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Abstract: In this paper, we proposed a class of two-dimensional three-parameter discrete dynamical
systems with cubic terms, which can be applied to image encryption. We present a study on the
analysis and control of the bifurcations in these systems. Initially, the existence and stability
conditions of the fixed points of the proposed systems were proposed. Subsequently, based on the
center manifold and bifurcation theories, we determined the conditions for the existence of
Neimark-Sacker, pitchfork, and period-doubling bifurcations. The bifurcation diagram and the phase
portraits were employed in the numerical experiments to verify the correctness of theoretical analysis.
Finally, anti-controllers were used to induce Neimark-Sacker and period-doubling bifurcations,
which were designed by integrating the bifurcation conditions with the state feedback method. The
proposed anti-controllers caused the systems to undergo the desired bifurcations at the preset
parameter values. Numerical simulations verified the effectiveness and robustness of the proposed
controllers.
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1. Introduction

Discrete maps with cubic terms are widely utilized in various fields, including electronic
circuits, chemical reactions, physical systems, and population genetics [1,2]. Their capacity to
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generate rich bifurcation sequences and chaos makes them a persistent focus of nonlinear dynamics
research. The evolution of this field reveals a progression from exploring intrinsic nonlinear effects
in simple models to investigating their manifestation under specific structural constraints like
coupling forms and invertibility. In this paper, we aim to advance this trajectory by proposing and
analyzing a class of new two-dimensional discrete maps with cubic terms. To position our work, we
discuss some dynamical effects central to the maps with cubic terms in the literature.

The foundational effect of a cubic term is a nonlinearity, which can induce complex bifurcations
and chaos. Early studies established this in one-dimensional maps. In 1980, May introduced the
cubic map

Xiy1 = aXt3 + (1 —a)X;, (1)

where a is a parameter, and the map is defined on the interval | =[-1,1] [3]. Bifurcation sequences
of period 2™ cycles exist in the system (1). As a result, their bifurcation structures are more complex
than the logistic map. Further studies conducted in 1983 revealed that the cubic map exhibits
snapback repellers and chaotic behaviors [4]. The researchers in [5] investigated a one-parameter,
symmetric cubic map

Xna1 = X + AXn(1 = Xp) G — Xn), )

where A is a parameter ranging from O to 16. Periodic orbits and bifurcations are analyzed. As A
increases, the symmetric cubic map (2) undergoes the cycles bifurcations through subharmonic
bifurcations. These works indicate that the pure effect of the cubic terms is a robust source of chaos
and period-doubling cascades.

Extending to two-dimensional maps, the coupling effect is critical, which interacts with the cubic
terms to define global dynamics. Research has evolved to explore various architectures. The
researchers in [6,7] focused on studying the two-dimensional cubic H&on map

{xn+1 = —y, +x3 + ux, + 0.7, 3)
Yn+1 = Xn,
where p is a parameter. This map undergoes a triplication at g = —1.1505 and has the saddle
center collision at p = —1.12189. The researchers in [8] investigated the two-dimensional
noninvertible map with cubic terms
xXP—ax+y,
4
{y ~ bx + x3, S

where b < 0. An analysis of the bifurcation and chaotic behaviors is presented. Two
two-dimensional maps with cubic terms are derived from a one-dimensional cubic map

T,(x) = x>+ (a + 1)x + b. (5)
One is the two-dimensional map

T,: {xn+1 =x3+4+(a+ Dx,+b+y,,
Yn+1 = CXyp,

(6)

where a, b, c are real parameters [9]. The other is the two-dimensional noninvertible map
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Xp41 = &x3 + (a + Dx, + b + hy,,
Ty: (7)
Yn+1 = CxXp + dyp,
where € =1 or € = —1,a,b,c,d,h,are real parameters. In map T;, a variation of parameter c

induces a period-doubling bifurcation, which leads to chaotic behavior. When the basin boundary
intersects with the chaotic attractor, the interaction disrupts or reorganizes the basin of attraction. The
critical curve of the map T, (of type Z; — Z3 — Z;) partitions the phase plane into three distinct
regions. The concept of basin bifurcation encompasses various transitions, including the distinctions
between connected and disconnected basins, as well as simply connected and multiply connected
structures. This phenomenon also demonstrates the coexistence of multiple attractors. The
researchers in [10] investigated a two-dimensional cubic map

{xn+1 =Y ®)

Yn+1 = UYn — yr? — Jxn,

where p is a parameter. Wada bifurcation and the characteristics of partial Wada basin boundaries
are investigated. Two distinct types of Wada bifurcation are identified. Moreover, the underlying
mechanisms responsible for the formation of partial Wada basin boundaries are elucidated. Based on
the two-dimensional cubic map (8), the two-dimensional symplectic maps

CJ{:

£ ©)

y =M +My—Jxty?
are studied, which show that the maps (9) have the bifurcations of cubic homoclinic tangencies [11].
Especially, when J =1, the conservative cubic Hénon maps

X=1,

+
Hf:{y= —x + M, + M,y + 3, (10)
were extensively studied in [12,13]. Moreover, 1:4 resonance unfolding has the so-called Arnold
degeneracy for C_. The map C, has a different type of degeneracy. Non-symmetric points are
created and destroyed at pitchfork bifurcations [12]. Bifurcations under reversible perturbations give
rise to four 3-periodic orbits, where two of them are symmetric and conservative, and the other two
orbits are nonsymmetrical and compose symmetric couples of dissipative orbits. These local
symmetry-breaking bifurcations can lead to mixed dynamics [13]. These works demonstrate that the
effect of the map’s coupling structure is as consequential as the nonlinearity.

