In this paper, we proposed a class of two-dimensional three-parameter discrete dynamical systems with cubic terms, which can be applied to image encryption. We present a study on the analysis and control of the bifurcations in these systems. Initially, the existence and stability conditions of the fixed points of the proposed systems were proposed. Subsequently, based on the center manifold and bifurcation theories, we determined the conditions for the existence of Neimark-Sacker, pitchfork, and period-doubling bifurcations. The bifurcation diagram and the phase portraits were employed in the numerical experiments to verify the correctness of theoretical analysis. Finally, anti-controllers were used to induce Neimark-Sacker and period-doubling bifurcations, which were designed by integrating the bifurcation conditions with the state feedback method. The proposed anti-controllers caused the systems to undergo the desired bifurcations at the preset parameter values. Numerical simulations verified the effectiveness and robustness of the proposed controllers.
Citation: Limei Liu, Jiangna Ruan, Jun Zhai, Xiuling Li. Analysis and anti-control of bifurcations in two-dimensional, three-parameter discrete dynamical system with cubic terms[J]. AIMS Mathematics, 2026, 11(1): 1175-1201. doi: 10.3934/math.2026050
In this paper, we proposed a class of two-dimensional three-parameter discrete dynamical systems with cubic terms, which can be applied to image encryption. We present a study on the analysis and control of the bifurcations in these systems. Initially, the existence and stability conditions of the fixed points of the proposed systems were proposed. Subsequently, based on the center manifold and bifurcation theories, we determined the conditions for the existence of Neimark-Sacker, pitchfork, and period-doubling bifurcations. The bifurcation diagram and the phase portraits were employed in the numerical experiments to verify the correctness of theoretical analysis. Finally, anti-controllers were used to induce Neimark-Sacker and period-doubling bifurcations, which were designed by integrating the bifurcation conditions with the state feedback method. The proposed anti-controllers caused the systems to undergo the desired bifurcations at the preset parameter values. Numerical simulations verified the effectiveness and robustness of the proposed controllers.
| [1] |
W. L. Price, An algorithm which generates the Hamiltonian circuits of a cubic planar map, J. London Math. Soc., s2-18 (1978), 193–201. https://doi.org/10.1112/jlms/s2-18.2.193 doi: 10.1112/jlms/s2-18.2.193
|
| [2] |
R. M. May, Mathematical modelling: The cubic map in theory and practice, Nature, 311 (1984), 13–14. https://doi.org/10.1038/311013a0 doi: 10.1038/311013a0
|
| [3] |
R. M. May, Nonlinear phenomena in ecology and epidemiology, Ann. N. Y. Acad. Sci., 357 (1980), 267–281. https://doi.org/10.1111/j.1749-6632.1980.tb29692.x doi: 10.1111/j.1749-6632.1980.tb29692.x
|
| [4] |
T. D. Rogers, D. C. Whitley, Chaos in the cubic mapping, Math. Model., 4 (1983), 9–25. https://doi.org/10.1016/0270-0255(83)90030-1 doi: 10.1016/0270-0255(83)90030-1
|
| [5] |
O. Chavoya-Aceves, F. Angulo-Brown, E. Pina, Symbolic dynamics of the cubic map, Phys. D, 14 (1985), 374–386. https://doi.org/10.1016/0167-2789(85)90096-X doi: 10.1016/0167-2789(85)90096-X
|
| [6] |
A. Munteanu, E. Petrisor, E. García-Berro, J. José, Creation of twistless circles in a model of stellar pulsations, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 355–373. https://doi.org/10.1016/S1007-5704(03)00054-6 doi: 10.1016/S1007-5704(03)00054-6
|
| [7] |
Y. G. Shi, L. Chen, Reversible maps and their symmetry lines, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 363–371. https://doi.org/10.1016/j.cnsns.2010.04.012 doi: 10.1016/j.cnsns.2010.04.012
|
| [8] |
Y. Gao, Complex dynamics in a two-dimensional noninvertible map, Chaos Solitons Fract., 39 (2009), 1798–1810. https://doi.org/10.1016/j.chaos.2007.06.051 doi: 10.1016/j.chaos.2007.06.051
|
| [9] |
D. Ilhem, K. Amel, One-dimensional and two-dimensional dynamics of cubic maps, Discrete Dyn. Nat. Soc., 2006 (2006), 015840. https://doi.org/10.1155/DDNS/2006/15840 doi: 10.1155/DDNS/2006/15840
|
| [10] |
Y. Zhang, G. Luo, Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map, Phys. Lett. A, 377 (2013), 1274–1281. https://doi.org/10.1016/j.physleta.2013.03.027 doi: 10.1016/j.physleta.2013.03.027
|
| [11] |
M. Gonchenko, S. Gonchenko, I. Ovsyannikov, Bifurcations of cubic homoclinic tangencies in two-dimensional symplectic maps, Math. Model. Nat. Phenom., 12 (2017), 41–61. https://doi.org/10.1051/mmnp/201712104 doi: 10.1051/mmnp/201712104
|
| [12] |
