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Abstract: The dynamic analysis of epidemic models plays a crucial role in understanding disease
transmission mechanisms and prevention strategies. Building upon the research of Tan et al. [1], this
paper investigates novel dynamic properties of solutions and α-paths of an uncertain SIRS model.
First, we prove the existence, uniqueness, and stability of a solution for the SIRS model. Using the
Yao-Chen formula, we derive α-paths of the model and prove that both the disease-free and endemic
equilibria are globally asymptotically stable, thereby refining existing research. When the threshold
Ru

0 ≤ 1, the disease-free equilibrium is globally asymptotically stable, while the endemic equilibrium
is globally asymptotically stable if Ru

0 > 1. Finally, numerical simulations demonstrate that increasing
the recovery rate and decreasing the disease-induced mortality rate can effectively reduce the disease
spread. The results show that the disease transmission rate and the intensity of the Liu process are
essential to prevent the disease spread.
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1. Introduction

Infectious diseases pose a significant challenge to global public health governance, thereby
continually threatening human health and hindering social development. Epidemic models have
become essential analytical tools to study the disease transmission patterns and to devise effective
prevention and control strategies. Kermack and McKendrick [2] were the first to propose a
deterministic SIRS epidemic model. Let Nt denote the total population at time t, divided into three
compartments: susceptible, infectious, and recovered individuals. Define S t, It, and Rt as the number
of susceptible, infectious, and recovered individuals at time t, respectively. The classical SIRS model
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with a bilinear incidence rate is formulated as follows [3]:
dS t = (Λ − βS tIt − vS t + δRt)dt,

dIt = (βS tIt − (r + v + µ)It)dt,

dRt = (rIt − (δ + v)Rt)dt,

(1.1)

where Λ is a recruitment rate, β is the transmission efficiency of infection, r corresponds to the
recovery rate of infected individuals, v is the natural mortality rate unrelated to disease, µ measures
the fatality rate induced by the infection, and δ represents the coefficient of immune loss. Adding the
three equations of model (1.1), we obtain that Nt meets the differential equation
dNt = [Λ − vNt − µIt]dt. Thus, limt→+∞{S t + It + Rt} = max{N0,Λ/v}. It means that the solutions of
system (1.1) will either enter or remain within the region Γ over time:

Γ =
{
(S t, It,Rt)

∣∣∣ S t, It,Rt ≥ 0, S t + It + Rt ≤ Λ/ν,∀t > 0
}
.

For model (1.1), define a basic reproduction number R0 = βΛ/(v(r + v + µ)). If R0 < 1, then
there exists only a disease-free equilibrium E0 = (Λ/v, 0, 0), which is globally asymptotically stable.
If R0 > 1, then there exists an endemic equilibrium E∗1 = (S ∗1, I

∗
1,R

∗
1), which is globally asymptotically

stability, where

S ∗1 =
r + v + µ
β

, I∗1 = Λ
(
1 −

1
R0

) (
µ + v

(
1 +

r
δ + v

))−1
,R∗1 = rI∗1/(δ + v).

Especially, if µ = 0, then dNt = (Λ − vNt)dt, that is, Nt = Λ(1 − e−vt)/v + N0e−vt. As t → ∞,
Nt → Λ/v. Model (1.1) is simplified by the following:dS t = (Λ − βS tIt − vS t + δ(Λ/v − S t − It))dt,

dIt = (βS tIt − (r + v)It)dt.
(1.2)

Since model (1.2) is a special case of model (1.1), the basic reproduction number, disease-free, and
endemic equilibria of model (1.2) are the special forms which correspond to µ = 0 in model (1.1).

Compared with deterministic models, stochastic dynamical models, which incorporate Brownian
motion or Markov chains, account for the effects of random disturbances on the disease transmission
process and are more realistic. In recent years, numerous researchers have explored a range of
stochastic SIRS epidemic models. For example, Lakhal et al. [4] constructed a threshold value for a
stochastic SIRS model with a general incidence rate, and derived the conditions for disease extinction
and persistence. Zhi et al. [5] proposed a reaction-diffusion SIRS model and discussed dynamic
properties in a spatially heterogeneous environment. Lan et al. [6] presented a stochastic SIRS
epidemic model with a non-monotone incidence rate and regime-switching. Zhi et al. [7] investigated
a periodic waterborne disease model with environmental pollution. In this paper, we obtain a
stochastic SIRS model by introducing a stochastic perturbation into the transmission rate β of
model (1.1), where the stochastic SIRS model (1.3) is described by the following equations:

dS t = (Λ − vS t − βS tIt + δRt) dt − σS tIt dBt,

dIt = (βS tIt − (r + v + µ)It) dt + σS tIt dBt,

dRt = (λIt − (δ + v)Rt) dt,

(1.3)
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where σ is a constant that represents the environmental stochastic perturbation of the transmission
rate β, and Bt denotes a standard Brownian motion. Under the condition σ <

√
βv/Λ, the dynamic

properties of model (1.3) have been studied by the threshold R s
0 =

βΛ

v(r+v+µ) −
σ2Λ2

2v2(r+v+µ) . Subsequent
studies have extensively investigated and refined the types of SIRS models and their variants [8–10].

Although stochastic methods have numerous applications in daily life, the characteristics of some
phenomena to be studied are often closer to uncertainty rather than randomness, and thus are more
suitable for analysis within the theoretical framework of uncertainty [11]. The uncertainty theory is a
branch of mathematics for modeling human uncertainty based on four axioms: normality, self-duality,
sub-additivity, and product measure. To better describe and analyze uncertain dynamic systems,
Liu [12] extended several fundamental concepts of fuzzy processes to uncertain processes and
introduced a class of uncertain differential equations driven by canonical processes. Uncertain
differential equations have since attracted increasing attention from researchers [13–15]. For example,
Liu [16] derived analytical solutions for a type of uncertain differential equations. However, it is often
challenging to find analytical solutions. Yao and Chen [17] proposed a numerical method to solve
uncertain differential equations based on the α-path, a deterministic function of time t, which does not
require the extensive repeated simulations of the Monte Carlo method (Ng and Willcox [18],
Korostil et al. [19], and Du and Su [20]).

In recent years, uncertain differential equations have been widely applied in epidemic modeling.
Li et al. [21] studied a class of uncertain SIS epidemic models with nonlinear incidence rates and
revealed the relationship between deterministic models and uncertain models. Chen et al. [22]
proposed an α-path-based method to handle a high-dimensional uncertain SIR model. Tan et al. [1]
established an uncertain SIRS model. However, many problems remain unsolved. Based on the
research of Tan et al. [1], this paper studies a class of uncertain SIRS epidemic models with
population input and temporary immunity. Including the population input term more realistically
captures the impact of population movement on disease transmission in the real world. Additionally,
the observation that recovered individuals only have temporary immunity is more consistent with the
actual transmission characteristics of some infectious diseases. Compared with deterministic and
stochastic SIS or SIRS models [23–25], this paper establishes a class of SIRS epidemic models
described by uncertain differential equations. During outbreaks of sudden or unknown diseases, there
are often numerous uncertain factors within the system, which makes it challenging to accurately
characterize their behavior using traditional methods such as the probability theory. Therefore, in
such situations, it is more reasonable and applicable to construct epidemic models using the
uncertainty theory.

