

completed.

3. Main results

O

Let us introduce the space X; = {x(?) | x1() € C([a,b],R)} endowed with the norm ||x;[[y, =
sup{|x;(?)| : t € [a, b]}. Obviously, (X, |Illy, ) is a Banach space, and consequently, the product space

AIMS Mathematics Volume 11, Issue 1, 2722-2746.



2731

(X1 X Xa, |Illx,xx, ) is also a Banach space with the norm [|(x1, X2)llx,xx, = [Ix1llx, + [Ix2llx, for (x1, x;) €
Xi X X5, where X, = {x,(1) | x2(t) € C([a, b],R)}, and ||x2][, = sup{|x2(?)| : 1 € [a, b]}.

According to Lemma 2.7, we define an operator 7' : X; X X, — X; X X; associated with the coupled
system (1.2) by

3.1

B T, (X1, Xz) (t)
T (x1,x2) (1) = (T2 (x1, x2) (t)) ’

where

. 1
Ty (x1,2) (1) = 17y (8, x,(8), xa(E)) + <[ T+

W (@) - lﬂl(a))]
Iy, (2ky)

x {kl b, x5 o8~ D (vt 0,6 a6

i=1

Py 1
+ by, kzl:f 2y x1(L), Xz(fi)))} X T3+ Ty

[y, (2k1)
X {kzlff;wzvz(b, x1(b), x2(b)) — Z(ﬁi ki Ifl iy (& x1(ED, X2(ED)
-1

=

0 1
+ba;" Ifi Ny (G X (), Xz(fi)))} + A Ts + T

W () - lﬁl(a))]
[y, (2ky)

x {b S b)) — YL 6 16D, 16

i=1

o 1
+bg; kz[jf 2y X1(4),s Xz(fi)))} X 17 + Ty

W () - lﬁl(a))]
[y, (2ky)

X {b CLI7 (b, x1 (D), xa(B) - Z(n SL Y E (), (&)
i=1

+bs; " Ifl_wi;% vi(&i, x1(), xz(fi)))}’ 1 € [a,b], (3.2)
and

) 1
Ty (x1, %) (2) = 217" vy(1, x,(8), x2(0) + <[ T + Lo

Wa(t) — 902(61))]
I, (2ky)

m

X {’”Ifl Yy1(b, x1(b), x2(b)) — Z(ﬂi kz[ff;wzvz(fi, x1(&:), x2(€))

i=1

o 1
+ by kzlff 2y (& x1(8), Xz(fi)))} X T+ T2

Wa(t) - lﬁz(a))]
Ik, (2k)

X {kzlgf;wzvz(b, x1(b), x2(b)) — (,81' k I:;}l Yy (&, x1(&), x2(&7))

1

; 1
+ba; "‘Ifl Wy (G (), Xz((i)))} X

m
=1

Yoy 4 Tis W (2) - lﬁz(a))]

I, (2k2)
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X {b k Ifl Ty (b, x1(b), x2(b)) — Z(Pi "Zlff””zw(&, x1(&), x2(€))
=1
(Y2(1) = Ya(a))

YTis+ T
15 16 Fk2(2k2)

. 1
+bg; kzlff‘””””%(éi, x1(£), Xz((i)))} X

X {b L (b, x1(b), 1a(b)) Z(ri NI (), (&)
i=1

+bs; klljf_%wlvl(&,x1(§i),xz(§i)))}, t€la,b],

where V; (i=1,2,..., 16) are given in (2.4).