M. Gonchenko, S. V. Gonchenko, I. Ovsyannikov, A. Vieiro, On local and global aspects of the 1:4 resonance in the conservative cubic Hénon maps, Chaos, 28 (2018), 043123. https://doi.org/10.1063/1.5022764 doi: 10.1063/1.5022764
|
| [13] |
M. S. Gonchenko, A. O. Kazakov, E. A. Samylina, A. Shykhmamedov, On 1:3 resonance under reversible perturbations of conservative cubic Hénon maps, Regul. Chaotic Dyn., 27 (2022), 198–216. https://doi.org/10.1134/S1560354722020058 doi: 10.1134/S1560354722020058
|
| [14] | Y. N. Xing, J. Zeng, W. Dong, J. Zhang, P. Guo, Q. Ding, Hybrid synchronisation method based on inverse generalised and inverse projected high dimensional discrete chaotic systems, Phys. Scr., 99 (2024), 035231. |
| [15] |
G. C. Wu, H. S. Hou, R. Lozi, Neimark-Sacker bifurcation of discrete fractional chaotic systems, Internat. J. Bifur. Chaos, 35 (2025), 2550049. https://doi.org/10.1142/S021812742550049X doi: 10.1142/S021812742550049X
|
| [16] |
K. Mokni, A. A. Thirthar, M. Ch-Chaoui, S. Jawad, M. A. Abbasi, Stability and bifurcation analysis in a novel discrete prey-predator system incorporating moonlight, water availability, and vigilance effects, Int. J. Dynam. Control, 13 (2025), 219. https://doi.org/10.1007/s40435-025-01718-2 doi: 10.1007/s40435-025-01718-2
|
| [17] |
K. Mokni, M. Ch-Chaoui, B. Mondal, U. Ghosh, Rich dynamics of a discrete two dimensional predator–prey model using the NSFD scheme, Math. Comput. Simulation, 225 (2024), 992–1018. https://doi.org/10.1016/j.matcom.2023.09.024 doi: 10.1016/j.matcom.2023.09.024
|
| [18] |
B. Xin, T. Chen, J. Ma, Neimark-Sacker bifurcation in a discrete-time financial system, Discrete Dyn. Nat. Soc., 2010 (2010), 405639. https://doi.org/10.1155/2010/405639 doi: 10.1155/2010/405639
|
| [19] |
G. Vivekanandhan, H. R. Abdolmohammadi, H. Natiq, K. Rajagopal, S. Jafari, H. Namazi, Dynamic analysis of the discrete fractional-order Rulkov neuron map, Math. Biosci. Eng., 20 (2023), 4760–4781. https://doi.org/10.3934/mbe.2023220 doi: 10.3934/mbe.2023220
|
| [20] |
P. C. Bressloff, S. Coombes, A dynamical theory of spike train transitions in networks of integrate-and-fire oscillators, SIAM J. Appl. Math., 60 (2000), 820–841. https://doi.org/10.1137/S0036139998339643 doi: 10.1137/S0036139998339643
|
| [21] |
A. Aloui, L. Diabi, O. Kahouli, A. Ouannas, L. El Amraoui, M. Ayari, Chaotic dynamics, complexity analysis and control schemes in fractional discrete market system, Fractal Fract., 9 (2025), 721. https://doi.org/10.3390/fractalfract9110721 doi: 10.3390/fractalfract9110721
|
| [22] |
L. Liu, X. Zhong, Research on stability and bifurcation for two-dimensional two-parameter squared discrete dynamical systems, Mathematics, 12 (2024), 2423. https://doi.org/10.3390/math12152423 doi: 10.3390/math12152423
|
| [23] |
M. B. Almatrafi, M. Berkal, R. Ahmed, Dynamical transitions and chaos control in a discrete predator-prey model with Gompertz growth and Holling type Ⅲ response, Chaos Solitons Fract., 200 (2025), 117071. https://doi.org/10.1016/j.chaos.2025.117071 doi: 10.1016/j.chaos.2025.117071
|
| [24] |
Y. Chen, Z. Yu, Y. Li, J. Yu, Controlling bifurcations in duffing mapping, Bull. Malays. Math. Sci. Soc., 48 (2025), 209. https://doi.org/10.1007/s40840-025-01993-4 doi: 10.1007/s40840-025-01993-4
|
| [25] |
L. Liu, X. Zhong, Analysis and anti-control of period-doubling bifurcation for the one-dimensional discrete system with three parameters and a square term, AIMS Mathematics, 10 (2025), 3227–3250. https://doi.org/10.3934/math.2025150 doi: 10.3934/math.2025150
|
| [26] |
X. Wu, G. Wen, H. Xu, L. He, Anti-controlling Neimark-Sacker bifurcation of a three-degree-of-freedom vibration system with clearance, (in chinese), Acta Phys. Sin., 64 (2015), 200504. https://doi.org/10.7498/aps.64.200504 doi: 10.7498/aps.64.200504
|
| [27] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, In: Applied mathematical sciences, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2 |
| [28] | S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, In: Texts in applied mathematics, New York: Springer, 1990. https://doi.org/10.1007/978-1-4757-4067-7 |
| [29] |
M. Zhao, L. Li, Z. Yuan, An image encryption approach based on a novel two-dimensional chaotic system, Nonlinear Dyn., 112 (2024), 20483–20509. https://doi.org/10.1007/s11071-024-10053-8 doi: 10.1007/s11071-024-10053-8
|
| [30] |
H. Liu, J. Liu, C. Ma, Constructing dynamic strong S-Box using 3D chaotic map and application to image encryption, Multimed. Tools Appl., 82 (2023), 23899–23914. https://doi.org/10.1007/s11042-022-12069-x doi: 10.1007/s11042-022-12069-x
|
| [31] |
X. Wang, X. Xu, K. Sun, Z. Jiang, M. Li, J. Wen, A color image encryption and hiding algorithm based on hyperchaotic system and discrete cosine transform, Nonlinear Dyn., 111 (2023), 14513–14536. https://doi.org/10.1007/s11071-023-08538-z doi: 10.1007/s11071-023-08538-z
|