By the Liu process, the disease transmission coefficient β in the model (1.1) is transformed into
uncertain disturbances, βdt → βdt + σdCt, where Ct is a Liu process. Thus,

dS t = (Λ − βS tIt − vS t + δRt)dt − σS tItdCt,

dIt = (βS tIt − (r + v + µ)It)dt + σS tItdCt,

dRt = (rIt − (δ + v)Rt)dt,

(1.4)

where σ represents the intensity of the Liu process. For model (1.4), Tan et al. [1] proved some
properties of the α-path. More dynamic properties, such as solution dynamics and the global stability
of the endemic equilibrium, remain unsettled. Building on the work of Tan et al. [1], this paper further
improves the properties of the model (1.4) and yields interesting results. The follow-up research of
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this paper is as follows: we first review basic concepts of uncertain differential equations in Section 2;
in Section 3, we prove the existence and uniqueness of the solution, as well as the stability of the
uncertain SIRS model; in Section 4, we use the Yao-Chen formula to derive the ordinary differential
equation (ODE) associated with the α-path, present a threshold to characterize the disease’s extinction
and persistence, and prove the global stability of the equilibria; in Section 5, a series of examples is
given for numerical simulations; and finally, the theoretical results are concluded in Section 6.

2. Preliminaries

In this section, we review the definitions of uncertain measure, uncertain variable, uncertain
distribution, and uncertain differential equations, as well as useful lemmas (Liu [11], Yao [26]).

Let Γ be a nonempty set, and L be a σ-algebra over Γ. A set function M : L → [0, 1] is called an
uncertain measure if it satisfies the following axioms:

Axiom 1. (Normality Axiom) M (Γ) = 1 for the universal set Γ.
Axiom 2. (Duality Axiom) For any event A ∈ L , M (A) +M (Ac) = 1.
Axiom 3. (Subadditivity Axiom) For a sequence of events A1, A2, . . . , we have M (

⋃∞
i=1 Ai) ≤∑∞

i=1 M (Ai).
Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces (k = 1, 2, . . . ). The product

uncertain measure M satisfies

M (
∞∏

k=1

Ak) =
∞∧

k=1

Mk(Ak),

where Ak ∈ Lk for each k.
An uncertain variable ξ is a measurable function from an uncertainty space (Γ,L ,M ) to the set of

real numbers (i.e., for any Borel set B of real numbers, the set {ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B} is an event).
The uncertainty distribution Φ(x) of an uncertain variable ξ is defined by Φ(x) =M (ξ ≤ x), x ∈ R. An
uncertainty distribution Φ(x) is said to be regular if it is a continuous and strictly increasing function
with respect to x, thus satisfying limx→−∞Φ(x) = 0, limx→+∞Φ(x) = 1. If ξ is an uncertain variable with
a regular uncertainty distribution Φ(x), then the inverse function Φ−1(α) = inf{x | Φ(x) ≥ α}, α ∈ (0, 1)
is called the inverse uncertainty distribution of ξ.

An uncertain variable ξ is said to be normal if it has a normal uncertainty distribution

Ψ(x) =
(
1 + exp

(
π(e − x)
√

3σ

))−1

, x ∈ R,

denoted by N (e, σ). The inverse uncertainty distribution of ξ is represented as follows:

Ψ−1(α) = e +
σ
√

3
π

ln
(
α

1 − α

)
, α ∈ (0, 1).

For e = 0 and σ = 1, the inverse standard normal uncertainty distribution is expressed as follows:

Φ−1(α) =

√
3
π

ln
α

1 − α
, α ∈ (0, 1). (2.1)
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Definition 2.1 (Liu [27]). An uncertain process Ct is called a Liu process provided it satisfies the
following properties:

(i) C0 = 0 and almost all its sample paths are Lipschitz continuous;
(ii) Ct possesses stationary and independent increments; and
(iii) Cs+t −Cs follows a normal uncertainty distribution with mean 0 and variance t2.

Lemma 2.1 (Yao et al. [14]). Let Ct be a canonical Liu process. Then, there exists an uncertain
variable K such that for each γ, K(γ) is a Lipschitz constant of the sample path Ct(γ) and

lim
x→+∞

M {K(γ) ≤ x} = 1.

Suppose f and g are two measurable functions. Then,

dXt = f (t, Xt) dt + g(t, Xt) dCt (2.2)

is called an uncertain differential equation (UDE).
UDEs are an important tool to model dynamic systems in uncertain environments. However, finding

analytic solutions is often challenging. To solve UDEs, Yao and Chen [17] proposed the concept of
the α-path. Unlike the sample paths of stochastic differential equations, the uncertainty distribution of
a UDE is obtained by a spectrum of α-paths.

Definition 2.2 (Yao, Chen [17]). For a UDE (2.2) with a given initial condition X0, its α-path (0 < α <
1) is defined as the solution to the corresponding ODE

dXαt = f (t, Xαt ) dt + |g(t, Xαt )|Φ−1(α) dt,

where Φ−1(α) is the inverse standard normal uncertainty distribution (2.1).

Lemma 2.2 (Yao-Chen Formula [17]). Consider a UDE (2.2), and let Xt be its solution and Xαt its
α-path. Then, the measure of the event that every trajectory of Xt remains below the α-path satisfies
the following:

M {Xt ≤ Xαt ,∀t} = α,M {Xt > Xαt ,∀t} = 1 − α.

3. Solution of the uncertain SIRS model

In this section, we discuss the existence, uniqueness, and stability of the solution for the uncertain
SIRS (USIRS) model (1.4) based on the existence and uniqueness theorem and the stability theorem for
solutions of UDEs. The USIRS model (1.4) is equivalent to the following uncertain integral equation:

S t = S 0 +
∫ t

0
(Λ + vS s − βS sIs + δRs) ds −

∫ t

0
σS sIs dCs,

It = I0 +
∫ t

0
(βS sIs − (r + v + µ)Is) ds +

∫ t

0
σS sIs dCs,

Rt = R0 +
∫ t

0
(rIs − (δ + v)Rs) ds.