The historical development outlined above shows that while the effects of cubic nonlinearity,
bifurcation, and structure have been deeply studied, they have primarily been explored in maps
where nonlinearity is typically confined to a single dimension. That is, cubic terms such as
x3 exclusively influence the iteration of their own variable, leading to weak coupling and limited
nonlinear interaction between system variables. This leads to a predominantly self-focused nonlinear
interaction, highlighting a lack of research on maps with strong, targeted cross-coupling between
variables. To address this, we propose a class of cross-coupled, two-dimensional three-parameter
discrete maps with cubic terms. In the proposed maps, the cubic term x3 is intentionally designed to
drive the update of the y wvariable, while the evolution of the x variable retains a linear feedback
coupling. Owing to the advantages in structure preservation, numerical reliability, computational
efficiency, and physical authenticity, invertible maps have broad application across fields, including
engineering control systems [14,15], ecological and biological modeling [16,17], economic and
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financial analysis [18], neuroscience [19], numerical analysis [20,21], and cryptography and secure
communication [22]. Consequently, the maps proposed in this paper are constructed to be invertible.

The control and anti-control of bifurcations represent a pivotal research direction in nonlinear
dynamics. Bifurcation control is concerned with suppressing or eliminating undesired bifurcations to
maintain system stability [23,24]. Conversely, anti-control of bifurcations aims to deliberately induce
specific bifurcations (such as Neimark-Sacker bifurcation or period-doubling bifurcation) at
predetermined parameter values [25,26]. This intentional induction of complex dynamics,
particularly chaos, is crucial for meeting practical needs in engineering. To leverage this, and to
further enhance the chaotic complexity of the proposed maps with cubic terms, we design the
anti-control strategy to deliberately trigger either a Neimark-Sacker or a period-doubling bifurcation,
thereby enabling the reliable generation of chaos.

This paper is organized as follows: In Section 2, a two-dimensional, three-parameter discrete
dynamical system with cubic term is introduced, and the existence and stability of its fixed points are
analyzed. In Section 3, we investigate the bifurcations of the proposed system through theoretical
analysis and numerical experiments. The existence of Neimark-Sacker, pitchfork, and
period-doubling bifurcations is established, and the critical parameter conditions are derived. The
numerical results confirm the validity of the theoretical analysis and further indicate the potential
application of the system in image encryption. In Section 4, the state feedback controllers are
designed to achieve anti-control of the Neimark-Sacker and period-doubling bifurcations, thereby
effectively inducing desired complex dynamics. Numerical simulations verify the effectiveness and
robustness of the proposed controllers. Finally, in Section 5, we summarize the major conclusions of
this work.

2. Existence and stability of fixed points in the two-dimensional three-parameter discrete
dynamical system with cubic terms

We consider a class of two-dimensional three-parameter discrete dynamical systems with cubic
terms, all of which are invertible and defined as

(1D

{xn+1 =aXn — Yn
Yn+1 = bxy + ersi'

where a, b, c are the parameters, a € R, b - ¢ > 0. In these systems, the sole source of nonlinearity
is the cubic term x3, which appears exclusively in the second equation and affects only the evolution
of y. The first equation remains completely linear. This structure creates a cross-coupling between x
and y. Parameter a controls the self-feedback of x and the coupling influence of y, parameter b
regulates the linear driving strength of x on y, and parameter c¢ is the only nonlinear strength
parameter, influencing the system only through x3. Consequently, the structure of these systems
renders bifurcation analysis more straightforward.
The discrete system (11) can be rewritten as

X P ax —vy,

'{y  bx + cx3. (12)

Suppose (xg,¥,) is a fixed point of two-dimensional three-parameter discrete dynamical
system with cubic terms, then (x,,y,) satisfies the following equation:
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Xo = aXo — Yo,
{yo = bxy + cxd. (13)
The Jacobian matrix of the discrete dynamical system (12) at the fixed point (x,y,) is
a -1
DF G0y =y 4 3exz 0 (14)

The characteristic equation of the Jacobian matrix (14) is 42 — al + 3cx2 + b = 0. By solving Eq (13),
the fixed points of the system (12) can be obtained as follows:

.~ a—b—1
® if

< 0, two-dimensional three-parameter discrete dynamical system with cubic terms has

the unique fixed point (0,0);

.~ a=b—1
o if

> 0, two-dimensional three-parameter discrete dynamical system with cubic terms has

three fixed points (0,0), </a_lz_1,(a—1) a_l:_1>, (— a_lz_l,—(a—l) a_lz_1>, where

la — 1| > |bl,and (a—1)-c > 0.

Next, let us discuss the stability of the fixed points in system (12).

We focus on investigating the bifurcations at the fixed point (0,0) as parameters vary. Therefore,
in this section, we mainly study the stability of the fixed point (0,0). The Jacobian matrix at the fixed

point (0,0) is DF(0,0) = [Z _01] Its characteristic equation is A2 —al+b =0, and the

. a+VaZ-ab a—VaZ-4b

eigenvalues are A4; = —Y A, = —Y
Based on the stability criterion, the stability of the fixed point (0,0) in the discrete system (12) is

shown as follows:

Proposition 2.1. Considering two-dimensional three-parameter discrete dynamical system with

cubic terms (12), the stability of the fixed point (0,0) is listed as follows:

1) when a? = 4b:if |a| < 2, the fixed point (0,0) is a stable node; if |a| > 2, the fixed point
(0,0) is an unstable node;

2) when a® < 4b:if b < 1, the fixed point (0,0) is a stable focus; if b > 1, the fixed point (0,0) is
unstable focus; if b = 1, the fixed point (0,0) is a center,

3) when a® > 4b:if |1+ b| < |a|, the fixed point (0,0) is a saddle; if —1<b <1, b>a—1,
b > —a — 1, the fixed point (0,0) is a stable node; if a >2,1<b<a—1lora<-21<b<
—a—1lor b<—-1,1+b <a< -1+ b, the fixed point (0,0) is an unstable node.
Summarizing the content of Proposition 2.1, we have summarized the following results:

Proposition 2.2. [f b>a—1,b> —a—1,—-1 < b < 1, the fixed point (0,0) of two-dimensional

discrete dynamical system (12) is stable; otherwise, it is unstable.