For the sake of computational convenience, we set

6 12
Q = Z(Dj, Q, :Zobj,
=1 =7

where
o - SO |y S,
R s e i
o - Domeon iy
®, = i[®6wil+®g|ri|] (‘”ISI'L;‘T]({T;)Z;

1l
—

1

(&) — (@) R
[, — @i+ k)

(&) — (@) R
Ty — i+ k)

®s = [b ) [0 |l + Oulsil]

i=1

@ = bl ) [O |l + Oglsil]
i=1

O ) — @)t
O; = Z[®1|M|+®3|P;|] To(h + )

i=1
(&) — vn(a)®
Iy, (0 + k)

DOy = Z[@)s Inil + ©4lpil]
P

(&) — (@)
[,(h —oi+k)

©y = |b] ) [0 |ul + O gil]
i=1
W2&) = @)
L@ —oi+ k)

®ig = 16| Y [Os il + Oslgi]
i=1

(3.3)

(3.4)

(3.5)
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o, = W2(b) — ya(a)) ™ ©, + b Wa0) (@) = o

T, (9 + ko) To(h—ya+ky)

o, = W2(b) — Yn(@)® 1+ O] + bl WD) —¥o(a) =

Ti, (9, + ky) T, —y2+ka)

with
L e e BB @]
0, = |A|[|T2HI + [Tl Te (2 ], i=1,2,3,4,
[ () @)
@j - |A| [|T2]—l| + |T21| Fk2(2k2) ]’ J= 5’6’7’ 8. (36)

3.1. Uniqueness result via Banach’s contraction mapping principle

In this subsection, we prove the existence of a unique solution to the coupled system (1.2) by
employing Banach’s contraction mapping principle (see [24]).

Theorem 3.1. Suppose that A # 0, and let vy, v, : [a, b]XxRXR — R be continuous mappings satisfying
the following condition:

(Ay) There exist constants Ly, L, > 0 such that
vi(t, x1, x2) = vi(t, X1, %)l < Ly (|x1 — X1 + |[x2 = X2)
Va2, x1, X2) = va(t, X1, %)l < Ly (|x1 — X1 + |x2 — X2)
forallt e [a,b)and x;,x; € R, i = 1,2.

Then the coupled system (1.2) admits a unique solution on the interval [a, b], provided that
LiQ+L,Q <1, (37)

where the constants Q; and Q, are defined in (3.4).

Proof. Let us define a closed ball B, = {(x1,x2) € X; X X : [|(x1, X2)lly,xx, < 71} with

M1 Ql + MzQz
1—(Li Q)+ L)’

I"]>

(3.8)

where M| = sup |vi(£,0,0)] < oo, and M, = sup |v»(%,0,0)] < oco. In the first step, we show that
t€la,b] t€[a,b]
T(B,) € B,,, where T : B,, — X; X X, is defined by (3.1). By using the assumption (A,), for each

(x1,x2) € B,,, we have

Vi (2, x1(0), 2 ()] < (2, x1 (1), X2(0) = vi(£,0,0)] + |v1 (£, 0,0

< Li(Ivillx, + [allx,) + My = Ly l(vi, v)llx,xx, + M1 < Lyry + M.

Similarly, we have |v,(¢, x1(¢), x,(?))| < L, ry + M,. By virtue of the above inequalities and the notations
in (3.6), we obtain
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|71 (x1,x2) (1) <

<

AIMS Mathematics

' 1
L (2 (0, 2(O)] +

T +]|Y
IAI|1| |5

W () - llfl(a))]
[y, 2ky)

{“ﬁ%mam@wﬂw+§XmW¢MM®w@mm®m
i=1

L |
+[D] il "21;93 2ya(&, 114, Xz(fi))|)} + —|03] + [Tyl

Al

W () - lﬂl(a))]
[y, (2ky)

%M?MMQM@JNW+§XWW¢%M@J@%h@W
i=1

o 1
bl e M1 ! <pl,l//1|V1(§i,xl(gi)»xz(gi)ﬂ)} + —[ITsl + Tl

W1 (1) — ¥ (a))]
Al

I, 2ky)

%w“@m%mwmﬂm@wm+§mm“¢WM@w@mn@m
i=1

Al

~0is 1 _
+W@W¢“MM@w@mm@m»+_ﬁnuny%¥%%§@]