(3.1)

Lemma 3.1. In the USIRS model (1.4), for a sample path Ct(γ) with a Lipschitz constant K(γ), we
have the following: ∣∣∣∣∣∣

∫ t

0
σS s(γ)Is(γ) dCs(γ)

∣∣∣∣∣∣ ≤ K(γ)
∫ b

a
|σS s(γ)Is(γ)| ds. (3.2)
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Proof. For a sample path Ct with a Lipschitz constant K(γ), we have the following:∣∣∣∣∣∣
∫ t

0
σS s(γ)Is(γ) dCs(γ)

∣∣∣∣∣∣ ≤ lim
∆t→0

n∑
i=1

∣∣∣σS ti−1(γ)Iti−1(γ)
∣∣∣ · ∣∣∣Cti(γ) −Cti−1(γ)

∣∣∣ .
According to the definition of a canonical process, for any sample γ, Ct(γ) is Lipschitz continuous

in t. As a result, there exists a finite constant K(γ) such that for all t1 and t2, we have |Ct1(γ)−Ct2(γ)| ≤
K(γ)|t1 − t2|. Thus, |Cti(γ) − Cti−1(γ)| ≤ K(γ)|ti − ti−1|, i = 1, 2, . . . , n. Consequently, we derive the
following:

lim
∆t→0

n∑
i=1

|σS ti−1(γ)Iti−1(γ)| · |Cti(γ) −Cti−1(γ)| ≤ K(γ) lim
∆t→0

n∑
i=1

|σS ti−1(γ)Iti−1(γ)| · |ti − ti−1|

≤ K(γ)
∫ t

0
|σS s(γ)Is(γ)| ds.

Theorem 3.1. The USIRS model (1.4) has a unique solution if the coefficients of the system satisfy the
Lipschitz condition

max
{∣∣∣−v(S t − S ′t) − β(S tIt − S ′t I

′
t ) + δ(Rt − R′t)

∣∣∣ , ∣∣∣β(S tIt − S ′t I
′
t ) − (r + v + µ)(It − I′t )

∣∣∣ ,∣∣∣r(It − I′t ) − (δ + v)(z − z′)
∣∣∣} + ∣∣∣σ(S tIt − S ′t I

′
t )
∣∣∣

≤ L ·max
{∣∣∣S t − S ′t

∣∣∣ , ∣∣∣It − I′t
∣∣∣ , ∣∣∣Rt − R′t

∣∣∣} ,
and the linear growth condition

max
{
|Λ + vS t − βS tIt + δRt| , |βS tIt − (r + v + µ)It| , |rIt − (δ + v)Rt|

}
+ |σS tIt|

≤ L0(1 +max {|S t| , |It| , |Rt|})

for some constants L and L0, where (S t, It,Rt), (S ′t , I
′
t ,R

′
t) ∈ R

3 are two solutions to the USIRS
model (1.4) for any t > 0.

Proof. Let ∆S t = S t − S ′t , ∆It = It − I′t , and ∆Rt = Rt − R′t . The bilinear term S tIt − S ′t I
′
t can be

decomposed as follows:

S tIt − S ′t I
′
t = S t(It − I′t ) + I′t (S t − S ′t) = S t∆It + I′t∆S t.

By making the above variable substitutions for the system of the USIRS model (1.4), we can obtain
the following inequality relationships:

| − v∆S t − β(S t∆It + I′t∆S t) + δ∆Rt| ≤ (v + β|I′t |)|∆S t| + β|S t||∆It| + δ|∆Rt|,

|β(S t∆It + I′t∆S t) − (r + v + µ)∆It| ≤ β|I′t ||∆S t| + (β|S t| + r + v + µ)|∆It|,

|r∆It − (δ + v)∆Rt| ≤ r|∆It| + (δ + v)|∆Rt|, |σ(S tIt − S ′t I
′
t )| ≤ σ|S t||∆It| + σ|I′t ||∆S t|.
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We assume there exists a constant M that satisfies Λ/v > M > 0 such that S t, It,Rt, S ′t , I
′
t ,R

′
t < M.

Taking the maximum values of the coefficients and combining them, we can get the following:

max
{∣∣∣−v(S t − S ′t) − β(S tIt − S ′t I

′
t ) + δ(Rt − R′t)

∣∣∣ , ∣∣∣β(S tIt − S ′t I
′
t ) − (r + v + µ)(It − I′t )

∣∣∣ ,∣∣∣r(It − I′t ) − (δ + v)(Rt − R′t)
∣∣∣} + ∣∣∣σ(S tIt − S ′t I

′
t )
∣∣∣

≤ max
{∣∣∣S t − S ′t

∣∣∣ , ∣∣∣It − I′t
∣∣∣ , ∣∣∣Rt − R′t |

∣∣∣} (
max

{
v + βM + δ, βM + r + v + µ, r + δ + v

}
+ 2σM

)
.

Denote a Lipschitz constant L = max{v + βM + δ, βM + r + v + µ, r + δ + v} + 2σM. Under
the boundedness of the solution and the constraints on the parameters, the coefficients of the USIRS
model (1.4) satisfy the Lipschitz condition.

Then, we prove by the method of successive approximations that for any given real number T ,
the USIRS model (1.4) has a solution on the interval [0,T ]. For each γ ∈ Γ, define S (0)

t (γ) = S 0,
I(0)
t (γ) = I0, and R(0)

t (γ) = R0. Hence,
S (n+1)

t (γ) = S 0 +
∫ t

0

(
Λ + vS (n)

s (γ) − βS (n)
s (γ)I(n)

s (γ) + δR(n)
s (γ)

)
ds −

∫ t

0
σS (n)

s (γ)I(n)
s (γ) dCs(γ),

I(n+1)
t (γ) = I0 +

∫ t

0

(
βS (n)

s (γ)I(n)
s (γ) − (r + v + µ)I(n)

s (γ)
)

ds +
∫ t

0
σS (n)

s (γ)I(n)
s (γ) dCs(γ),

R(n+1)
t (γ) = R0 +

∫ t

0

(
rI(n)

s (γ) − (δ + v)R(n)
s (γ)

)
ds,

and

Q(n)
t (γ) = sup

0≤s≤t

{ ∣∣∣S (n+1)
s (γ) − S (n)

s (γ)
∣∣∣ , ∣∣∣I(n+1)

s (γ) − I(n)
s (γ)

∣∣∣ , ∣∣∣R(n+1)
s (γ) − R(n)

s (γ)
∣∣∣} (3.3)

for n = 1, 2, 3, · · · . By mathematical induction, we prove that

Q(n)
t (γ) ≤ (1 +max {|S 0| , |I0| , |R0| })

Ln+1(1 + K(γ))(n+1)

(n + 1)!
tn+1 (3.4)

for almost every γ ∈ Γ and for every nonnegative integer n, where K(γ) is the Lipschitz constant of
Ct(γ). Since the right term of (3.4) satisfies

∞∑
n=0

(1 +max {|S 0| , |I0| , |R0| })
Ln+1(1 + K(γ))(n+1)

(n + 1)!
tn+1 < +∞,∀t ∈ [0,T ],

it follows from the Weierstrass criterion that X(n)
t (γ) uniformly converges on [0,T ], whose limit is

denoted by Xt(γ). Then, we have the following:
S t(γ) = S 0 +

∫ t

0
(Λ + vS s(γ) − βS s(γ)Is(γ) + δRs(γ)) ds −

∫ t

0
σS s(γ)Is(γ) dCs(γ),

It(γ) = I0 +
∫ t

0
(βS s(γ)Is(γ) − (r + v + µ)Is(γ)) ds +

∫ t

0
σS s(γ)Is(γ) dCs(γ),

Rt(γ) = R0 +
∫ t

0
(rIs(γ) − (δ + v)Rs(γ)) ds.