AIMS Mathematics Volume 11, Issue 1, 1175-1201.
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3. Bifurcation analysis of two-dimensional, three-parameter discrete dynamical system with
cubic terms

3.1. Existence analysis of bifurcations
3.1.1. Theoretical analysis of the existence of bifurcations

From the stability analysis of the fixed point (0,0) for system (12), it is found that b =1, b =
a—1, b = —a —1are the key points for the change in stability of system (12). Therefore, the
bifurcations of system (12) will be studied subsequently under the conditions of b =1,b =a — 1,
b=-a-1.

Lemma 3.1. (Neimark-Sacker bifurcation existence theorem for discrete dynamical system [27].) Let
fu:R? = R? be a one-parameter family of mappings which has a smooth family of fixed points x(w)
at which the eigenvalues are complex conjugatesA(w), A(u). Assume

(SHI) [A(uo)| = 1, but M (uy) # 1 for j = 1,2,3,4.

(SH2) - (o)) = d # 0.

Then there is a smooth change of coordinateshso that the expression of ho f, o h~Yin polar

coordinates has the form
hof,oh™(r,0) = (r(1 +d(u — po) + ar?),0 + ¢ + br?) +higher-order terms.

(Note: A complex and (SH2) imply |arg(A)| = ¢ and d are nonzero.)

(SH3)a #0.

Then there is a two-dimensional surfaceX (not necessarily infinitely differentiable) in R? x
R having quadratic tangency with the plane R* x {u,} which is invariant for f,. If £ 0 (R* x {u}) is
larger than a point, then it is a simple closed curve.

Assuming the bifurcating system (restricted to the center manifold) is in the form

(¢) —sin(c) fxy)
(;C’) [i‘(i)rf(z) cZZZc; (;)-{_(g(i,i//))'

With eigenvalues 2,1 = e*, one obtains

(1-21)A?

) )
a =—Re Tfnfzo] -3 181117 = 1€021% + Re(A&31),

where

$20 = é[(fxx - fyy + ngy) + i(Gxx — 9yy — foy)]:
$11 = %[(fxx + fyy) +i(gxx + gyy)]a

$o2 = %[(fxx - fyy - ngy) + i(Gux — Gyy t foy)]a

AIMS Mathematics Volume 11, Issue 1, 1175-1201.
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L :
$21 = 1 [Froxx + Fryy + Gaay + Gyyy) + 1(Gaax + Gryy = Frny = fiyy)].

Theorem 3.1. If ¢ >0,-2<a <2 and a # —1, a # 0, the two-dimensional three-parameter
discrete dynamical system with cubic terms (12) undergoes a Neimark-Sacker bifurcation at the fixed
point (0,0) for b = 1. Moreover, there exists a unique repelling invariant closed curve, which
bifurcates from the fixed point (0,0).

Proof of Theorem 3.1. The Jacobian matrix at the fixed point (0,0) of system (12) is

DF(0,0) = [Z _01].

For the eigenvalues A = Mazﬂ and 1= > 2Ve % 0 be a pair of complex conjugates and

|A(b)| = 1,itrequires b =1and —2 < a < 2.
Through calculation, it is derived that if a # —1, a # 0, [A(1)]™ # 1, where n = 1,2,3,4;

and —(|/1(1)|) == i 0. When —2 < a < 2, let the invertible matrix

d(b)
Va—aZ a 2 . a
T = I 2 E], T-1= I\/4—a2 \/4—azl.
0 1 0

x
We use the translation (y) =T (z), and system (12) is transformed into

S Fu,v)
u 2 2 u u,v
e a () + (g(u, v))'
2 2
Moreover,
3 3
a Va—qa? a V4—qa?
fuv) = —W(2v+ > u) ,g(u,v)—c<5v+ 5 u)-

According to Lemma 3.1, we can obtain

‘- 3ac(uv4-a’ +av) 3c(u\/4—a2 +av) _o.
20 8‘\/4 a 8 u=0,v=0 ’
‘= _3ac(uv4-a’+ av) 3c(u\/4 —a% +av) _o.
11 4\/4 a 4 u=0,v=0 ’
I _9a 2cva/4 —a? 3a cu 9acu 3a‘cv |
‘- 32 8 32J4 a’ 0.
02 — u=0,v=0— Y
. 3a%v 3acv 3a’cuv4-a? 3cuy4-a’
W - 8 T )
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3c

=l—;
o ila o

a= Re{ ) gngzo} 2|§1l| |§02| +Re(Acy) 8"

Thus, when —2 <a <2anda # —1, a # 0, the two-dimensional three-parameter discrete
dynamical system with cubic terms (12) undergoes a Neimark-Sacker bifurcation at the fixed point
(0,0) for b=1. In system (12), ¢ <0 is equivalent to b < 0. Therefore, when ¢ <0,
Neimark-Sacker bifurcation at b = 1 needs not be considered. However, ¢ > 0is equivalent to
b > 0. When ¢ > 0, then a > 0. The Neimark-Sacker bifurcation is subcritical; a closed curve
exists, surrounding the fixed point (0,0) for b < 1and |b — 1| small. Based on a comprehensive
analysis, if ¢ >0, —2<a < 2and a # —1, a # 0, discrete dynamical system (12) undergoes a
Neimark-Sacker bifurcation at the fixed point (0,0) for b = 1. Moreover, there exists a unique
repelling invariant closed curve, which bifurcates from the fixed point (0,0).

