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Abstract: In this paper, we proposed a class of two-dimensional three-parameter discrete dynamical 

systems with cubic terms, which can be applied to image encryption. We present a study on the 

analysis and control of the bifurcations in these systems. Initially, the existence and stability 

conditions of the fixed points of the proposed systems were proposed. Subsequently, based on the 

center manifold and bifurcation theories, we determined the conditions for the existence of 

Neimark-Sacker, pitchfork, and period-doubling bifurcations. The bifurcation diagram and the phase 

portraits were employed in the numerical experiments to verify the correctness of theoretical analysis. 

Finally, anti-controllers were used to induce Neimark-Sacker and period-doubling bifurcations, 

which were designed by integrating the bifurcation conditions with the state feedback method. The 

proposed anti-controllers caused the systems to undergo the desired bifurcations at the preset 

parameter values. Numerical simulations verified the effectiveness and robustness of the proposed 

controllers. 
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1. Introduction 

Discrete maps with cubic terms are widely utilized in various fields, including electronic 

circuits, chemical reactions, physical systems, and population genetics [1,2]. Their capacity to 
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generate rich bifurcation sequences and chaos makes them a persistent focus of nonlinear dynamics 

research. The evolution of this field reveals a progression from exploring intrinsic nonlinear effects 

in simple models to investigating their manifestation under specific structural constraints like 

coupling forms and invertibility. In this paper, we aim to advance this trajectory by proposing and 

analyzing a class of new two-dimensional discrete maps with cubic terms. To position our work, we 

discuss some dynamical effects central to the maps with cubic terms in the literature. 

The foundational effect of a cubic term is a nonlinearity, which can induce complex bifurcations 

and chaos. Early studies established this in one-dimensional maps. In 1980, May introduced the 

cubic map 

𝑋𝑡+1 = 𝑎𝑋𝑡
3 + (1 − 𝑎)𝑋𝑡,        (1) 

where 𝑎 is a parameter, and the map is defined on the interval [ 1,1]I = −  [3]. Bifurcation sequences 

of period 2𝑛 cycles exist in the system (1). As a result, their bifurcation structures are more complex 

than the logistic map. Further studies conducted in 1983 revealed that the cubic map exhibits 

snapback repellers and chaotic behaviors [4]. The researchers in [5] investigated a one-parameter, 

symmetric cubic map 

𝑋𝑛+1 = 𝑋𝑛 + 𝜆𝑋𝑛(1 − 𝑋𝑛)(
1

2
− 𝑋𝑛),       (2) 

where 𝜆 is a parameter ranging from 0 to 16. Periodic orbits and bifurcations are analyzed. As 𝜆 

increases, the symmetric cubic map (2) undergoes the cycles bifurcations through subharmonic 

bifurcations. These works indicate that the pure effect of the cubic terms is a robust source of chaos 

and period-doubling cascades. 

Extending to two-dimensional maps, the coupling effect is critical, which interacts with the cubic 

terms to define global dynamics. Research has evolved to explore various architectures. The 

researchers in [6,7] focused on studying the two-dimensional cubic Hénon map 

{
𝑥𝑛+1 = −𝑦𝑛 + 𝑥𝑛

3 + 𝜇𝑥𝑛 + 0.7,
𝑦𝑛+1 = 𝑥𝑛,

       (3) 

where 𝜇 is a parameter. This map undergoes a triplication at 𝜇 = −1.1505 and has the saddle 

center collision at  𝜇 = −1.12189 . The researchers in [8] investigated the two-dimensional 

noninvertible map with cubic terms 

{
𝑥 ↦ 𝑎𝑥 + 𝑦,

𝑦 ↦ 𝑏𝑥 + 𝑥3,
           (4) 

where 𝑏 < 0 . An analysis of the bifurcation and chaotic behaviors is presented. Two 

two-dimensional maps with cubic terms are derived from a one-dimensional cubic map 