Therefore, the inequality (3.4) is proven as follows. For Eq (3.3), when n = 0, we have the
following:

Q(0)
t (γ) = sup

0≤s≤t

{
max

{∣∣∣∣S (1)
u (γ) − S 0

∣∣∣∣, ∣∣∣∣I(1)
u (γ) − I0

∣∣∣∣, ∣∣∣∣R(1)
u (γ) − R0

∣∣∣∣}}
AIMS Mathematics Volume 11, Issue 1, 1332–1353.
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= sup
0≤s≤t

{
max

{∣∣∣∣ ∫ s

0
(Λ + vS 0 − βS 0I0 + δR0) du −

∫ s

0
σS 0I0 dCu(γ)

∣∣∣∣,∣∣∣∣ ∫ s

0
(βS 0I0 − (r + v + µ)I0) du +

∫ s

0
σS 0I0 dCu(γ)

∣∣∣∣, ∣∣∣∣ ∫ s

0
(rI0 − (δ + v)R0) du

∣∣∣∣}}
≤ sup

0≤s≤t

{
max

{ ∣∣∣∣∣∫ s

0
(Λ + vS 0 − βS 0I0 + δR0) du

∣∣∣∣∣ , ∣∣∣∣∣∫ s

0
(βS 0I0 − (r + v + µ)I0) du

∣∣∣∣∣ ,∣∣∣∣∣∫ s

0
(rI0 − (δ + v)R0) du

∣∣∣∣∣ }} + sup
0≤s≤t

∣∣∣∣∣∫ s

0
σS 0I0 dCu(γ)

∣∣∣∣∣
≤ sup

0≤s≤t

{
max

{ ∣∣∣∣∣∫ s

0
(Λ + vS 0 − βS 0I0 + δR0) du

∣∣∣∣∣ , ∣∣∣∣∣∫ s

0
(βS 0I0 − (r + v + µ)I0) du

∣∣∣∣∣ ,∣∣∣∣∣∫ s

0
(rI0 − (δ + v)R0) du

∣∣∣∣∣ }} + K(γ) sup
0≤s≤t

∫ s

0
|σS 0I0| du

≤

∫ t

0
max

{
|Λ + vS 0 − βS 0I0 + δR0| , |βS 0I0 − (r + v + µ)I0| , |rI0 − (δ + v)R0|

}
du

+ K(γ)
∫ t

0
|σS 0I0| du

≤
(

max
{
|Λ + vS 0 − βS 0I0 + δR0| , |βS 0I0 − (r + v + µ)I0| , |rI0 − (δ + v)R0|

}
+ |σS 0I0|

)
· (1 + K(γ))t.

At this time, if we let

L0 ≥
g(S 0, I0,R0)

1 +max{|S 0|, |I0|, |R0|}
,

where

g(S 0, I0,R0) = max
{
|Λ + vS 0 − βS 0I0 + δR0| , |rI0 − (δ + v)R0| , |βS 0I0 − (r + v + µ)I0|

}
+ |σS 0I0| ,

then the linear growth condition will be satisfied. Hence, by Lemma 3.1, it follows that

Q(0)
t (γ) ≤ L (1 +max {|S 0| , |I0| , |R0|}) (1 + K(γ)) t.

Assume the inequality (3.4) holds for the integer n, i.e.,

Q(n)
t (γ) = sup

0≤s≤t

{∣∣∣S (n+1)
s (γ) − S (n)

s (γ)
∣∣∣ , ∣∣∣I(n+1)

s (γ) − I(n)
s (γ)

∣∣∣ , ∣∣∣R(n+1)
s (γ) − R(n)

s (γ)
∣∣∣}

≤ (1 +max {|S 0| , |I0| , |R0|}) ·
Ln+1(1 + K(γ))n+1

(n + 1)!
tn+1.

Then, we have the following:

Q(n+1)
t (γ) = sup

0≤s≤t

{
max

{∣∣∣S (n+2)
u (γ) − S (n+1)

u (γ)
∣∣∣, ∣∣∣I(n+2)

u (γ) − I(n+1)
u (γ)

∣∣∣, ∣∣∣R(n+2)
u (γ) − R(n+1)

u (γ)
∣∣∣}}

≤ sup
0≤s≤t

{
max

{∣∣∣∣∫ s

0

(
−v∆S (n+1)

u (γ) − β∆(S uIu)(n+1)(γ) + δ∆R(n+1)
u (γ)

)
du

∣∣∣∣,
AIMS Mathematics Volume 11, Issue 1, 1332–1353.



1340∣∣∣∣∫ s

0

(
β∆(S uIu)(n+1)(γ) − (r + v + µ)∆I(n+1)

u (γ)
)

du
∣∣∣∣, ∣∣∣∣∫ s

0

(
r∆I(n+1)

s (γ) − (δ + v)∆R(n+1)
s (γ)

)
du

∣∣∣∣}}
+ sup

0≤s≤t

∣∣∣∣∣∫ s

0
σ∆(S uIu)(n+1)(γ) dCu(γ)

∣∣∣∣∣
≤

∫ t

0
max

{∣∣∣∣v∆S (n+1)
u (γ) + β∆(S uIu)(n+1)(γ) − δ∆R(n+1)

u (γ)
∣∣∣∣,∣∣∣∣β∆(S uIu)(n+1)(γ) − (r + v + µ)∆I(n+1)

u (γ)
∣∣∣∣,∣∣∣∣r∆I(n+1)

s (γ) − (δ + v)∆R(n+1)
s (γ)

∣∣∣∣} du + K(γ)
∫ t

0

∣∣∣σ∆(S uIu)(n+1)(γ)
∣∣∣ du

≤ L
∫ t

0
Q(n+1)

u (γ) du + K(γ)L
∫ t

0
Q(n+1)

u (γ) du

≤ L(1 + K(γ))
∫ t

0

((
1 +max{|S 0|, |I0|, |R0|}

)Ln+1(1 + K(γ))n+1

(n + 1)!
sn+1

)
ds

= (1 +max{|S 0|, |I0|, |R0|}) ·
Ln+1(1 + K(γ))n+2

(n + 2)!
tn+2.