Theorem 3.2.

() If ¢ <0,a < 1, two-dimensional three-parameter discrete dynamical system with cubic terms (12)
undergoes a pitchfork bifurcation at the fixed point (0,0) for b = a — 1. Moreover, three fixed points
lie on the right of b = a — 1 and one fixed point lies on the left of b = a — 1.

2) If c>0,a>1, and a + 2, two-dimensional three-parameter discrete dynamical system with
cubic terms (12) undergoes a pitchfork bifurcation at the fixed point (0,0) for b = a — 1. Moreover,
three fixed points lie on the left of b = a — 1 and one fixed point lies on the right of b = a — 1.

Proof of Theorem 3.2. When b =a— 1, let p = b — (a — 1).Taking b as an independent variable,

system (12) is transformed into

X ax—y,
y = (a— 1x + bx + cx3, (15)
b+ b.
1 1 0
Let the invertible matrix T =|a—1 1 0 |, and introduce the transformation
0 0 1
X u u+v
y|=T|v|=|(a-1)u+v|,
b w w

system (15) can be transformed into

u 1 0 0)u) (f(uv,w)
V|0 a-1 0f v |+|g(uv,w)]| (16)
w 0 0 1)w 0

where

AIMS Mathematics Volume 11, Issue 1, 1175-1201.
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f (u,v,w) =$[W(u +Vv)+c(u +V)3l

g(u,v,w) =ZT1a[W(u +v)+c(u +v)3]

According to the center manifold theorem, we seek a center manifold
W*°(0)= {(u,v,w) eR®|v=h(u,w);h(0,0)=Dh(0,0)= 0} ,
For u,w sufficiently small. We assume that h(u, w) has the form
v=h(uw)=au®+a,uw+aw’ +a,u’ +o((|u| + |W|)3) _ (17)
The center manifold must satisfy the following equation:
N (h(u,w))=h[u+ f(uh(u,w),w),w]|-(a=1)h(uw)-g(uh(uw)w)=0. (18)

Balancing powers of coefficients of Eq (18), it is derived that

1 C
=0,a, = ,a,=0,a, =
al 2 (2_a)2 3 4 (2—a)2
Hence, the center manifold is given by
yo—1 UW e — +o((|u|+|w|)3) (19)
(2-a) (2-a '

The discrete dynamical system (16) restricted to W€ (0) is given by

- 1 C 3
U f(u,w):u+a_zuw+a_2u3+o((|u|+|w|) ) (20)
By calculating
7(0,0)=0, af(o,o):L af(o,o):m
ou ow

AIMS Mathematics Volume 11, Issue 1, 1175-1201.
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Since ¢ # 0, as long as a # 2, system (20) undergoes a pitchfork bifurcation at (u,w) = (0,0).
Moreover, if ¢ < 0, one of the curves of fixed points of system (20) lies on the right of w = 0; if
¢ > 0, one of the curves of fixed points of system (20) lies on the left of w = 0 [28]. That is
equivalent to if a # 2, then discrete dynamical system (12) undergoes a pitchfork bifurcation at the
fixed point (0,0) for b =a — 1. When ¢ <0, it requires b =a—1 < 0. When ¢ > 0, it also
requires b =a—1>0. Based on a comprehensive analysis, if ¢ <0,a <1, the discrete
dynamical system (12) undergoes a pitchfork bifurcation at the fixed point (0,0) for b = a — 1.
Moreover, three fixed points lie on the right of b = a — 1, and one fixed point lies on the left of
b=a-1. If ¢>0,a>1, and a # 2, discrete dynamical system (12) undergoes a pitchfork
bifurcation at the fixed point (0,0) for b = a — 1. Moreover, three fixed points lie on the left of
b = a — 1 and one fixed point lies on the right of b =a — 1.

Theorem 3.3.

(1) If ¢ <0, a > —1, two-dimensional three-parameter discrete dynamical system with cubic terms (12)
undergoes a period-doubling bifurcation at the fixed point (0,0) for b = —a — 1. Moreover, the period
two points are unstable and lie on the right of b = —a — 1.

(2) If c>0,a< -1, and a +# —2, two-dimensional three-parameter discrete dynamical system
with cubic terms (12) undergoes a pitchfork bifurcation at the fixed point (0,0) forb = —a — 1.
Moreover, the period two points are stable and lie on the left of b = —a — 1.

Proof of Theorem 3.3. When b = —a — 1, let p = b + q + 1. Taking b as an independent variable,

b=b—a— 1, system (12) is transformed into

X ax -y,
y > (—a—1)x+bx+cx, 1)
b—b.
1 1 0
Let the invertible matrix T = <1 +a -1 0), and introduce the transformation
0 0 1
X u u+v
y|=T|Vv|=|(Q+a)u-v|.
b w w
System (21) can be transformed into
u -1 0 0)(u) (f(uv,w)
V| 0 a+l 0 v |+|g(uv,w)]|, (22)
w 0 0 1)w 0

where

AIMS Mathematics Volume 11, Issue 1, 1175-1201.
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f (u,v,w):iw(u +v)+L(u +v)’,

a+2 a+2
g(vaN):——JL—w(u+v)——Ji—(u+vf.
a+2 a+2

According to the center manifold theorem, we seek a center manifold
W¢(0) = {(u,v,w) e R*|v=h(u,w),h(0,0)=0,Dh(0,0) =0},
For u,w sufficiently small. We assume that 4(u, w) has the form
v =h(u,w)=bu’ +b,uw +bw* +b,u’ +o((|u| + |W|)3) , (23)
The center manifold must satisfy the following equation:
N (h(u,w))=h[-u+ f (uh(uw),w),w]|-(a+1)h(uw)-g(uh(uw)w)=0.  (24)

