In the context of electronic countermeasures, addressing the issues of acceleration saturation and unreliable communication links during multi-vehicle cooperative guidance, an adaptive high-reliability cooperative guidance law with relative impact velocity and impact angle constraints is proposed. First, an online target acceleration estimator based on a nonlinear disturbance observer (NDO) is constructed to improve robustness against maneuvering targets and uncertain disturbances. On this basis, a state-dependent adaptive term is introduced into the traditional double power reaching law to effectively mitigate the impact of acceleration saturation on guidance stability. Second, addressing the scenario of communication link interruptions, a fixed-time open-loop cooperative strike fault-tolerant backup guidance law is designed, along with a smooth switching strategy for control variables, thereby enhancing the reliability of the overall guidance process. Simulation results under various conditions, including ideal scenarios and communication interruptions, demonstrate that the proposed cooperative guidance law can achieve cooperative attacks on maneuvering targets with the desired relative impact kinetic energy and impact angles. The adaptive term effectively attenuates overload saturation and enhances guidance stability, while the system can rapidly switch to the fault-tolerant scheme to ensure mission completion even under communication interruption. Monte Carlo simulations further verify the adaptability and robustness of the proposed method under parameter perturbations and uncertain initial conditions.
Citation: Zewei Liu, Zhanpeng Gao. High-reliability cooperative guidance law design considering link failure and input saturation[J]. AIMS Mathematics, 2026, 11(1): 2430-2457. doi: 10.3934/math.2026099
In the context of electronic countermeasures, addressing the issues of acceleration saturation and unreliable communication links during multi-vehicle cooperative guidance, an adaptive high-reliability cooperative guidance law with relative impact velocity and impact angle constraints is proposed. First, an online target acceleration estimator based on a nonlinear disturbance observer (NDO) is constructed to improve robustness against maneuvering targets and uncertain disturbances. On this basis, a state-dependent adaptive term is introduced into the traditional double power reaching law to effectively mitigate the impact of acceleration saturation on guidance stability. Second, addressing the scenario of communication link interruptions, a fixed-time open-loop cooperative strike fault-tolerant backup guidance law is designed, along with a smooth switching strategy for control variables, thereby enhancing the reliability of the overall guidance process. Simulation results under various conditions, including ideal scenarios and communication interruptions, demonstrate that the proposed cooperative guidance law can achieve cooperative attacks on maneuvering targets with the desired relative impact kinetic energy and impact angles. The adaptive term effectively attenuates overload saturation and enhances guidance stability, while the system can rapidly switch to the fault-tolerant scheme to ensure mission completion even under communication interruption. Monte Carlo simulations further verify the adaptability and robustness of the proposed method under parameter perturbations and uncertain initial conditions.
| [1] |
J. Yu, X. Dong, Q. Li, Z. Ren, J. Lv, Cooperative guidance strategy for multiple hypersonic gliding vehicles system, Chin. J. Aeronaut., 33 (2020), 990–1005. https://doi.org/10.1016/j.cja.2019.12.003 doi: 10.1016/j.cja.2019.12.003
|
| [2] |
S. Liu, B. Yan, T. Zhang, P. Dai, R. Liu, J. Yan, Three-dimensional cooperative guidance law for intercepting hypersonic targets, Aerosp. Sci. Technol., 129 (2022), 107815. https://doi.org/10.1016/j.ast.2022.107815 doi: 10.1016/j.ast.2022.107815
|
| [3] |