𝑇𝑜(𝑥) = 𝑥
3 + (𝑎 + 1)𝑥 + 𝑏.        (5) 

One is the two-dimensional map 

𝑇1: {
𝑥𝑛+1 = 𝑥𝑛

3 + (𝑎 + 1)𝑥𝑛 + 𝑏 + 𝑦𝑛,
𝑦𝑛+1 = 𝑐𝑥𝑛,

      (6) 

where , ,a b c are real parameters [9]. The other is the two-dimensional noninvertible map 
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𝑇2: {
𝑥𝑛+1 = 𝜀𝑥𝑛

3 + (𝑎 + 1)𝑥𝑛 + 𝑏 + ℎ𝑦𝑛,
𝑦𝑛+1 = 𝑐𝑥𝑛 + 𝑑𝑦𝑛,

       (7) 

where 𝜀 = 1 or 𝜀 = −1, , , , , ,a b c d h are real parameters. In map 𝑇1, a variation of parameter 𝑐 

induces a period-doubling bifurcation, which leads to chaotic behavior. When the basin boundary 

intersects with the chaotic attractor, the interaction disrupts or reorganizes the basin of attraction. The 

critical curve of the map 𝑇2 (of type 𝑍1 − 𝑍3 − 𝑍1) partitions the phase plane into three distinct 

regions. The concept of basin bifurcation encompasses various transitions, including the distinctions 

between connected and disconnected basins, as well as simply connected and multiply connected 

structures. This phenomenon also demonstrates the coexistence of multiple attractors. The 

researchers in [10] investigated a two-dimensional cubic map 

{
𝑥𝑛+1 = 𝑦𝑛,

𝑦𝑛+1 = 𝜇𝑦𝑛 − 𝑦𝑛
3 − 𝐽𝑥𝑛,

        (8) 

where 𝜇 is a parameter. Wada bifurcation and the characteristics of partial Wada basin boundaries 

are investigated. Two distinct types of Wada bifurcation are identified. Moreover, the underlying 

mechanisms responsible for the formation of partial Wada basin boundaries are elucidated. Based on 

the two-dimensional cubic map (8), the two-dimensional symplectic maps 

𝐶±
𝐽 : {
𝑥̄ = 𝑦,

𝑦̄ = 𝑀1 +𝑀2𝑦 − 𝐽𝑥 ± 𝑦
3,

       (9) 

are studied, which show that the maps (9) have the bifurcations of cubic homoclinic tangencies [11]. 

Especially, when 1J = , the conservative cubic Hénon maps 

𝐻3
±: {

𝑥̄ = 𝑦,

𝑦̄ = −𝑥 +𝑀1 +𝑀2𝑦 ± 𝑦
3,

       (10) 

were extensively studied in [12,13]. Moreover, 1:4 resonance unfolding has the so-called Arnold 

degeneracy for 𝐶−. The map 𝐶+ has a different type of degeneracy. Non-symmetric points are 

created and destroyed at pitchfork bifurcations [12]. Bifurcations under reversible perturbations give 

rise to four 3-periodic orbits, where two of them are symmetric and conservative, and the other two 

orbits are nonsymmetrical and compose symmetric couples of dissipative orbits. These local 

symmetry-breaking bifurcations can lead to mixed dynamics [13]. These works demonstrate that the 

effect of the map’s coupling structure is as consequential as the nonlinearity. 

The historical development outlined above shows that while the effects of cubic nonlinearity, 

bifurcation, and structure have been deeply studied, they have primarily been explored in maps 

where nonlinearity is typically confined to a single dimension. That is, cubic terms such as 

𝑥3 exclusively influence the iteration of their own variable, leading to weak coupling and limited 

nonlinear interaction between system variables. This leads to a predominantly self-focused nonlinear 

interaction, highlighting a lack of research on maps with strong, targeted cross-coupling between 

variables. To address this, we propose a class of cross-coupled, two-dimensional three-parameter 

discrete maps with cubic terms. In the proposed maps, the cubic term 𝑥3 is intentionally designed to 

drive the update of the 𝑦 variable, while the evolution of the 𝑥 variable retains a linear feedback 

coupling. Owing to the advantages in structure preservation, numerical reliability, computational 

efficiency, and physical authenticity, invertible maps have broad application across fields, including 

engineering control systems [14,15], ecological and biological modeling [16,17], economic and 
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financial analysis [18], neuroscience [19], numerical analysis [20,21], and cryptography and secure 

communication [22]. Consequently, the maps proposed in this paper are constructed to be invertible. 