This implies that the inequality (3.4) also holds for the integer n + 1. Therefore, inequality (3.4)
holds for all nonnegative integers. Next, we prove the uniqueness of the solution under the given
conditions. Assume that (S t, It,Rt) and (S ∗t , I

∗
t ,R

∗
t ) are two solutions of the USIRS model (1.4) with the

same initial values (S 0, I0,R0). Then, for almost every γ ∈ Γ, we have the following:

sup
0≤s≤t

{∣∣∣∣S t(γ) − S ∗t (γ)
∣∣∣∣, ∣∣∣∣It(γ) − I∗t (γ)

∣∣∣∣, ∣∣∣∣Rt(γ) − R∗t (γ)
∣∣∣∣}

= sup
0≤s≤t

{∣∣∣∣ ∫ t

0

(
− v(S s(γ) − S ∗s(γ)) − β(S s(γ)Is(γ) − S ∗s(γ)I

∗
s (γ)) + δ(Rs(γ) − R∗s(γ))

)
ds

+

∫ t

0
−σ

(
S s(γ)Is(γ) − S ∗s(γ)I

∗
s (γ)

)
dCs(γ)

∣∣∣∣,∣∣∣∣ ∫ t

0

(
β(S s(γ)Is(γ) − S ∗s(γ)I

∗
s (γ)) − (r + v + µ)(Is(γ) − I∗s (γ))

)
ds

+

∫ t

0
σ
(
S s(γ)Is(γ) − S ∗s(γ)I

∗
s (γ)

)
dCs(γ)

∣∣∣∣,∣∣∣∣ ∫ t

0

(
r(Is(γ) − I∗s (γ)) − (δ + v)(Rs(γ) − R∗s(γ))

)
ds

∣∣∣∣}
≤ sup

0≤s≤t

{∣∣∣∣ ∫ t

0

(
v(S s(γ) − S ∗s(γ)) + β(S s(γ)Is(γ) − S ∗s(γ)I

∗
s (γ)) − δ(Rs(γ) − R∗s(γ))

)
ds

∣∣∣∣,∣∣∣∣ ∫ t

0

(
β(S s(γ)Is(γ) − S ∗s(γ)I

∗
s (γ)) − (r + v + µ)(Is(γ) − I∗s (γ))

)
ds

∣∣∣∣,∣∣∣∣ ∫ t

0

(
r(Is(γ) − I∗s (γ)) − (δ + v)(Rs(γ) − R∗s(γ))

)
ds

∣∣∣∣}
+

∣∣∣∣ ∫ t

0
σ
(
S s(γ)Is(γ) − S ∗s(γ)I

∗
s (γ)

)
dCs(γ)

∣∣∣∣
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≤

∫ t

0
sup
0≤s≤t

{∣∣∣∣(v(S s(γ) − S ∗s(γ)) + β
(
S s(γ)Is(γ) − S ∗s(γ)I

∗
s (γ)

)
− δ

(
Rs(γ) − R∗s(γ)

))∣∣∣∣,∣∣∣∣(β(S s(γ)Is(γ) − S ∗s(γ)I
∗
s (γ)

)
− (r + v + µ)

(
Is(γ) − I∗s (γ)

))∣∣∣∣,∣∣∣∣(r(Is(γ) − I∗s (γ)
)
− (δ + v)

(
Rs(γ) − R∗s(γ)

))∣∣∣∣} ds + K(γ)
∫ t

0

∣∣∣∣σ(S s(γ)Is(γ) − S ∗s(γ)I
∗
s (γ)

)∣∣∣∣ ds

≤

∫ t

0
Ls sup

0≤s≤t

{∣∣∣∣S t(γ) − S ∗t (γ)
∣∣∣∣, ∣∣∣∣It(γ) − I∗t (γ)

∣∣∣∣, ∣∣∣∣Rt(γ) − R∗t (γ)
∣∣∣∣} ds

+

∫ t

0
K(γ)Ls sup

0≤s≤t

{∣∣∣∣S t(γ) − S ∗t (γ)
∣∣∣∣, ∣∣∣∣It(γ) − I∗t (γ)

∣∣∣∣, ∣∣∣∣Rt(γ) − R∗t (γ)
∣∣∣∣} ds

= (1 + K(γ))
∫ t

0
Ls sup

0≤s≤t

{∣∣∣∣S t(γ) − S ∗t (γ)
∣∣∣∣, ∣∣∣∣It(γ) − I∗t (γ)

∣∣∣∣, ∣∣∣∣Rt(γ) − R∗t (γ)
∣∣∣∣} ds.

By Grönwall’s inequality, we can obtain the following:

sup
0≤s≤t

{∣∣∣S t(γ) − S ∗t (γ)
∣∣∣, ∣∣∣It(γ) − I∗t (γ)

∣∣∣, ∣∣∣Rt(γ) − R∗t (γ)
∣∣∣} ≤ 0 · exp

((
1 + K(γ)

) ∫ t

0
Ls ds

)
= 0.

Theorem 3.2. Assume the USIRS model (1.4) has a unique solution for each given initial value. Then,
it is stable in measure if the coefficients satisfy the strong Lipschitz condition

max
{ ∣∣∣−v(S t − S ′t) − β(S tIt − S ′t I

′
t ) + δ(Rt − R′t)

∣∣∣ , ∣∣∣β(S tIt − S ′t I
′
t ) − (r + v + µ)(It − I′t )

∣∣∣ ,∣∣∣r(It − I′t ) − (δ + v)(Rt − R′t)
∣∣∣} + ∣∣∣σ(S tIt − S ′t I

′
t )
∣∣∣

≤ Lt max
{∣∣∣S t − S ′t

∣∣∣ , ∣∣∣It − I′t
∣∣∣ , ∣∣∣Rt − R′t

∣∣∣}
(3.5)

for (S t, It,Rt), (S ′t , I
′
t ,R

′
t) ∈ R

3, t ≥ 0, where Lt is some positive function that satisfies
∫ +∞

0
Lt dt < +∞.

Proof. Let (S t, It,Rt) and (S ′t , I
′
t ,R

′
t) be the solutions of the USIRS model (1.4) with different initial

values (S 0, I0,R0) and (S ′0, I
′
0,R

′
0), respectively. Then, for a Lipschitz continuous sample path Ct(γ), we

have the following:
S t(γ) = S 0 +

∫ t

0
(Λ + vS s(γ) − βS s(γ)Is(γ) + δRs(γ)) ds −

∫ t

0
σS s(γ)Is(γ) dCs(γ),

It(γ) = I0 +
∫ t

0
(βS s(γ)Is(γ) − (r + v + µ)Is(γ)) ds +

∫ t

0
σS s(γ)Is(γ) dCs(γ),

Rt(γ) = R0 +
∫ t

0
(rIs(γ) − (δ + v)Rs(γ)) ds,

(3.6)

and the equations for (S ′t(γ), I
′
t (γ),R

′
t(γ)) with initial values (S ′0, I

′
0,R

′
0) satisfy the same system of

integral equations (3.6). By the strong Lipschitz condition, we have the following:

max
{∣∣∣S t(γ) − S ′t(γ)

∣∣∣, ∣∣∣It(γ) − I′t (γ)
∣∣∣, ∣∣∣Rt(γ) − R′t(γ)