S. Zhao, R. Zhou, Cooperative guidance for multimissile salvo attack, Chin. J. Aeronaut., 21 (2008), 533–539. https://doi.org/10.1016/S1000-9361(08)60171-5 doi: 10.1016/S1000-9361(08)60171-5
|
| [4] |
H. You, X. Chang, J. Zhao, S. Wang, Y. Zhang, Three-dimensional impact-angle-constrained cooperative guidance strategy against maneuvering target, ISA Trans., 138 (2023), 262–280. https://doi.org/10.1016/j.isatra.2023.02.030 doi: 10.1016/j.isatra.2023.02.030
|
| [5] |
Z. Wang, W. Fu, Y. Fang, S. Zhu, Z. Wu, M. Wang, Prescribed-time cooperative guidance law against maneuvering target based on leader-following strategy, ISA Trans., 129 (2022), 257–270. https://doi.org/10.1016/j.isatra.2022.02.043 doi: 10.1016/j.isatra.2022.02.043
|
| [6] |
Y. Zhan, S. Li, D. Zhou, Time-to-go based three-dimensional multi-missile spatio-temporal cooperative guidance law: A novel approach for maneuvering target interception, ISA Trans., 149 (2024), 178–195. https://doi.org/10.1016/j.isatra.2024.04.017 doi: 10.1016/j.isatra.2024.04.017
|
| [7] |
H. You, X. Chang, J. Zhao, S. Wang, Y. Zhang, Three-dimensional impact-angle-constrained fixed-time cooperative guidance algorithm with adjustable impact time, Aerosp. Sci. Technol., 141 (2023), 108574. https://doi.org/10.1016/j.ast.2023.108574 doi: 10.1016/j.ast.2023.108574
|
| [8] |
X. Wang, X. Lu, Three-dimensional impact angle constrained distributed guidance law design for cooperative attacks, ISA Trans., 73 (2018), 79–90. https://doi.org/10.1016/j.isatra.2017.12.009 doi: 10.1016/j.isatra.2017.12.009
|
| [9] |
Z. Chen, W. Chen, X. Liu, J. Cheng, Three-dimensional fixed-time robust cooperative guidance law for simultaneous attack with impact angle constraint, Aerosp. Sci. Technol., 110 (2021), 106523. https://doi.org/10.1016/j.ast.2021.106523 doi: 10.1016/j.ast.2021.106523
|
| [10] |
Y. Xiong, J. Li, C. Hu, L. Tan, Three-dimensional cooperative guidance strategy for heterogeneous vehicles without prior communication topology establishment, Aerosp. Sci. Technol., 161 (2025), 110095. https://doi.org/10.1016/j.ast.2025.110095 doi: 10.1016/j.ast.2025.110095
|
| [11] |
H. Li, Y. Deng, Y. Cai, Three-dimensional cooperative interception guidance law with impact time constraint, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 236 (2022), 191–201. http://dx.doi.org/10.1177/09544100211010524 doi: 10.1177/09544100211010524
|
| [12] |
C. Wang, X. Ding, J. Wang, J. Shan, A robust three-dimensional cooperative guidance law against maneuvering target, J. Franklin Inst., 357 (2020), 5735–5752. https://doi.org/10.1016/j.jfranklin.2020.03.007 doi: 10.1016/j.jfranklin.2020.03.007
|
| [13] |
Z. Wang, Y. Fang, W. Fu, W. Ma, M. Wang, Prescribed-time cooperative guidance law against manoeuvring target with input saturation, Int. J. Control, 96 (2023), 1177–1189. https://doi.org/10.1080/00207179.2022.2033850 doi: 10.1080/00207179.2022.2033850
|
| [14] |
Z. He, S. Fan, J. Wang, P. Wang, Distributed observer-based fixed-time cooperative guidance law against maneuvering target, Int. J. Robust Nonlinear Control, 34 (2024), 27–53. https://doi.org/10.1002/rnc.6959 doi: 10.1002/rnc.6959
|
| [15] |
Y. Zhan, S. Li, D. Zhou, Time-to-go based three-dimensional multi-missile spatio-temporal cooperative guidance law: A novel approach for maneuvering target interception, ISA Trans., 149 (2024), 178–195. https://doi.org/10.1016/j.isatra.2024.04.017 doi: 10.1016/j.isatra.2024.04.017
|
| [16] |
F. Dong, X. Zhang, P. Tan, Non-singular terminal sliding mode cooperative guidance law under impact angle constraint, J. Franklin Inst., 361 (2024), 107079. https://doi.org/10.1016/j.jfranklin.2024.107079 doi: 10.1016/j.jfranklin.2024.107079
|
| [17] |
M. Guo, F. Yang, G. Xia, K. Liu, Three-dimensional free-will arbitrary time cooperative guidance law against moving target, J. Franklin Inst., 361 (2024), 106969. https://doi.org/10.1016/j.jfranklin.2024.106969 doi: 10.1016/j.jfranklin.2024.106969
|
| [18] |
G. Li, Q. Li, Y. Wu, P. Xu, J. Liu, Leader-following cooperative guidance law with specified impact time, Sci. China Technol. Sci., 63 (2020), 2349–2356. https://doi.org/10.1007/s11431-020-1669-3 doi: 10.1007/s11431-020-1669-3