The control and anti-control of bifurcations represent a pivotal research direction in nonlinear 

dynamics. Bifurcation control is concerned with suppressing or eliminating undesired bifurcations to 

maintain system stability [23,24]. Conversely, anti-control of bifurcations aims to deliberately induce 

specific bifurcations (such as Neimark-Sacker bifurcation or period-doubling bifurcation) at 

predetermined parameter values [25,26]. This intentional induction of complex dynamics, 

particularly chaos, is crucial for meeting practical needs in engineering. To leverage this, and to 

further enhance the chaotic complexity of the proposed maps with cubic terms, we design the 

anti-control strategy to deliberately trigger either a Neimark-Sacker or a period-doubling bifurcation, 

thereby enabling the reliable generation of chaos. 

This paper is organized as follows: In Section 2, a two-dimensional, three-parameter discrete 

dynamical system with cubic term is introduced, and the existence and stability of its fixed points are 

analyzed. In Section 3, we investigate the bifurcations of the proposed system through theoretical 

analysis and numerical experiments. The existence of Neimark-Sacker, pitchfork, and 

period-doubling bifurcations is established, and the critical parameter conditions are derived. The 

numerical results confirm the validity of the theoretical analysis and further indicate the potential 

application of the system in image encryption. In Section 4, the state feedback controllers are 

designed to achieve anti-control of the Neimark-Sacker and period-doubling bifurcations, thereby 

effectively inducing desired complex dynamics. Numerical simulations verify the effectiveness and 

robustness of the proposed controllers. Finally, in Section 5, we summarize the major conclusions of 

this work. 

2. Existence and stability of fixed points in the two-dimensional three-parameter discrete 

dynamical system with cubic terms 

We consider a class of two-dimensional three-parameter discrete dynamical systems with cubic 

terms, all of which are invertible and defined as 

{
𝑥𝑛+1 = 𝑎𝑥𝑛 − 𝑦𝑛,

𝑦𝑛+1 = 𝑏𝑥𝑛 + 𝑐𝑥𝑛
3,

         (11) 

where 𝑎, 𝑏, 𝑐 are the parameters, 𝑎 ∈ ℝ,  𝑏 ⋅ 𝑐 > 0. In these systems, the sole source of nonlinearity 

is the cubic term 𝑥3, which appears exclusively in the second equation and affects only the evolution 

of 𝑦. The first equation remains completely linear. This structure creates a cross-coupling between 𝑥 

and 𝑦. Parameter 𝑎 controls the self-feedback of 𝑥 and the coupling influence of 𝑦, parameter 𝑏 

regulates the linear driving strength of 𝑥 on 𝑦, and parameter 𝑐 is the only nonlinear strength 

parameter, influencing the system only through 𝑥3. Consequently, the structure of these systems 

renders bifurcation analysis more straightforward. 

The discrete system (11) can be rewritten as 

 

𝐹: {
𝑥 ↦ 𝑎𝑥 − 𝑦,

𝑦 ↦ 𝑏𝑥 + 𝑐𝑥3.
         (12) 

Suppose (𝑥0, 𝑦0) is a fixed point of two-dimensional three-parameter discrete dynamical 

system with cubic terms, then (𝑥0, 𝑦0) satisfies the following equation: 
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{
𝑥0 = 𝑎𝑥0 − 𝑦0,

𝑦0 = 𝑏𝑥0 + 𝑐𝑥0
3.