X{Vﬂ“ﬁ?ﬂ““h@dhxmbLXﬂbDL+ES(VAhﬁﬂwﬂvmény&Lxx&»l
i=1
+wmﬁ¢%%wgﬁﬂmm@m»
i) —pi@) 1

Liri+M + —||YT(| +|Y
( 171 1) Fkl(ﬁl‘i'kl) |A|[| 1|+ 1]

W1 (b) - lﬁl(a))]
Iy, (2ky)

(&) — va(a)®
I', (th + k)

W (B) -y (@)
', (O + k)

X{(L] r+ M]) + (L2 ry+ M2)2(|771|
i=1

Pp—0;

(%@—%@V/n+L
[, (9 — 0 + k2) |Al

Wa(b) — yn(a)B
I's, (th + k)

+D] i

3] + 4]

WD) - *ﬁl(a))]
Iy, (2ky)

Wn(&) — pr(@)
Iy, (M + ky)

X{(Lz r + M) +(Lir + Ml)Z(Iﬁi'
i=1

W) - (@) 5] 1
b ] nm%—%+ko)}+E*T“+Wd

W (D) - ‘ﬁl(a))]
Ly, (2ky)

W®) — (@) T (&) - Ua(a)®

x{(Ll r + M) |b| Ty + kD +(Lyry + Mz);(m’l T (05 + ko)
W) —va(@) 5\ 1 Wi (b) - (@)
+MM|%mrvﬁb)ﬂ+E$m+wa e ]
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Wa(b) — Ya@)) =

(&) — v (@)F

X{(Lz r + Mz) |b|

+(Lyri+M (lr,-l
[, (%) — 2 + ko) (Liry ]);

+|bl [sil

(&) - (@) R )}
Fkl (th — @i + ky)

(D) - le(a))%l N (Y 1(b) — ;//l(a))%‘ o
Ty, (0 + k1) Ty, (O + ki)

= (Lin +M1)[ |

W (&) — (@)™
I, (W + k)

Wn®) — (@) T
[, (3 —y1 + ki)

+b Os+ > [0: 8] + Oulri]
i=1

(&) — (@) & ]

+|b O, |a;| + Oyls;
||;[ 2 el + Oslsil] ORI

m

H(Lyry + Mz)[Z[Gn il + ©s1pi]

i=1

(&) — yn(a)®
[, (% + k2)

W2 (&) —a(a)) * N Wa(b) — l//z(a))% o
[, (0 — o + ko) [y, (9 + ky)

+|b| Z[®l il + O3 |gil] )
P

+|b|

Wa(b) — (@) = o ]
[, (0 — y2 + ka) o

In view of the notations in (3.5), the above inequality takes the form

1Ty (x1, 2)llx, < (@) + D3+ Ds)(Ly 7y + M) + (D7 + Dy + Dy )(Ly 1y + My).
In the same way, we find that

T2 (x1, 2)llx, < (Dy + Dy + D)Ly 11 + M) + (Dg + Do + i2) (Lo 1y + Ms).
Combining the inequalities (3.9) and (3.10) and using (3.8), we get

T Cers 22l x, = I1T1 (s x2)llx, + 172 (ers X2,

[, (9 + ky)

(3.9)

(3.10)

< rl(Ll((Dl + (D2 + (D3 + (D4 + (D5 + (D6) + Lz((D7 + (Dg + (Dg + (DIO + (DII + (DIZ))

+M1((D1 +(D2+(D3 +(D4+(D5 +(D6)+M2((D7+q)8+q)9+q)10+q)11 +(D12)

= rl(Ll Ql +LQQ7)+M1 Ql +M292

<r,

which implies that T(B,,) C B,,.

Next, we will show that the operator 7 is a contraction. For each pair of elements (xi, x,), (X1, x3) €

B,, and for any t € [a, b], we have

AIMS Mathematics Volume 11, Issue 1, 2722-2746.