Through calculation, it is derived that

1 C
=0,b, = ,b,=0,b, =
" ’ (a+2)’ ’ ) (a+2)’
Thus, the center manifold is given by
1 c 3 3
V:(a+2)2 uw+(a+2)2u +o((|u|+|w|) ) 25)

System (22) restricted to W€(0) is given by

f C et e 3)
u fuw)= Ut oUW+ ——u +o((|u|+|w|) . (26)

The second iterate of f(u,w) is given by

2 o 2 _ 2C ( 3)
u f2(u,w)=u S uw-——u’+o (Jul+w])). 27)

It is sufficient for (26) and (27) to satisfy

—_ vl F2
F(0,0) =0, L0D = g, LD,

ow
6272(0,0) — 0 azfz(o,o) __ .2 6372(0,0) _ 1z
ou? oudw a+2 ou3 a+2

AIMS Mathematics Volume 11, Issue 1, 1175-1201.
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03£(0,0)
__oud  _
92£(0,0)
Juow

—6c¢.

Since ¢ # 0, according to the bifurcation theory, as long as a # —2, system (26) undergoes a
period-doubling bifurcation at (u, w) = (0,0). Moreover, if ¢ < 0, the period points are unstable and
lie on the right of w = 0; if ¢ > 0, the period points are stable and lie on the left of w = 0. It is
equivalent that if a # —2, system (12) undergoes a period-doubling bifurcation at the fixed point (0,0)
for b = —a — 1. When ¢ < 0, the period points lic on the right of b=—-a—1. When ¢ > 0, the
period points lie on the left of b = —a — 1. However, system (12) requires that bc > 0.Therefore,
when ¢ <0, then b = —a— 1< 0; when ¢ > 0, thenb=-a—-1>0. Based on a comprehensive
analysis, if ¢ < 0,a > —1, system (12) undergoes a period-doubling bifurcation at the fixed point
(0,0) for b = —a — 1, and the period points are unstable and lie on the right of b = —a — 1. If ¢ >0,
a<-1,and a # —2, system (12) undergoes a period-doubling bifurcation at the fixed point (0,0) for
b = —a — 1, and the period points are stable and lie on the left of b = —a — 1.

3.1.2.  Numerical experiment of the existence of bifurcations

In Section 3.1.1, we derive the critical parameter conditions for Neimark-Sacker, pitchfork, and
period-doubling bifurcations in system (12) through theoretical analysis. To validate the theoretical
analysis, a series of numerical experiments are conducted in this section.

To verify the existence conditions of the Neimark-Sacker bifurcation, a set of numerical
experiments are conducted with @ = —0.2, b = 1, and ¢ = 0.4. The initial state is (0.01,0.01). The
results of the experiments are shown in Figures 1 and 2. Figure 1 is the phase portrait of an
invariant circle forb=1. Figure 2 lists two Lyapunov exponents of discrete system (12) with
varying ¢ . From Figure 2, one of the Lyapunov exponents is positive with ¢ > 0. This means that
system (12) is unstable as ¢ > 0. These results are consistent with Theorem 3.1. Whenc >0, the
increase of ¢ may lead system (12) to have chaotic behavior.

—3
15 210

0.5 H

—0.5 F

-1.5
—1.5

X %107

Figure 1. Phase portrait of discrete system (12) for a=-0.2, b= 1, and ¢ = 0.4.
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Lyapunov exponent
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0.2

03 04 05 06

07 08 09 1

Figure 2. Lyapunov exponents of discrete system (12) ata =—0.2 and » = 1.

Two sets of experiments are conducted to verify the correctness of Theorem 3.2. The initial
state is (0.01,0.01). Figure 3 illustrates the output x, of the first component of the fixed point
(x0,¥0) as varying b. The blue line shows the trivial fixed point branch, and the red curve shows
the nontrivial fixed point branch. As such, when a = —0.2,¢c = —0.4, system (12) undergoes a
pitchfork bifurcation at b = —1.2, and one of the curves of the fixed points of (12) lies on the right
of b = —1.2. When a = 2.5, ¢ = 0.4, system (12) undergoes a pitchfork bifurcation at b = 1.5,
and one of the curves of fixed points of system (12) lies on the left of b = 1.5. These results are
consistent with the results of Theorem 3.2. Figure 4 illustrates the maximum eigenvalue modulus of
the Jacobian matrix DF(0,0). From Figure 4, we obtain the stability of the trivial fixed point (0,0)
with varying b. The results of stability are in accordance with Proposition 2.2.

25

The first component of the fixed point (Xo'y())

-2.5

a=-02 ¢c=-04
T ; T

Nontrivial branch : b=-12
Stable trivial branch
= = = Unstable trivial branch

The first component of the fixed point (X:Y)

L
-0.5

Nontrivial branch
= = = *Unstable trivial branch

Figure 3. Output of the first component of the fixed point (x,,y,) with respect to b.
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Figure 4. Maximum eigenvalue modulus of the Jacobian matrix at (0,0) with respect to b.

To verify the correctness of Theorem 3.3, two sets of experiments are conducted with a =
—1.8, c=0.5and a = —0.5, ¢ = —0.8. The initial state is (0.01,0.01) in the experiments. The
results of the numerical experiments are shown in Figures 5 and 6. Figure 5 shows the variations of
the first component of the system state (x,y) with respect to b under different parameter values.
This indicates that when @ = —1.8 and ¢ = 0.5, system (12) undergoes a period-doubling bifurcation
at b = 0.8, and the period points lie on the left of b = 0.8. Moreover, when a = —0.5 and ¢ = —0.8,
system (12) undergoes a period-doubling bifurcation at b = —0.5, and the period points lie on the
left of b = —0.5. These results are consistent with Theorem 3.3. When b < —0.5, Lyapunov
exponents tend to infinity. Therefore, this is not shown in Figure 6. Figure 6 shows that b = 0.8 isa

supercritical bifurcation point, and b = —0.5 is a subcritical bifurcation point.
. @ 18 c=10.5 05 meu‘ ‘ . a :. 70,57' c= ,‘0,8

= 0+ ®eccccscsccccsscccccnnros

.
!