         (13) 

The Jacobian matrix of the discrete dynamical system (12) at the fixed point (𝑥0, 𝑦0) is 

𝐷𝑓(𝑥0, 𝑦0) = [
𝑎 −1

𝑏 + 3𝑐𝑥0
2 0

].       (14) 

The characteristic equation of the Jacobian matrix (14) is 𝜆2 − 𝑎𝜆 + 3𝑐𝑥0
2 + 𝑏 = 0. By solving Eq (13), 

the fixed points of the system (12) can be obtained as follows: 

⚫ if 
𝑎−𝑏−1

𝑐
≤ 0, two-dimensional three-parameter discrete dynamical system with cubic terms has 

the unique fixed point (0,0); 

⚫ if 
𝑎−𝑏−1

𝑐
> 0, two-dimensional three-parameter discrete dynamical system with cubic terms has 

three fixed points (0,0), (√
𝑎−𝑏−1

𝑐
, (𝑎 − 1)√

𝑎−𝑏−1

𝑐
) , (−√

𝑎−𝑏−1

𝑐
, −(𝑎 − 1)√

𝑎−𝑏−1

𝑐
) , where 

|𝑎 − 1| > |𝑏|, and (𝑎 − 1) ⋅ 𝑐 > 0. 

Next, let us discuss the stability of the fixed points in system (12). 

We focus on investigating the bifurcations at the fixed point (0,0) as parameters vary. Therefore, 

in this section, we mainly study the stability of the fixed point (0,0). The Jacobian matrix at the fixed 

point (0,0) is 𝐷𝐹(0,0) = [
𝑎 −1
𝑏 0

] . Its characteristic equation is 𝜆2 − 𝑎𝜆 + 𝑏 = 0 , and the 

eigenvalues are 𝜆1 =
𝑎+√𝑎2−4𝑏

2
, 𝜆2 =

𝑎−√𝑎2−4𝑏

2
. 

Based on the stability criterion, the stability of the fixed point (0,0) in the discrete system (12) is 

shown as follows: 

Proposition 2.1. Considering two-dimensional three-parameter discrete dynamical system with 

cubic terms (12), the stability of the fixed point (0,0) is listed as follows: 

1) when 𝑎2 = 4𝑏:if |𝑎| < 2, 
 
the fixed point (0,0) is a stable node; if |𝑎| > 2, the fixed point 

(0,0) is an unstable node; 

2) when 𝑎2 < 4𝑏:if 𝑏 < 1, the fixed point (0,0)
 
is a stable focus; if 𝑏 > 1, the fixed point (0,0) is 

unstable focus; if 𝑏 = 1, the fixed point (0,0) is a center; 

3) when 𝑎2 > 4𝑏:if |1 + 𝑏| < |𝑎|, the fixed point (0,0) is a saddle; if −1 < 𝑏 < 1, 𝑏 > 𝑎 − 1, 

𝑏 > −𝑎 − 1, the fixed point (0,0) is a stable node; if 𝑎 > 2, 1 < 𝑏 < 𝑎 − 1or𝑎 < −2,1 < 𝑏 <
−𝑎 − 1 or 𝑏 < −1, 1 + 𝑏 < 𝑎 < −1 + 𝑏, the fixed point (0,0) is an unstable node. 

Summarizing the content of Proposition 2.1, we have summarized the following results: 

Proposition 2.2. If 𝑏 > 𝑎 − 1, 𝑏 > −𝑎 − 1,−1 < 𝑏 < 1, the fixed point (0,0) of two-dimensional 

discrete dynamical system (12) is stable; otherwise, it is unstable. 
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3. Bifurcation analysis of two-dimensional, three-parameter discrete dynamical system with 

cubic terms 

3.1. Existence analysis of bifurcations 

3.1.1. Theoretical analysis of the existence of bifurcations 

From the stability analysis of the fixed point (0,0) for system (12), it is found that 𝑏 = 1, 𝑏 =

𝑎 − 1, 𝑏 = −𝑎 − 1 are the key points for the change in stability of system (12). Therefore, the 

bifurcations of system (12) will be studied subsequently under the conditions of 𝑏 = 1, 𝑏 = 𝑎 − 1, 

𝑏 = −𝑎 − 1. 

