The dynamic analysis of epidemic models plays a crucial role in understanding disease transmission mechanisms and prevention strategies. Building upon the research of Tan et al. [
Citation: Jianye Zhang, Zhiming Li. Dynamic properties and $ \alpha $-path of an uncertain SIRS epidemic model[J]. AIMS Mathematics, 2026, 11(1): 1332-1353. doi: 10.3934/math.2026057
The dynamic analysis of epidemic models plays a crucial role in understanding disease transmission mechanisms and prevention strategies. Building upon the research of Tan et al. [
| [1] |
S. Tan, L. Zhang, Y. Sheng, Threshold dynamics of an uncertain SIRS epidemic model with a bilinear incidence, J. Intell. Fuzzy Syst., 45 (2023), 9083–9093. https://doi.org/10.3233/JIFS-223439 doi: 10.3233/JIFS-223439
|
| [2] |
W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
|
| [3] | Z. Ma, Y. Zhou, W. Wang, Z. Jin, Mathematical modelling and research of epidemic dynamical systems, Beijing: Science Press, 2004. |
| [4] |
M. Lakhal, T. E. Guendouz, R. Taki, M. E. Fatini, The threshold of a stochastic SIRS epidemic model with a general incidence, Bull. Malays. Math. Sci. Soc., 47 (2024), 100. https://doi.org/10.1007/s40840-024-01696-2 doi: 10.1007/s40840-024-01696-2
|
| [5] |
S. Zhi, H.-T. Niu, Y. Su, Global dynamics of a diffusive SIRS epidemic model in a spatially heterogeneous environment, Appl. Anal., 104 (2025), 390–418. https://doi.org/10.1080/00036811.2024.2367667 doi: 10.1080/00036811.2024.2367667
|
| [6] |
G. Lan, Z. Lin, C. Wei, S. Zhang, A stochastic SIRS epidemic model with non-monotone incidence rate under regime-switching, J. Franklin I., 356 (2019), 9844–9866. https://doi.org/10.1016/j.jfranklin.2019.09.009 doi: 10.1016/j.jfranklin.2019.09.009
|
| [7] |
S. Zhi, Y. Su, H. Niu, L. Qiang, The threshold dynamics of a waterborne pathogen model with seasonality in a polluted environment, Acta Math. Sci., 44 (2024), 2165–2189. https://doi.org/10.1007/s10473-024-0607-z doi: 10.1007/s10473-024-0607-z
|
| [8] |
J. P. Chávez, A. Gökçe, T. Götz, B. Gürbüz, An SIRS model considering waning efficacy and periodic re-vaccination, Chaos Soliton. Fract., 196 (2025), 116436. https://doi.org/10.1016/j.chaos.2025.116436 doi: 10.1016/j.chaos.2025.116436
|
| [9] | C. Zhou, Z. Li, A stochastic SIRS epidemic model with a saturation incidence under semi-Markovian switching, Int. J. Biomath., in press. https://doi.org/10.1142/S1793524524501407 |
| [10] |
S. Zhi, D. Bai, Y. Su, Turing patterns induced by cross-diffusion in a predator-prey model with Smith-type prey growth and additive predation effects, Chaos Soliton. Fract., 202 (2026), 117522. https://doi.org/10.1016/j.chaos.2025.117522 doi: 10.1016/j.chaos.2025.117522
|
| [11] | B. Liu, Uncertainty theory: a branch of mathematics for modeling human uncertainty, Berlin: Springer Press, 2010. https://doi.org/10.1007/978-3-642-13959-8 |
| [12] | B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3–16. |
| [13] |
X. Chen, B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Making, 9 (2010), 69–81. https://doi.org/10.1007/s10700-010-9073-2 doi: 10.1007/s10700-010-9073-2
|
| [14] |
K. Yao, J. Gao, Y. Gao, Some stability theorems of uncertain differential equation, Fuzzy Optim. Decis. Making, 12 (2013), 3–13. https://doi.org/10.1007/s10700-012-9139-4 doi: 10.1007/s10700-012-9139-4
|
| [15] |
T. Su, H. Wu, J. Zhou, Stability of multi-dimensional uncertain differential equation, Soft Comput, 20 (2016), 4991–4998. https://doi.org/10.1007/s00500-015-1788-0 doi: 10.1007/s00500-015-1788-0
|
| [16] | Y. Liu, An analytic method for solving uncertain differential equations, Journal of Uncertain Systems, 6 (2012), 244–249. |
| [17] |
K. Yao, X. Chen, A numerical method for solving uncertain differential equations, J. Intell. Fuzzy Syst., 25 (2013), 825–832. https://doi.org/10.3233/IFS-120688 doi: 10.3233/IFS-120688
|
| [18] |
L. W. T. Ng, K. E. Willcox, Multifidelity approaches for optimization under uncertainty, Int. J. Numer. Meth. Eng., 100 (2014), 746–772. https://doi.org/10.1002/nme.4761 doi: 10.1002/nme.4761
|
| [19] |
I. A. Korostil, G. W. Peters, J. Cornebise, D. G. Regan, Adaptive Markov chain Monte Carlo forward projection for statistical analysis in epidemic modelling of human papillomavirus, Stat. Med., 32 (2013), 1917–1953. https://doi.org/10.1002/sim.5590 doi: 10.1002/sim.5590
|
| [20] |
W. Du, J. Su, Uncertainty quantification for numerical solutions of the nonlinear partial differential equations by using the multi-fidelity Monte Carlo method, Appl. Sci., 12 (2022), 7045. https://doi.org/10.3390/app12147045 doi: 10.3390/app12147045
|
| [21] |
Z. Li, Z. Teng, Analysis of uncertain SIS epidemic model with nonlinear incidence and demography, Fuzzy Optim. Decis. Making, 18 (2019), 475–491. https://doi.org/10.1007/s10700-019-09303-x doi: 10.1007/s10700-019-09303-x
|
| [22] |
X. Chen, J. Li, C. Xiao, P. Yang, Numerical solution and parameter estimation for uncertain SIR model with application to COVID-19, Fuzzy Optim. Decis. Making, 20 (2021), 189–208. https://doi.org/10.1007/s10700-020-09342-9 doi: 10.1007/s10700-020-09342-9
|
| [23] |
O. O. Aybar, Biochemical models of SIR and SIRS: effects of bilinear incidence rate on infection-free and endemic states, Chaos, 33 (2023), 093120. https://doi.org/10.1063/5.0166337 doi: 10.1063/5.0166337
|
| [24] | S. Aznague, A. Settati, A. Lahrouz, B. Harchaoui, K. E. Bakkioui, A. N. Brahim, Threshold dynamics of stochastic SIS epidemic models with logistic recruitment rate, New Math. Nat. Comput., in press. https://doi.org/10.1142/S1793005727500074 |
| [25] |
W. Chen, G. Lin, S. Pan, Propagation dynamics in an SIRS model with general incidence functions, Mathematical Biosciences and Engineering, 20 (2023), 6751–6775. http://doi.org/10.3934/mbe.2023291 doi: 10.3934/mbe.2023291
|
| [26] | K. Yao, Uncertain differential equations, Berlin: Springer Press, 2016. https://doi.org/10.1007/978-3-662-52729-0 |
| [27] | B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3–10. |
| [28] |
J. M. Heffernan, R. J. Smith, L. M. Wahl, Perspectives on the basic reproductive ratio, J. Roy. Soc. Interface, 2 (2005), 281–293. https://doi.org/10.1098/rsif.2005.0042 doi: 10.1098/rsif.2005.0042
|