2736

|71 (x1, x2)(1) = T1(X1, X2)(2)]
<k Ifl“”‘lvl(t, x1(1), x2(1)) — vi (8, %1(2), %2 (D))

+ i (l//l(l) - wl(a))]{kllﬁl;llfl

T+ 7T
IAI| 1+ 10|

Ty, (k) (b, x1(B), x2(D)) = vi (b, X1(b), X2(D))

+ Z(|’7i| kzlaﬂf;w2|V2(§i, x1(&:), x2(€)) — va(&i, x1(£), X2(€)
i=1

+ 1B il 2 1727 vy (&, x1(8), X2(8) = VoG T (41-),%2(4,-)»)}

+i W () = Y1 (@)
Iy, (2ky)

s +|T
IAI|3| 4]

]{"Zlff””zlm(b, x1(D), x2(D)) — va(b, x1(D), x2(D))|
+ Z(m CLE G 2 (ED) X (E)) — Vi G T ED, (@)
i=1

+ 1Bl o M I vy (& 1 (60), 32(8) — Vl(éi,@({i),?@(&))l)}

ITs| + |T6|M]{|b| SIT Y (B, x1(B), x2(b)) — vi(D, Fi (b), Ta(D))]

1
+ _
[y, (2k1)

Al

+ Z(|Pi| kzlaﬂf;w2|v2(§i, x1(&:), x2(€)) — va(&i, x1(£), X2(€)
i=1

+ 1Bl gl 1772 vo( Gy 318, %2(8)) = valis % (4,-),)?2(4)»)}

+i W1 (1) — ¢1(a)
[y, (2ky)

YT, + |7
IAI|7| gl

]{|b| 2752y (b, x1(b), x2(B)) = va(b, %1 (D), T (D))
+ Z(|’”i| k‘Ifi;””l vi(&i, x1(6), x2(6) — vi(&i, X1(€0), X2(€))I
i=1

+ 1B sl * I vy (G %1 (80D, %2(8)) = vi (G 1 (), 7c2<§,~)>|)}

W) - @) i) = @)

) Ll( e XI”XI Flhe )_CZHXZ )[ I (191 + kl) I (191 + kl) 0,
(W (b) — lﬁ](él))ﬁl";171 C W (&) — lﬁl(a))%l
+ 10| T, (3 —y1 + k) Qs + Z[@)z 1Bi| + Oy4lril] T + )

i=1

(&) - wl(a>)ﬂ‘k7’]

b O, ;| + Oyls;
+";[ e+ Oulsl) o
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(&) — va(a)®
I, (0 + k2)

+ Lz( llx1 = Xillx, + llx2 = Xallx, )[Z[®1 il + Os|pil]

i=1

(&) - lﬁz(a))#zk_;i L W) - lﬁz(a))% ¢)
L, (9 — 0 + k2) [, (% + k)

+ |b] Z[G)l || + O3 |Qi|] 2
i=1

Wn(b) — (@) = o ]

+ |l
[, (92 = y2 + ko) !
which yields
IT1 (1, x2) = T @ F)lly, < Li(@) + @3+ ©s)( ey = Fully, + [1x2 = Fally, ) G
+ Lo(®7 + Do + Opy)( [lxg = Filly, + 2 = Tally, )-
In a similar manner, one can find that
IT2(x1, x2) = TaEr, F)lly, < Li(@ + @4 + D)l — Fully, + [1x2 = Fally, ) a1

+ Lr(Dg + Dy + (I)IZ)( llxr = xillx, + llx2 — X2llx, )
From (3.11) and (3.12), we deduce that
|7 (x1, x0)(#) = T(x1, X2)(@)]
< Li(®) + @y + @3 + Dy + D5 + Dg)([1xy — Tilly, + lIx2 — Tally, )

+ Ly(D7 + D + Dy + Dy + Dy + (Dlz)( 1 = xillx, + 12 = Xallx, )
Consequently, it follows by using the notations in (3.4) that
IT (1, x2) = T By, < (L Q1+ Lo Qo )(Ilxs = Flly, + [1x2 = Ty, ).