5 —0.49 —048 —0.47 —0.46 —0.45

0.55 —0.54 —0.53 —0.52 —0.51 -0
b b

Figure 5. Output of the first component of the system state (x,y) with respectto b.
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Figure 6. Lyapunov exponents of the discrete system (12) with respect to b.
3.2. Application analysis of bifurcations

In Section 3.1, the existence of bifurcations is analyzed theoretically and numerically. The
theoretical analysis yields the critical value conditions under which discrete dynamical system (12)
exhibits various bifurcations. Additionally, the correctness of the theoretical results is verified by
several sets of numerical experiments. Some Lyapunov exponents of discrete system (12) are positive
in Figures 2 and 6. They indicate that Neimark-Sacker bifurcation and period-doubling bifurcation
are the way to induce the chaos. The chaotic sequence exhibits a high degree of randomness and
unpredictability. These chaotic features provide the core support for the encryption algorithm and
improve the anti-cracking ability of the encryption systems [29]. Hence, bifurcations of system (12)
have significant application potential in image encryption.

To further validate the practical application potential of the bifurcation of system (12) in image
encryption, the numerical experiments are presented in this section. When a =—1.8, 6= 0.8, and ¢ = 0.4,
system (12) is used to generate pseudo-random sequences for pixel position permutation or pixel gray
value encryption. The plaintext image is Peppers (512x512) in color. In image encryption, system (12)
is iterated 500000 times. States of the first 1000 iterations are discarded, and the subsequent iterations’
results are used in image encryption. Initial state is x = 0.01 and y = 0.01. Figure 7 shows the
encryption effect. The number of pixel change rate (NPCR) in Figure 7 is 99.6126%, which is
remarkably close to the theoretical optimum of approximately 99.6094% [30]. It is an ideal value,
indicating that this encryption has extremely strong diffusion characteristics and sensitivity to plaintext.
Figure 8 shows the encryption and decryption effect.
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Figure 7. Encryption effect diagram with system (12).

plaintext image ciphertext image decryption image

Figure 8. Encryption and decryption effect diagrams.

Tables 1 to 3 enumerate the correlation analysis results of this encryption. By comparing the
plaintext images, the correlation of ciphertext images is approaching 0. This implies that the
encryption utilizing system (12) enables invalid statistical attacks. Table 4 enumerates the results of
the information entropy. Information entropy in the ciphertext image is approaching 8. This indicates
a higher degree of information uncertainty in the ciphertext image. In this encryption experiment, the
unified average changing intensity (UACI) is 32.2826%, which approaches the ideal theoretical
benchmark of approximately 33.4%, confirming that the average intensity change is significant and
uniform. These metrics confirm that the encryption utilizing system (12) effectively resists
differential cryptanalysis. The security performance of image encryption utilizing system (12)
demonstrates a high level of effectiveness.

Key sensitivity is a fundamental requirement for an ideal encryption scheme. Even if one bit of
the key changes, the encryption results should be completely different. The key of this image
encryption is composed of a random sequence generated by system (12). Moreover, the condition for
the occurrence of period-doubling bifurcation in system (12) is b = —a — 1. Thus, the influential
factors of the key include parameter a, ¢ and the initial states of x,y. Based on these, key sensitivity
is tested in two steps. First, each key component (parameters and initial states) is individually
perturbed by a tiny value, with other components fixed. Then, the resulting divergence between the
encrypted images is evaluated using NPCR and UACI. Table 5 enumerates the key sensitivity
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analysis results of this encryption. Most parameters of this encryption exhibit good sensitivity, with a
NPCR value close to 99.6% and UACI value around 33.4%. Since the first 1000 iteration results of
system (12) are not used in key generation, the initial states of x,y exhibit low sensitivity under
minor perturbations. The key generation algorithm is required to be optimized. Table 6 summarizes
the performance comparison data of image encryption between system (12) and other systems. The
comparative results indicate that the encryption effectiveness of system (12) is slightly superior to

that of other systems.

Based on comprehensive analysis, bifurcations of system (12) are effective in image encryption.

Table 1. R-channel correlation.

Horizontal correlation Vertical correlation

Diagonal correlation

Plaintext image R-channel  0.9643
Ciphertext image R-channel 0.0007

0.9644
0.0183

0.9566
—0.0098

Table 2. G-channel correlation.

Horizontal correlation Vertical correlation

Diagonal correlation

Plaintext image G-channel 0.9814
Ciphertext image G-channel  0.0004

0.9824
—0.0140

0.9685
—0.0064

Table 3. B-channel correlation.

Horizontal correlation Vertical correlation

Diagonal correlation

Plaintext image B-channel 0.9637
Ciphertext image B-channel =~ 0.0088

0.9629
0.0194

0.9423
—0.0158

Table 4. Information entropy.

Color Channel

Information Entropy

Plaintext image R-channel
Ciphertext image R-channel
Plaintext image G-channel
Ciphertext image G-channel
Plaintext image B-channel
Ciphertext image B-channel

0

7.9993
0.3269
7.9993
0.3075
7.9993
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Table 5. Results of the sensitivity test.