∣∣∣}
≤ max

{∣∣∣S 0 − S ′0
∣∣∣, ∣∣∣I0 − I′0

∣∣∣, ∣∣∣R0 − R′0
∣∣∣}

+

∫ t

0
max

{∣∣∣∣v(S s(γ) − S ′s(γ)
)
− β

(
S s(γ)Is(γ) − S ′s(γ)I

′
s(γ)

)
+ δ

(
Rs(γ) − R′s(γ)

)∣∣∣∣,
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1342∣∣∣∣β(S s(γ)Is(γ) − S ′s(γ)I
′
s(γ)

)
− (r + v + µ)

(
Is(γ) − I′s(γ)

)∣∣∣∣,∣∣∣∣r(Is(γ) − I′s(γ)
)
− (δ + v)

(
Rs(γ) − R′s(γ)

)∣∣∣∣}ds

+

∫ t

0
max

{∣∣∣∣ − σ(S s(γ)Is(γ) − S ′s(γ)I
′
s(γ)

)∣∣∣∣, ∣∣∣∣σ(S s(γ)Is(γ) − S ′s(γ)I
′
s(γ)

)∣∣∣∣}dCs(γ)

≤ max
{∣∣∣S 0 − S ′0

∣∣∣, ∣∣∣I0 − I′0
∣∣∣, ∣∣∣R0 − R′0

∣∣∣}
+

∫ t

0
Ls max

{∣∣∣S t(γ) − S ′t(γ)
∣∣∣, ∣∣∣It(γ) − I′t (γ)

∣∣∣, ∣∣∣Rt(γ) − R′t(γ)
∣∣∣}ds

+

∫ t

0
K(γ)Ls max

{∣∣∣S t(γ) − S ′t(γ)
∣∣∣, ∣∣∣It(γ) − I′t (γ)

∣∣∣, ∣∣∣Rt(γ) − R′t(γ)
∣∣∣}ds

= max
{∣∣∣S 0 − S ′0

∣∣∣, ∣∣∣I0 − I′0
∣∣∣, ∣∣∣R0 − R′0

∣∣∣}
+ (1 + K(γ))

∫ t

0
Ls max

{∣∣∣S t(γ) − S ′t(γ)
∣∣∣, ∣∣∣It(γ) − I′t (γ)

∣∣∣, ∣∣∣Rt(γ) − R′t(γ)
∣∣∣}ds,

where K(γ) is the Lipschitz constant of Ct(γ). It follows from Grönwall’s inequality that

max
{∣∣∣S t(γ) − S ′t(γ)

∣∣∣, ∣∣∣It(γ) − I′t (γ)
∣∣∣, ∣∣∣Rt(γ) − R′t(γ)

∣∣∣}
≤ max

{∣∣∣S 0 − S ′0
∣∣∣, ∣∣∣I0 − I′0

∣∣∣, ∣∣∣R0 − R′0
∣∣∣} exp

(
(1 + K(γ))

∫ t

0
Lsds

)
≤ max

{∣∣∣S 0 − S ′0
∣∣∣, ∣∣∣I0 − I′0

∣∣∣, ∣∣∣R0 − R′0
∣∣∣} exp

(
(1 + K(γ))

∫ +∞

0
Lsds

)
for any t ≥ 0, and we obtain the following:

sup
t≥0

{
max

{∣∣∣S t − S ′t
∣∣∣, ∣∣∣It − I′t

∣∣∣, ∣∣∣Rt − R′t
∣∣∣}}

≤ max
{∣∣∣S 0 − S ′0

∣∣∣, ∣∣∣I0 − I′0
∣∣∣, ∣∣∣R0 − R′0

∣∣∣} exp
(
(1 + K(γ))

∫ +∞

0
Lsds

)
,

almost surely, where K is a nonnegative uncertain variable. It follows from Lemma 2.1 that

lim
x→∞

M {γ ∈ τ|K(γ) ≤ x} = 1.

For any given ϵ > 0, there exists H > 0 such that M {γ|K(γ) ≤ H} ≥ 1 − ϵ. Take

δ = exp
(
− (1 + H)

∫ +∞

0
Lsds

)
ε.

Then, max{|S t(γ)−S ′t(γ)|, |It(γ)− I′t (γ)|, |Rt(γ)−R′t(γ)|} ≤ ε for any t provide that max{|S 0−S ′0|, |I0−

I′0|, |R0 − R′0|} ≤ δ, and K(γ) ≤ H. Thus,

M
{

sup
t≥0

max{|S t − S ′t |, |It − I′t |, |Rt − R′t |} ≤ ε
}
> 1 − ϵ.
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Therefore,
lim

sup{|∆S 0 |,|∆I0 |,|∆R0 |}→0
M

{
sup
t≥0

max{|∆S t|, |∆It|, |∆Rt|} ≤ ε
}
= 1,

where ∆S t = S t − S ′t , ∆It = It − I′t , ∆Rt = Rt − R′t , and the USIRS model (1.4) is stable in measure.

4. Dynamic properties of α-path

Based on Definition 2.2, we deduce that the solutions S t, It, and Rt of the UDEs (1.4) are contour
processes with α-path S αt , Iαt , and Rαt , respectively. Consequently, we can obtain the following:

dS αt = (Λ − vS αt − βS
α
t Iαt + δR

α
t )dt + |σS αt Iαt |Φ

−1(α)dt,

dIαt = (βS αt Iαt − (r + v + µ)Iαt )dt + |σS αt Iαt |Φ
−1(α)dt,

dRαt = (rIαt − (δ + v)Rαt )dt.

(4.1)

Remark 4.1. When α = 0.5, Φ−1(α) = 0, and system (4.1) reduces to the classical deterministic
epidemic dynamics framework, namely model (1.1).

Define a threshold of α-path as follows:

Ru
0 = R0 +

σΦ−1(α)(Λ/v)
(r + v + µ)

.

Theorem 4.1. If Ru
0 ≤ 1, Iαt = 0, then Rαt = 0, S αt = Λ/v. Moreover, there exists a unique disease-free

equilibrium state E0(Λ/v, 0, 0), which is globally asymptotically stable.

Proof. Define a non-negative Lyapunov function V = Iαt , and differentiate it with respect to time t.
Then, we obtain the following:

V̇ =
dIαt
dt
= (βS αt Iαt − (r + v + µ)Iαt ) + σS αt Iαt Φ

−1(α)

≤ ((β + σΦ−1(α))(Λ/v) − (r + v + µ))Iαt
= (r + v + µ)(Ru

0 − 1)Iαt ≤ 0.

When Ru
0 ≤ 1, we have V̇ < 0, with equality V̇ = 0 if and only if Iαt = 0. According to Lyapunov’s

stability theorem, the disease-free equilibrium E0(Λ/v, 0, 0) is globally asymptotically stable.