By the assumption (3.7), it follows from the above inequality that the operator 7 is a contraction.
An application of Banach’s contraction principle guarantees that the operator 7" possesses a single fixed
point in B,,. Consequently, this fixed point represents the unique solution to the coupled system (1.2)
on the interval [a, b], thereby concluding the proof. O

3.2. Existence result via Leray—Schauder alternative

In this subsection, we address the existence of solutions to the coupled system (1.2) through the use
of the Leray—Schauder alternative (see [25]).

Theorem 3.2. Let A # 0, and suppose that the functions vi,v, : [0,b] X R X R — R are continuous
and satisfy the following condition:

(Ay) There exist constants f;,g; > 0,i= 1,2 and fy > 0, go > 0 such that

vi(t, x1, x2)| < fo + filxil + falxol,
[va(2, x1, x2)| < go + g1 1x1| + g2 |x2] .
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Then, the coupled system (1.2) has at least one solution on [a, b, provided that

Q]f] +ng1 <1 and Q]f2+92g2<1,

where Q, and Q, are given in (3.4).

(3.13)

Proof. Let us first show that the operator 7' : X; X X, — X; X X, is completely continuous. Because the
functions v, and v, are continuous, it follows that the operators Ty and 7’ are continuous. Consequently,
the operator 7 is continuous. Let B,, € X; X X, be a bounded set. By (A,), we have

[vi(t, x1, x2)|

I IAIA

IA

fo+ fllxllx, + fAllxllx,

Jo+ (fi + 2Ulxllx, + llxllx,)
Jo+ (fi + I, )l

Jo+ (fi + f2)r2 := Ny

Similarly, we have [v,(t, x1, x2)| < go + (g1 + g)II(x1, 2l < go + (g1 + g2)r2 := N,. Then, for any

(x1,x2) € B,,, we obtain

Ty (x1,x2) ()] < N,

W (b) — v (@)

L G0 —p@) W (b) ~ (@) T

m

+ > [0:181+ Oulri]

i=1

+ |b]

1

+ N,

+1bl )[04 |l + O]
i=1

+1D|

I, (0 + ki)

0, |a;| + O4lsl]

[
=1
>[04 Inil + ©51pil]
i=1

O, +|b|

I, (9 + k)
W (&) — (@)

[ (3 =y + k) :

[y, (91 + ki)

W) — (@) &
[y, (O = @i + ky)

(&) — va(@)®
I',(P) + ko)

(&) — va(@)

Wa(b) — Ya(a)®
[, (W — o + k) i ©

[, (02 + ky)

2

(mw—mwﬁ%G

which leads to

[, (92 —y2 + ka) ik

IT1Cx1, x2)llx, < (@ + D3 + O5)N; + (D7 + Dy + Dyp)N,.

In the same way, we have

IT2(x1, x2)lly, < (D + Dy + Dg)N| + (Dg + Dy + Dy)No.

Thus,

AIMS Mathematics
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||T(361,362)||x1xx2 = ||T1(x1,xz)||x. + ||T2(x1,x2)||X2

S(q)1+(1)3+(1)5+®2+(1)4+(1)6)N1
+ ((D7 + (Dg + (DII + q)g + CDIO + (DIZ)NZ,

which means that the operator 7'(B,,) is uniformly bounded.
Next, we show that the operator 7T is equicontinuous. Let {, #, € [a, b] with t; < t,. Then, we have

1T (x1, X2)(12) — T'1(x1, x2)(11)]

<

IA

AIMS Mathematics

ki Ty, (91)

W) — (1))

+
|AI T, (2k1)