|
| [19] |
P. Zhang, X. Zhang, Multiple missiles fixed-time cooperative guidance without measuring radial velocity for maneuvering targets interception, ISA Trans., 126 (2022), 388–397. https://doi.org/10.1016/j.isatra.2021.07.023 doi: 10.1016/j.isatra.2021.07.023
|
| [20] |
Z. Wang, W. Fu, Y. Fang, S. Zhu, Z. Wu, M. Wang, Prescribed-time cooperative guidance law against maneuvering target based on leader-following strategy, ISA Trans., 129 (2022), 257–270. https://doi.org/10.1016/j.isatra.2022.02.043 doi: 10.1016/j.isatra.2022.02.043
|
| [21] |
S. Liu, B. Yan, T. Zhang, P. Dai, R. Liu, J. Yan, Three-dimensional cooperative guidance law for intercepting hypersonic targets, Aerosp. Sci. Technol., 129 (2022), 107815. https://doi.org/10.1016/j.ast.2022.107815 doi: 10.1016/j.ast.2022.107815
|
| [22] |
Z. Chen, X. Liu, W. Chen, Three-dimensional event-triggered fixed-time cooperative guidance law against maneuvering target with the constraint of relative impact angles, J. Franklin Inst., 360 (2023), 3914–3966. https://doi.org/10.1016/j.jfranklin.2023.02.027 doi: 10.1016/j.jfranklin.2023.02.027
|
| [23] |
L. Ji, S. Tong, X. Guo, Y. Xie, H. Li, Anti-attack fuzzy tracking control for nonlinear multi-agent systems with topology switching, Nonlinear Dyn., 113 (2025), 21403–21419. https://doi.org/10.1007/s11071-025-11219-8 doi: 10.1007/s11071-025-11219-8
|
| [24] |
H. Dai, L. Ji, X. Guo, C. Zhang, S. Yang, H. Li, Leader-following synchronization control of multiagent systems under hybrid cyber attacks via impulsive control based on topology switching, IEEE Trans. Cybern., 54 (2024), 5297–5308. https://doi.org/10.1109/TCYB.2024.3367851 doi: 10.1109/TCYB.2024.3367851
|
| [25] |
X. Liu, X. Chang, Adaptive event-triggered tracking control for nonlinear networked systems with dynamic quantization and deception attacks, Int. J. Robust Nonlinear Control, 34 (2024), 8311–8333. https://doi.org/10.1002/rnc.7389 doi: 10.1002/rnc.7389
|
| [26] |
S. Chen, W. Wang, J. Fan, Three-dimensional piecewise cooperative guidance with smooth switching topology, Aerosp. Sci. Technol., 150 (2024), 109181. https://doi.org/10.1016/j.ast.2024.109181 doi: 10.1016/j.ast.2024.109181
|
| [27] |
H. Yu, K. Dai, H. Li, Y. Zou, X. Ma, S. Ma, et al., Three-dimensional adaptive fixed-time cooperative guidance law with impact time and angle constraints, Aerosp. Sci. Technol., 123 (2022), 107450. https://doi.org/10.1016/j.ast.2022.107450 doi: 10.1016/j.ast.2022.107450
|
| [28] |
H. Yu, K. Dai, H. Li, Y. Zou, X. Ma, S. Ma, et al., Cooperative guidance law for multiple missiles simultaneous attacks with fixed-time convergence, Int. J. Control, 96 (2023), 2167–2180. https://doi.org/10.1080/00207179.2022.2086926 doi: 10.1080/00207179.2022.2086926
|
| [29] |
J. Ni, L. Liu, C. Liu, J. Liu, Fixed-time leader-following consensus for second-order multiagent systems with input delay, IEEE Trans. Ind. Electron., 64 (2017), 8635–8646. https://doi.org/10.1109/TIE.2017.2701775 doi: 10.1109/TIE.2017.2701775
|
| [30] |
J. Zhao, H. Zhao, Y. Song, Z. Sun, D. Yu, Fast finite-time consensus protocol for high-order nonlinear multi-agent systems based on event-triggered communication scheme, Appl. Math. Comput., 508 (2026), 129631. https://doi.org/10.1016/j.amc.2025.129631 doi: 10.1016/j.amc.2025.129631
|
| [31] |
J. Ni, L. Liu, Y. Tang, C. Liu, Predefined-time consensus tracking of second-order multiagent systems, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 2550–2560. https://doi.org/10.1109/TSMC.2019.2916257 doi: 10.1109/TSMC.2019.2916257
|
| [32] |
B. Li, K. Qin, B. Xiao, Y. Yang, Finite-time extended state observer based fault tolerant output feedback control for attitude stabilization, ISA Trans., 91 (2019), 11–20. https://doi.org/10.1016/j.isatra.2019.01.039 doi: 10.1016/j.isatra.2019.01.039
|
| [33] |
S. Zheng, H. Ma, H. Ren, H. Li, Practically fixed-time adaptive consensus control for multiagent systems with prescribed performance, Sci. China Technol. Sci., 67 (2024), 3867–3876. https://doi.org/10.1007/s11431-024-2780-3 doi: 10.1007/s11431-024-2780-3