Theorem 4.2. If Ru
0 > 1, then the results holds:

(i) Model (4.1) has a unique endemic equilibrium E∗2 = (S ∗2, I
∗
2,R

∗
2) for α ∈ (0, 1) as follows:

S ∗2 =
r + v + µ
β2

, I∗2 = Λ
(
1 −

1
Ru

0

) (
(r + v + µ)

β1

β2
−
δ

δ + v
r
)−1

,R∗2 =
r
δ + v

I∗2,

where β1 = β − σΦ
−1(α), β2 = β + σΦ

−1(α), which is locally asymptotically stable.
(ii) If β1(r + v + µ) ≥ β2r, then the endemic equilibrium E∗2 is globally asymptotically stable.
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Proof. (i) To analyze the dynamical behavior near the equilibrium point E∗2 in model (4.1), we apply
linearization techniques to the nonlinear system by constructing and examining the Jacobian matrix at
E∗2 = (S ∗2, I

∗
2,R

∗
2). We can obtain the following:

J(E∗2) =


−v − β1I∗2 −β1S ∗2 δ

β2I∗2 0 0
0 r −(δ + v)

 .
The characteristic equation is given by λ3 + a1λ

2 + a2λ + a3 = 0, where

a1 = −tr(J(E∗2)) = v + β1I∗2, a2 =
(
v + β1I∗2

)
(δ + v) + β1β2S ∗2I∗2,

a3 = − det(J(E∗2)) = β2I∗2((δ + v)β1S ∗2 − δr).

When the following condition is met, the above equations a1, a2, and a3 are all positive.

β1

β2
>

r
r + v + µ

>
δr

(δ + v)(r + v + µ)
.

We can get the range of α

0 < α <
1

1 + exp
(
− π√

3
·
βK1
σK2

) ,
where K1 = 1 − r

r+v+µ , K2 = 1 + r
r+v+µ . Furthermore, we have the following:

a1a2 − a3 =
(
v + β1I∗2

) ((
v + β1I∗2

)
(δ + v) + β1(r + v + µ)I∗2

)
+ (δ + v)

(
v + β1I∗2(δ + v) + v + β2I∗2δr

)
> 0.

Based on the Routh-Hurwitz criterion, if the coefficients of the characteristic polynomial satisfy
certain positivity conditions, or if all eigenvalues have negative real parts, then the system is locally
asymptotically stable. Therefore, when Ru

0 > 1, there exists an endemic equilibrium E∗2 that is locally
asymptotically stable.

(ii) Obviously, we can obtain the stability condition of the local equilibrium point E∗2, which satisfies
the following: 

0 = Λ − vS ∗2 − βS
∗
2I∗2 + δR

∗
2 +

∣∣∣σS ∗2I∗2
∣∣∣Φ−1(α),

0 = βS ∗2I∗2 − (r + v + µ)I∗2 +
∣∣∣σS ∗2I∗2

∣∣∣Φ−1(α),
0 = rI∗2 − (δ + v)R∗2.

(4.2)

By substituting the corresponding stability conditions of the equilibrium point into Eq (4.1), we can
obtain a new set of equations as follows:

dS αt
dt
= −(v + β1Iαt )(S αt − S ∗2) −

β1

β2
(r + v + µ)(Iαt − I∗2) + δ(Rαt − R∗2),

dIαt
dt
= β2Iαt (S αt − S ∗2),

dRαt
dt
= r(Iαt − I∗2) − (δ + v)(Rαt − R∗2).

(4.3)
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By summing up each part of the above equations, we can obtain the following:

dS αt
dt
+

dIαt
dt
+

dRαt
dt
= −

(
v + (β1 − β2)Iαt

)
(S αt − S ∗2) +

(
r −
β1

β2
(r + v + µ)

)
(Iαt − I∗2) − v(Rαt − R∗2).

To discuss the global asymptotic stability of the endemic equilibrium E∗2, we take the Lyapunov
function as follows:

V =
1
2

(S αt − S ∗2 + Iαt − I∗2 + Rαt − R∗2)2 +
1
2

(δ + β1

β2
(r + v + µ)

)−1

+ 1
 (S αt − S ∗2)2

+
1
β2

(
2
β1

β2
(r + v + µ) − r − v + 1

) (
Iαt − I∗2 − I∗2 ln

Iαt
I∗2

)
+

1
2r

(
β1

β2
(r + v + µ) + v − r

)
(Rαt − R∗2)2.

(4.4)

By calculation, we can obtain the following:

V̇ =
(
S αt − S ∗2 + Iαt − I∗2 + Rαt − R∗2

) (dS αt
dt
+

dIαt
dt
+

dRαt
dt

)
+

(δ + β1

β2
(r + v + µ)

)−1

+ 1
 (S αt − S ∗2)

dS αt
dt

+
1
β2

(
2
β1

β2
(r + v + µ) − r − v + 1

) (
1 −

I∗2
Iαt

)
dIαt
dt
+

1
r

(
β1

β2
(r + v + µ) + v − r

)
(Rαt − R∗2)

dRαt
dt

=
(
S αt − S ∗2 + Iαt − I∗2 + Rαt − R∗2

)
·

(
− (v + (β1 − β2)Iαt )(S αt − S ∗2) +

(
r −
β1

β2
(r + v + µ)

)
(Iαt − I∗2) − v(Rαt − R∗2)

)
+

((
δ +
β1

β2
(r + v + µ)

)−1

+ 1
)
(S αt − S ∗2)

(
− (v + β1)(S αt − S ∗2) −

β1

β2
(r + v + µ)(Iαt − I∗2)

+ δ(Rαt − R∗2)
)
+

(
2
β1

β2
(r + v + µ) − r − v + 1

)
(S αt − S ∗2)(Iαt − I∗2)

+
1
r

(
β1

β2
(r + v + µ) + v − r

)
(Rαt − R∗2)

(
r(Iαt − I∗2) − (δ + v)(Rαt − R∗2)

)
= −

(((
δ +
β1

β2
(r + v + µ)

)−1

+ 1
)
(v + δ + β1Iαt ) − v

)
(S αt − S ∗2)2 −

(
β1

β2
(r + v + µ) − r

)
(Iαt − I∗2)2

−

(
v +
δ + v

r

(
β1

β2
(r + v + µ) + v − r

) )(
Rαt − R∗2

)2

≤ −
(
δ + β1Iαt

)
(S αt − S ∗2)2 −

(
β1

β2
(r + v + µ) − r

) (
Iαt − I∗2

)2

−

(
v +
δ + v

r

(
β1

β2
(r + v + µ) + v − r

) )(
Rαt − R∗2

)2
.

When β1(r + v + µ) > β2r, we have V̇ ≤ 0. The equality only holds when S αt = S ∗2, Iαt = I∗2, and
Rαt = R∗2. Therefore, the endemic equilibrium E∗2 is globally asymptotically stable.