+ f W1 (2) W (1) — lﬂl(Z))ZTl_l v1(z, x1(2), X2(2))dz

X

rm{“ L2 1D, x1(b), (b)) + Z(m CLEP s 216D, Xa(ED)
i=1

+ 1Bl 2127 o (& 31 (4, x2<g~>>|)} + |‘r4|{k2133*”2|w<b, x1(b), x2(b))|

+ Zml(m S (& xa (€D, XaED) + 1Bl M I v (& 31 (40, xz(§i>)|)}
+ |°r6|{|b| SI (b, x1(B), xa(b))] + Zml](w LI vy (& X1 (&), X&)

+ 1Bl gl 272 v (& 31 (&), x2<4)>|)} + |‘r8|{|b| LIy (b, x1(b), x2(b))]

+ Z(|”i| "‘Ifl;‘”' vi(&is x1(£), x2(ED)| + 1B] 53l "‘Ifl"""‘”‘ vi(i» x1(4), Xz(fi))|)}]
pay

N,
ki Ty, (94)

f ¥1(2) ((lﬁl(fz) - lﬁl(Z))%_1 - W () - wl(z))zll_l)dz

f v,@) (om(tz) @) - W) - wl(z»ff‘l) Y1z, 11(2), x2(2))dz

f ’ 271—1
+le ¥1(2) Wi () = ¥1(2)) dz‘+ AT, k)

W) — r(@) 5 W (&) — (@)™

W1 (12) — Y1) { [(z/q(b) —~ ;pl(a))%'
N] Y
Fkl (ﬁ] + kl)

+ 10| ITel + Z[ITM Bil + s Iril]
i=1

[ (0 =y + k) [y, (0 + ky)

W) - ¥ (a))’”kf’]

+|b T l‘+T i
||;[| sllasd + Pl =R 55—

m

D10l il + [Yellpi]

i=1

(&) — va(@)®
I, (02 + ky)

+N2
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Wall) = pnt@) = | @) ~ ol
Ly, (9 — 0 + ka) [y, (0, + ky)

1B > [0 lal + sl ]

i=1

et

bl W2(b) — Ya(@)) = I’Tsl]}

[, (92 —y2 + ka)

2(1(1) = )T + | (0) = @) = W) = @)

}

o
kl [, (9 + k)

e S
+ g[w Bl + 1t 1) Siﬁ—l l/: /(:3)
Z o
oW S GG

i=1

+1b|

Wa(b) — yn(a) = v |]}
[, (0 — y2 + k2) S

which implies that
IT1(x1, x2)(12) = T1(x1, x2)(t)| = 0, as 1, — b,
independently of (x;, x;) € B,,. Analogously, one can obtain

|T5(x1, x2)(t2) — To(x1, x2)(11)]

{2 Wa(tr) — l/’z(tl))"z +‘(lﬁ2(f2) lﬁz(a))"Z — (Wa(t1) — lﬁz(a))"2

}

a kz sz(ﬂz + ky)

W () — (1) (lﬁl(b)—t//l(a))ﬂ
* |A|rk| (2k1) {Nl[ Fkl (ﬁl + kl) |T10|

W (&) — (@)
I, (M + ky)

Wn(b) — (@) T

+ |b|
L (0 —y1 + k)

1l + > 112l 1B+ il ]
i=1

W) - '//l(a))ﬂlk;l% ]

+ 161 2 [l + Mol il =R =5—22
i=1 ki 1~ Wi 1

(&) — b))
[, (0 + ky)

* NZ[Z 1o Inid + [T 1allpil]
i=1
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N Wa&) ~0a@) T (W) —pa(@)®
I 2 Il + o) = T ey

+ D]

Walb) ~ nta) = |]}
T -y +k) )

which implies that
IT2(x1, X2)(12) — To(x1, X2)(t)| — 0, as 1 — B

independently of (x;, x,) € B,,. Hence, the set T'(B,,) is equicontinuous. By applying the Arzela—Ascoli
theorem, 7T'(B,,) is relatively compact, which implies that the operator 7" is completely continuous.