Perturbation value Test object NPCR (%) UACI (%)
Initial value of x 34.1656 6.1697
1071 Initial value of y 67.3244 6.4206
Parameter a 99.6426 33.3318
Parameter c 99.6395 34.8203
Initial value of x 99.6098 33.3773
10°® Initial value of y 99.6067 33.4090
Parameter a 99.6010 33.4755
Parameter ¢ 99.5945 33.4924
Initial value of x 99.5983 33.4936
10°° Initial value of y 99.6109 33.5144
Parameter a 99.6010 33.3769
Parameter ¢ 99.5914 33.3390
Initial value of x 99.6120 33.4309
102 Initial value of y 99.6193 33.4427
Parameter a 99.6067 33.4643
Parameter ¢ 99.6265 33.4665
Table 6. Performance comparison of image encryption.
Information Information Information
System NPCR (%) UACT (%) Entrpy Entropy Entropy
(R-channel) (G-channel) (B-channel)
System (12) 99.6126 32.2826 7.9993 7.9993 7.9993
Ref. [8] 99.6042 32.2117 7.9994 7.9994 7.9993
Ref. [9] 99.6171 32.2603 7.9993 7.9993 7.9993
Ref. [31] 99.6076 32.2410 7.9992 7.9993 7.9992

4. Anti-control of bifurcations in two-dimensional, three-parameter discrete dynamical

system with cubic terms

In Section 3, we demonstrate the practical value of the bifurcations of system (12) in image
encryption. To broaden their applicability and enhance flexibility, the occurrence of bifurcation is
required. Anti-control of bifurcations can achieve this purpose. Anti-control of bifurcations refers to
the process of deliberately inducing desired bifurcations through control actions applied at
pre-specified parameter values within a system. Rather than suppressing or avoiding bifurcations,
this approach actively generates and harnesses bifurcation phenomena for beneficial applications in
engineering and scientific domains. In this section, we focus on the design of the anti-control of
bifurcations and verify the effectiveness of the proposed controller through numerical experiments.
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4.1. Anti-control of Neimark-Sacker bifurcation
4.1.1. Design of the controller

Anti-control of the Neimark-Sacker bifurcation can actively and deliberately induce the
occurrence of Neimark-Sacker bifurcation, thereby driving the system transition from simple
dynamical behavior to complex dynamics. In this paper, a controller is designed using the state
feedback method to perform anti-control on the Neimark-Sacker bifurcation of the two-dimensional
three-parameter discrete dynamical system with cubic terms (12), which enables the Neimark-Sacker
bifurcation to occur prematurely at a preset value.

For the discrete system (12), we aim to induce a Neimark-Sacker bifurcation at the fixed point
(0,0) by applying anti-control, with the preset value as b,. The controller of anti-control of the
Neimark-Sacker bifurcation is designed as

X ax—Yy+Uu,
3 (28)
y > bx+cx® +u,,
Where u1 = klx + kzy, uz = k3x + k4y.
The control system (28) is described as
X ax—y+kx+k,y,
Y3 1 2Y (29)
y = bx +cx” +kx +K,y.
Jacobian matrix of the control system (29) at the fixed point (0,0) is
a+k, -1+k,
J = : (30)
b+k, K,
The characteristic equation of the Jacobian matrix (30) is
A% —(k, +a+k)A+ak, +kk, +b+k,—bk, —k,k,=0. 31

In order to undergo the Neimark-Sacker bifurcation at b = b, controlled system (29) must satisfy
the following conditions:
(1) The characteristic equation must have a pair of conjugate complex roots, that is

A= (k, +a+k)? —4(ak, +kk, +1, +k, — bk, —k,k,) <0,

and

P K, +a+kl+\/(k4 +a+k)* —4(ak, +kk, + by +k, — bk, —k,k,)
2 2
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k,+a+k - \/(k4 +a+k,)’ —4(ak, +kk, +b, +k, — bk, —kok,)
> .

A=

(2) |A(b0)| = \/ak4 + k1k4_ + bO + k3 - bokz - k2k3 = 1
(3) A"(by) #1, n=1,2,3,4.
d
“4) @M(boﬂ # 0.
(5) a#0.
(6) The control system (29) is invertible, that is

k, =La-+k, #0,k, =0ork, =1[(a+k)k, — (k, —1)(b, +k,)]- (k, —1) - ¢ <O.

Based on the aforementioned conditions, it can be concluded that the control parameters k;, ko,
ks, and k, must satisfy the following conditions:

(ks +al %2,
k, #1,
1
|k4| i;;
< ks = 1_(jj11:1)k4 — by, (32)
2
_2<a+k1+k4<2,
ak, +aky + kiky # 1,

\(k, —1) - c < 0.

For the control system (29), when the control parameters k,, k,, k3, and k, satisfy formula (32),
the discrete system (29) will undergo a Neimark-Sacker bifurcation at the preset value b,.

4.1.2.  Numerical experiment

In this section, a series of numerical experiments are conducted to verify the effectiveness of the
anti-controller of the Neimark-Sacker bifurcation. In Section 3.1, we discussed the Neimark-Sacker
bifurcation of system (12) with a = —0.2 and b = 0.4, and clarified that when b = 1, system (12)
undergoes a Neimark-Sacker bifurcation. To enable system (12) to trigger Neimark-Sacker
bifurcation in advance at the preset value b = 0.5, we implement anti-control of Neimark-Sacker
bifurcation on system (12). Control system (29) is

33
y > 0.5x +0.4x% + kX + K, Y, (33)

{ X+ -0.2x— y + kX +K,Y,
where k; = —1, k, = 0.2, k3 = 3.75, k, = 2, and the initial state is (0.001,0.001). Figure 9 is the
phase diagram of control system (33). This indicates that when b = 0.5, control system (33)
undergoes a Neimark-Sacker bifurcation at the fixed point (0,0).