Remark 4.2. In their study, Tan et al. [1] demonstrated the local stability of the epidemic equilibrium
using the α-path. In this paper, Theorem 4.2 extends and strengthens the results of Tan et al. [1].
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For model (1.2), by considering the environmental fluctuations in disease transmission, we can
obtain the uncertain SIS (USIS) model as follows:dS t = (Λ − βS tIt − vS t + δ(Λ/v − S t − It))dt − σS tItdCt,

dIt = βS tIt − (r + v)It + σS tItdCt.
(4.5)

Similarly, we employ the α-path method to solve the simplified USIS (4.5) as follows:dS αt = (Λ − vS αt − βS
α
t Iαt + δ(Λ/v − S αt − Iαt ))dt + | − σS αt Iαt |Φ

−1(α)dt,

dIαt = (βS αt Iαt − (r + v)Iαt )dt + |σS αt Iαt |Φ
−1(α)dt.

(4.6)

For the ODE (4.6), we use the next generation matrix [28] to obtain the basic reproduction number
as follows:

R∗0 = R0 +
σΦ−1(α)Λ

v(r + v)
.

Corollary 4.1. For the ODE (4.6), the following results hold:
(i) If R∗0 ≤ 1, then the disease-free equilibrium E0 = (S 0, I0) = (Λ/v, 0) is globally asymptotically

stable.
(ii) If R∗0 > 1, then there exists an endemic equilibrium E∗3 = (S ∗3, I

∗
3), which has local progressive

stability, where

S ∗3 =
r + v

β + σΦ−1(α)
, I∗3 =

Λ

v

(
1 −

1
R∗0

)
(r + v) (δ + (r + v)β1/β2)−1 .

According to Theorem 4.2, for the global stability of the endemic equilibrium of the ODE (4.6), we
construct a Lyapunov function of the following form:

V =
β2

2
(
β2δ + β1(r + v)

)(S αt − S ∗3
)2
+

1
β2

(
Iαt − I∗3 − I∗3 ln

Iαt
I∗3

)
.

By the Lyapunov function, we directly obtain the following result.

Corollary 4.2. If R∗0 > 1 in the system (4.6), then the equilibrium E∗3 is globally asymptotically stable.

5. Numerical simulation

In this section, we compare the trajectory variations of the susceptible compartment S , infected
compartment I, and recovered compartment R across the deterministic SIRS model (1.1), the stochastic
SIRS model (1.3), and the uncertain SIRS model (1.4). The key to numerically solving UDEs lies in
obtaining their α-path spectrum. To this end, Yao and Chen [17] developed an Euler method based on
the α-path for the numerical solution of UDEs, which we employ in our numerical simulations.

Example 5.1. Assume the following parameters: Λ = 0.4, µ = 0.15, β = 0.39, r = 0.2, σ = 0.1,
v = 0.05, and δ = 0.005. Figure 1 shows the solution trajectories of model (1.4), compared with
models (1.1), (1.3) under the same parameter settings. Under uncertainty disturbances, the solution
curves of the uncertain SIRS model (1.4) are highly correlated with those of the deterministic SIRS
model (1.1), compared to the trajectories of the stochastic SIRS model (1.3).
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Figure 1. The trajectories of S t, It, and Rt in models (1.1), (1.3), and (1.4).

Example 5.2. Assume the following parameters: Λ = 0.15, µ = 0.05, β = 0.009, r = 0.06, σ = 0.09,
v = 0.09, and δ = 0.005. From Figure 2, it can be observed that the trajectories of S t, It, and Rt

fluctuate around the disease-free equilibrium E0 = (1.67, 0, 0).
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Figure 2. The trajectories of S t, It, and Rt in models (1.1), (1.3), and (1.4) around E0.

Example 5.3. Consider the impact of the recovery rate r and the disease-induced mortality rate µ on
the threshold Ru

0 . The sensitivities of r and µ are represented as follows:

∂Ru
0

∂r
r

Ru
0
= −

r
r + v + µ

,
∂Ru

0

∂r
µ

Ru
0
= −

µ

r + v + µ
.

Assume the following parameters: σ = 0.06, Λ = 0.2, µ = 0.005, β = 0.02, r = 0.05, δ = 0.005,
and v = 0.04. In Figure 3, the recovery rate r and the disease-induced mortality rate µ have negative
sensitivity indices.

(a) α = 0.4 (b) α = 0.8

Figure 3. The sensitivity of the recovery rate r and the mortality rate µ under α = 0.2, 0.8.
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Example 5.4. Assume the parameters are defined by Example 5.3. The sensitivities of σ and β are
represented as follows:

∂Ru
0

∂σ

σ

Ru
0
=
σΦ−1(α)
β + σΦ−1(α)

,
∂Ru

0

∂β

β

Ru
0
=

β

β + σΦ−1(α)
.

Figure 4 shows the sensitivity analysis of the threshold Ru
0 to the parameters σ and β under α =

0.2, 0.4, 0.6, 0.8. We observe that β has the positive sensitivity index, and the sensitivity of σ is related
to the value of α.

(a) α = 0.2 (b) α = 0.4

(c) α = 0.6 (d) α = 0.8

Figure 4. (a) represents the sensitivity of σ and β to Ru
0 when α = 0.2. (b), (c), and (d)

correspond to the sensitivities when α = 0.4, 0.6, 0.8, respectively.

Example 5.5. In the uncertain SIRS model (1.4), take S 0 = 3.0, I0 = 2.0, R0 = 0, with parameters
Λ = 0.2, µ = 0.005, β = 0.02, r = 0.05, δ = 0.005, σ = 0.004, and v = 0.04. For each given α, we can
obtain the corresponding α-paths S αt , Iαt , and Rαt . Figure 5 displays the trajectory curves of S αt , Iαt , and
Rαt when α = 0.1, 0.2, . . . , 0.9.
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Figure 5. The trajectories of S αt , Iαt , and Rαt under different α-paths.

6. Conclusions

Based on the work of Tan et al. [1], this paper discussed the properties of the uncertain SIRS model
and the dynamic characteristics of the α-path. First, the existence, uniqueness, and stability of the
solutions to the uncertain SIRS epidemic model were established. Next, we applied the Yao-Chen
formula to derive the corresponding ODEs and their equilibrium points. By constructing Lyapunov
functions, we demonstrated the global asymptotic stability of the equilibrium points for both models.
Additionally, we defined the threshold Ru

0 to characterize disease extinction and persistence. When
Ru

0 ≤ 1, the disease-free equilibrium is globally asymptotically stable, and the disease will eventually
die out. Conversely, when Ru

0 > 1, the disease-free equilibrium becomes unstable, and the endemic
equilibrium is globally asymptotically stable. Finally, numerical simulations were presented to validate
the theoretical results, with illustrative examples provided.

Our proposed method can be extended to other uncertain epidemic models with general incidence
rates and multiple uncertain parameters. Exploring these problems will be a focus of our future
research.
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