It remains to show that the set
U={(x1,x)eXi XX : (x1,%) =AT(x1,x), 0 <A< 1}
is bounded. Let (xy, x,) € U; then, (x1, x,) = AT(xy, x,). For any ¢ € [a, b], we have
x1(1) = AT (x1, %)), x2(1) = AT2(x1, x2)(2).

Then, we get

W (D) - l//1(a))%11 L W) - l//l(a))%l o
Fkl (D + k) Fkl (P + k)

1

llxtllx, < (fo + fullxdllx, + f2||x2||X2)[

Wit - @) T o3 W &)~ yi(@)
Fa@ -tk ;[6)2 L T

+1b|

Wi(&) - wl(a»ﬁ'ﬁw’]

+|b ® ,'+® i
| l;[ 2l dlsil L (O — @i + k1)

m

+ (go + gillxillx, + gz||x2||x2)[2[®1 il + Ospil]
P

(&) — va(@)®
[, (92 + k)

Py—o;

@) = 9o(@) 5 Wal) — (@)
[, (0 — 0 + ka) Iy, (% + k)

151 > [0 il + ©31qi]

i=1

2

Wa6) ~ ala) = ]
[, (0 —y2 + k) !

< ((I)] + (I)3 + (I)S)fO + ((D7 + (I)g + (Dll)gO

+ 10|

+ (((Dl + O3 + Os) fi + (D7 + Dg + (Dn)gl) 1 1lx,
+ (@) + @3+ D) f3 + (D7 + Dy + Dyy)go) (112l

and similarly,
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IXallx, < (Dy + Dy + D) foy + (Ps + i + Di12)go
+ (@2 + D4 + Do) fi + (D5 + D1 + Pi2)g1 ) il
+ (@2 + 4 + D) o + (D5 + Dig + Pi2)gs ) [wall, »
which leads to
Ixillx, + llxallx, < Q1 fo+ Qg0+ (1 fi + Qg1) lIxillx, + (1 f + Q0 g0) lIxally, -

Consequently,

Q fo+ Qs 80
min{l — [Q; fi + gl 1 - [ o + D g}

1Cxr, XMy, sex, <

which proves that U is bounded. In consequence, we deduce by the Leray—Schauder alternative that
there exists at least one fixed point for the operator 7. Therefore, the coupled system (1.2) has at least
one solution on [a, b]. This completes the proof. |

4. Illustrative examples

In this section, we present examples that illustrate the practical application of our theoretical results.
Consider a coupled system of the form:

4 824141
3CDy! x1(8) = vi(t, x1(1), x2(2)), 0<r< %,

7.
7€

FCDE xa(1) = valt, 11 (1), xo(), 0 <1<1

1 1 2y (1
ofg)-elg)- o fi)

1 | 2o (1 4.1)
X (E) =3x (Z) +2 %’CDSJ X1 (8) ,

1 5 ¢ Lot 1 1 1 4 2.2 1
D |5 = s = |+ 57Dy x|
2 Fo xz(z) 2 (4) 2 o x1(6

wherea =0, b = %,kl = %,kz = %,lﬂ](l) = l2+l+1,¢2(l) =, = %,192 = ‘7—‘, 1 %,’)/2 = %,m: 1,
f=nb=ton=%a=3m=Lm=2p=3a1=4p =t q=35r=3ands =L
Using the given data, we find that Q; = 0.5625, O, = 1, Q5 = 0.685908, Q4 = 3, Qs ~ 1.275049,
O = 0.518977, O; ~ 0.353359, Qg = 0.25, Q9 ~ 0.133253, Q9 = 0.5, Q11 = 0.260168, O, ~
0.305746, A ~ 0.219434, T, ~ 0.009664, T, ~ 0.074987, Y53 ~ 0.261289, T, ~ 0.008275, Y5
0.231063, T ~ 0.0573245, Y7 ~ —0.694957, Tg ~ 0.11818, Ty ~ 0.213369, Ty ~ —0.010338, Ty,