To verify the robustness of the anti-controller of the Neimark-Sacker bifurcation, random
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perturbations at varying levels (0%-10%) are applied to the control parameters k,, k,, ks, and k,
of system (33). For each perturbation level, 100 random trials are conducted. Figure 10 illustrates the
trend of the mean bifurcation point deviation versus the perturbation level. Even under the maximum
perturbation of 10%, the mean deviation remains at a low level. This indicates that the anti-controller (33)
possesses good robustness against parameter uncertainties.

To thoroughly evaluate the influence of each control parameter k,, k,, ks, and k,, sensitivity
analysis is conducted for each parameter individually. The sensitivity index (Sl ) is defined as

Aby /by
Sl = o/p (34)
where b, is the preset bifurcation value (b, = 0.5), 4b,is the actual shift of the bifurcation point,
and Ap/p is the relative perturbation amplitude of the control parameter. For each parameter, 100
random perturbation trials are performed, and the average deviation is used to compute the sensitivity.
When the perturbation level is 3%, the sensitivity indexes of k;, k,, k3, and k, are 5.0000, 2.1333,
6.2667, and 5.5167, respectively. This result shows that parameterk, exhibits the highest sensitivity.

This quantitative sensitivity analysis provides crucial guidance for practical implementation.

< %1073 | k1= —ll,k‘g = 0.2: ks = 3.75:k4 =2 |
6 - ]
4+ 4
2 4
= 0F |
_9l i
4l i
—6L i

_8 ! s s ! !
-3 —2 1 0 1 2 3
X %1073

Figure 9. Phase diagram of control system (33).
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Figure 10. Robustness analysis diagram of control system (33).
4.2. Anti-control of period-doubling bifurcation
4.2.1. Design of the controller

In this section, we design the anti-controller of period-doubling bifurcation to induce a
period-doubling bifurcation. Since we aim to induce a period-doubling bifurcation at the preset
parameter value b = by, the anti-control system of period-doubling bifurcation is designed as

{ X+ ax—y+u, (35)

3
y — bx +¢x® +u,,

where u; and u,are the controllers, u; = kyx, u, = (by —b + k;)x, and ky,k, are the control
parameters.
Based on Theorem 3.3, the parameters must satisfy the following conditions:

b, +k, =—(a+k) -1,
a+k #-2, (36)
(b, +k,)-c>0.

4.2.2.  Numerical experiment

To verify the effectiveness of anti-control of period-doubling bifurcation, a set of comparative
experiments are conducted in this section. From Figure 5 when a =—-1.8,b=0.8,c =
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0.5,and u; = u, = 0, discrete system (12) undergoes a period-doubling bifurcation at the fixed
point (0,0). To enable system (12) to trigger a period-doubling bifurcation in advance at the preset
value b = 0.6, anti-control of period-doubling bifurcation is applied. The control system is

X -1.8x -y +KkxX,
3 (37)
y - x+0.5x° + (k, —0.4)x,
where k; = 0.5 and k, = —0.3. Figure 11 shows the variations of the first component of the system

state (x,y) with respect to b. Thus, control system (37) undergoes a period-doubling bifurcation at
b =0.6.

To verify the robustness of the anti-controller of the period-doubling bifurcation, random
perturbations at varying levels (0%-10%) are applied to the control parameters of system (37). For
each perturbation level, 100 random trials are conducted. Figure 12 illustrates the trend of the mean
bifurcation-point deviation versus the perturbation level. As the perturbation level increases from 0% to
10%, the mean bifurcation point deviation increases correspondingly from 0% to approximately 2.43%.
Even under the maximum perturbation of 10%, the mean deviation remains at a low level. This
indicates that the anti-controller (37) possesses good robustness against parameter uncertainties. To
evaluate the influence of each control parameter k; and k,, a sensitivity analysis is conducted
for each parameter individually, which is computed with formula (34). The sensitivity index of
k, 1s 1.6667. The sensitivity index of k, is 1. Parameter k; is more sensitive than k.

a=-18, ¢c=0.5 k =05, ks = —0.3

] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
b

Figure 11. Output of the first component of (x,y) of system (37) with respect to b.
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Figure 12. Robustness analysis diagram of control system (37).

5. Conclusions

In this paper, a class of two-dimensional, three-parameter discrete systems with cubic terms is
presented. Existence and local stability conditions of the fixed points are analytically deduced in the
proposed system, which establish a solid theoretical foundation for the bifurcations analysis.
Furthermore, the bifurcations of proposed discrete system (12) are investigated through theoretical
and numerical analyses. The critical parameter conditions for the onset of the Neimark-Sacker,
pitchfork, and period-doubling bifurcations are derived through the theoretical derivation. Several
numerical experiments are conducted in this paper. These simulations not only verify the correctness
of the critical parameter conditions of bifurcations, but also show that proposed system (12) is
suitable to be used in image encryption. Finally, one anti-controller is designed to induce
Neimark-Sacker bifurcation at the predetermined parameter values, and the other anti-controller is
designed to induce the period-doubling bifurcation. The anti-controllers combine the state feedback
control method with the conditions of the bifurcations existence. Numerical simulations confirm the
effectiveness and robustness of the proposed anti-controllers.

The two-dimensional, three-parameter discrete system with cubic terms has an asymmetric,
invertible, and linear-nonlinear hybrid structure. This structure achieves linear cross-coupling by
confining the cubic term to a single dimension. As a result, the system exhibits complex dynamical
behaviors, laying a dynamical foundation for generating highly random and unpredictable sequences.
To expand the key space and enhance real-time performance, we will focus on designing and

optimizing more secure and computationally efficient key generation algorithms based on system (12)
in the future.
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