|
| [34] |
M. Panda, N. K. Peyada, A. Ghosh, Saturated adaptive backstepping control of uncertain nonlinear systems with validation using twin rotor system, J. Franklin Inst., 357 (2020), 13477–13510. https://doi.org/10.1016/j.jfranklin.2020.10.003 doi: 10.1016/j.jfranklin.2020.10.003
|
| [35] |
Z. Wu, J. Guo, B. Liu, J. Ni, X. Bu, Composite learning adaptive dynamic surface control for uncertain nonlinear strict-feedback systems with fixed-time parameter estimation under sufficient excitation, Int. J. Robust Nonlinear Control, 31 (2021), 5865–5889. https://doi.org/10.1002/rnc.5582 doi: 10.1002/rnc.5582
|
| [36] |
Q. Zhou, W. Wang, H. Liang, M. V. Basin, B. Wang, Observer-based event-triggered fuzzy adaptive bipartite containment control of multiagent systems with input quantization, IEEE Trans. Fuzzy Syst., 29 (2019), 372–384. https://doi.org/10.1109/TFUZZ.2019.2953573 doi: 10.1109/TFUZZ.2019.2953573
|
| [37] |
X. Yu, Y. Lin, Adaptive backstepping quantized control for a class of nonlinear systems, IEEE Trans. Autom. Control, 62 (2016), 981–985. https://doi.org/10.1109/TAC.2016.2570140 doi: 10.1109/TAC.2016.2570140
|
| [38] |
J. Ni, Z. Wu, L. Liu, C. Liu, Fixed-time adaptive neural network control for nonstrict-feedback nonlinear systems with deadzone and output constraint, ISA Trans., 97 (2020), 458–473. https://doi.org/10.1016/j.isatra.2019.07.013 doi: 10.1016/j.isatra.2019.07.013
|
| [39] |
S. Jiang, F. Tian, S. Sun, W. Liang, Integrated guidance and control of guided projectile with multiple constraints based on fuzzy adaptive and dynamic surface, Def. Technol., 16 (2020), 1130–1141. https://doi.org/10.1016/j.dt.2019.12.003 doi: 10.1016/j.dt.2019.12.003
|
| [40] |
Y. Liu, N. Xie, K. Li, Y. Liang, Missile guidance law design based on free-time convergent error dynamics, J. Syst. Eng. Electron., 35 (2024), 1315–1325. https://doi.org/10.23919/JSEE.2024.000103 doi: 10.23919/JSEE.2024.000103
|
| [41] |
P. Surve, A. Maity, S. R. Kumar, Polynomial shaping based three-dimensional impact angle and field-of-view constrained guidance, Aerosp. Sci. Technol., 147 (2024), 109018. https://doi.org/10.1016/j.ast.2024.109018 doi: 10.1016/j.ast.2024.109018
|
| [42] |
Z. Gao, J. Liu, J. Huang, W. Wang, W. Yi, S. Yuan, Three-dimensional fault-tolerant cooperative guidance law with constraints on relative impact velocity and attack angle, Aerosp. Sci. Technol., 168 (2026), 111003. https://doi.org/10.1016/j.ast.2025.111003 doi: 10.1016/j.ast.2025.111003
|
| [43] |
Z. Gao, W. Yi, Integrated guidance and control design based on optimized sparrow search algorithm for sliding mode PID controller parameters, Int. J. Aeronaut. Space Sci., 27 (2026), 791–810. https://doi.org/10.1007/s42405-025-00959-x doi: 10.1007/s42405-025-00959-x
|
| [44] |
A. Levant, Higher-order sliding modes, differentiation and output-feedback control, Int. J. Control, 76 (2003), 924–941. https://doi.org/10.1080/0020717031000099029 doi: 10.1080/0020717031000099029
|
| [45] |
A. Levant, Robust exact differentiation via sliding mode technique, Automatica, 34 (1998), 379–384. https://doi.org/10.1016/S0005-1098(97)00209-4 doi: 10.1016/S0005-1098(97)00209-4
|
| [46] |
G. Li, Y. Wu, J. Liu, J. Zhao, Nonlinear transformed function-based adaptive finite-time integrated guidance and control design with full state constraints, Aerosp. Sci. Technol., 143 (2023), 108723. https://doi.org/10.1016/j.ast.2023.108723 doi: 10.1016/j.ast.2023.108723
|
| [47] |
Z. Gao, W. Yi, J. Huang, J. Liu, Three-dimensional guidance law with precise control of attack time and constraints on attack angle, ISA Trans., 167 (2025), 1228–1240. https://doi.org/10.1016/j.isatra.2025.09.028 doi: 10.1016/j.isatra.2025.09.028
|
| [48] |
X. Wang, H. Lu, X. Huang, Y. Yang, Z. Zuo, Three-dimensional time-varying sliding mode guidance law against maneuvering targets with terminal angle constraint, Chin. J. Aeronaut., 35 (2022), 303–319. https://doi.org/10.1016/j.cja.2021.05.019 doi: 10.1016/j.cja.2021.05.019
|