&

Q
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-0.017093, T, = 0.488769, T3 ~ 0.212424, (14 = 0.171408, 15 =~ —=0.164061, T ~ —0.603605,

0, = 0.236263, O, ~ 1.211952, O3 = 1.199941, O, ~ 3.469987, ©s ~ 0.99681, O
1.373446, O3 ~ 2.175224, ®; ~ 0.917005, ®, = 0.8593, @3 ~ 0.854737, D4
D5 =~ 0.764504, g ~ 0.653558, ©; ~ 0.0542264, g ~ 0.13552, Oy =~ 0.086113, D

0,

Q

@, = 1.072353, Oy, = 1.145989, Q; ~ 4.811278, and Q, = 2.736151.

Casel Letvy, vy : [0, %] X R X R — R be given nonlinear functions defined by

e—(1—21) |X1|
t, X1, = + si +2
vi(t, X1, X2) = 5 t3(1 ] sin x| )
and
cos>(rt) . |5
t, X1, = tan~ + +1].
va(t, x1, X2) 3(t+2)( an” x| 1+ x| )

It is easy to verify that v, and v, satisfy the Lipschitz condition. Indeed,
- - 1 — —
i, x1, x2) = vi(t, X1, X2)| < §( X1 = X1| + |x2 — X ),
and

1 _ _
va(t, x1, X2) — va(2, X1, X2)| < 6( lx1 = x| + |x2 — X )

1.233869,
0.762174,
0.241949,

2

2

4.2)

4.3)

4.4)

4.5)

Accordingly, the corresponding Lipschitz constants are L; = é and L, = é. Hence, the functions v,

and v, fulfill assumption (A;) of Theorem 3.1. Moreover, a direct computation yields

Li O+ 1L, Q) ~0990611 < 1,

showing that condition (3.7) is met. Because all hypotheses of Theorem 3.1 are satisfied, its conclusion

applies to the coupled system (4.1) with v; and v, defined by (4.4) and (4.5), respectively.

Case II. Let the functions vy, v, : [O, %] X R X R — R be defined by

)
cos* x, e ( x )

X1 +
20+5 7 V1121 \1 +xl

vi(t, x1, xp) = sin(nt) +

and

1 1 x tan”' x7
va(t, X1, %) = — + sin [xy|.

6 7+ 2 \T+ i)’ 4n
A straightforward estimation shows that
1
it x, x)l < 1+ T i | + Tl 12,
and

Voll, X1, X2)| < = + = |x1| + = [x3] .
[va( I c 7| | 8| |

(4.6)

4.7)
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Accordingly, selecting the constants fy = 1, fi = &, o = 11, 80 = ¢. &1 = 3, and g, = 3 from the set

11
of admissible parameters, we obtain
Q fi+Qg1 =0.872006 < 1 and Q;f> + Q; go ~ 0.779407 < 1. (4.8)

These inequalities confirm that condition (3.13) is fulfilled. Hence, all assumptions of Theorem 3.2 are
satisfied. As a result, Theorem 3.2 ensures that the coupled system (4.1) with nonlinearities v; and v,
specified in (4.6) and (4.7), admits at least one solution on the interval [0, %]

5. Conclusions

This article addresses the solvability of a coupled system of (k,)-Caputo fractional differential
equations subject to multipoint fractional closed boundary conditions. The existence and uniqueness
of the results are established through the use of classical fixed-point techniques, including Banach’s
contraction principle and the Leray—Schauder alternative. Numerical examples are presented to
validate the theoretical analysis. The findings are original and provide a meaningful extension of
the current literature on coupled systems involving (k, y)-Hilfer-type fractional derivative operators.
In our next work, we will extend the present work to multivalued maps and nonlinear contractions.
Extensions to more general fractional operators, variable-order derivatives, and higher-dimensional
systems also remain topics for future research.
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