Lemma 3.1. (Neimark-Sacker bifurcation existence theorem for discrete dynamical system [27].) Let 

𝑓𝜇: ℝ
2 ↦ ℝ2 be a one-parameter family of mappings which has a smooth family of fixed points 𝑥(𝜇) 

at which the eigenvalues are complex conjugates𝜆(𝜇), 𝜆̄(𝜇). Assume 

(SH1) |𝜆(𝜇0)| = 1, but 𝜆𝑗(𝜇0) ≠ 1 for 𝑗 = 1,2,3,4. 

(SH2) 
𝑑

𝑑𝜇
(|𝜆(𝜇0)|) = 𝑑 ≠ 0. 

Then there is a smooth change of coordinates h so that the expression of ℎ ∘ 𝑓𝜇 ∘ ℎ
−1 in polar 

coordinates has the form 

ℎ ∘ 𝑓𝜇 ∘ ℎ
−1(𝑟, 𝜃) = (𝑟(1 + 𝑑(𝜇 − 𝜇0) + 𝑎𝑟

2), 𝜃 + 𝑐 + 𝑏𝑟2) +higher-order terms. 

(Note: complex and (SH2) imply |𝑎𝑟𝑔( 𝜆)| = 𝑐 and 𝑑 are nonzero.)  

(SH3) 0  . 

Then there is a two-dimensional surface (not necessarily infinitely differentiable) in ℝ2 ×

ℝ having quadratic tangency with the plane ℝ2 × {𝜇0} which is invariant for 𝑓𝜇. If 𝛴 ∩ (ℝ2 × {𝜇}) is 

larger than a point, then it is a simple closed curve. 

Assuming the bifurcating system (restricted to the center manifold) is in the form 

(
𝑥
𝑦) ↦ [

𝑐𝑜𝑠( 𝑐) − 𝑠𝑖𝑛( 𝑐)
𝑠𝑖𝑛( 𝑐) 𝑐𝑜𝑠( 𝑐)

] (
𝑥
𝑦) + (

𝑓(𝑥, 𝑦)
𝑔(𝑥, 𝑦)

). 

With eigenvalues 𝜆, 𝜆̄ = 𝑒±𝑖𝑐, one obtains 

𝛼 = −𝑅𝑒 [
(1−2𝜆)𝜆̄2

1−𝜆
𝜉11𝜉20] −

1

2
|𝜉11|

2 − |𝜉02|
2 + 𝑅𝑒( 𝜆̄𝜉21), 

where 

𝜉20 =
1

8
[(𝑓𝑥𝑥 − 𝑓𝑦𝑦 + 2𝑔𝑥𝑦) + 𝑖(𝑔𝑥𝑥 − 𝑔𝑦𝑦 − 2𝑓𝑥𝑦)], 

𝜉11 =
1

4
[(𝑓𝑥𝑥 + 𝑓𝑦𝑦) + 𝑖(𝑔𝑥𝑥 + 𝑔𝑦𝑦)], 

𝜉02 =
1

8
[(𝑓𝑥𝑥 − 𝑓𝑦𝑦 − 2𝑔𝑥𝑦) + 𝑖(𝑔𝑥𝑥 − 𝑔𝑦𝑦 + 2𝑓𝑥𝑦)], 
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𝜉21 =
1

16
[(𝑓𝑥𝑥𝑥 + 𝑓𝑥𝑦𝑦 + 𝑔𝑥𝑥𝑦 + 𝑔𝑦𝑦𝑦) + 𝑖(𝑔𝑥𝑥𝑥 + 𝑔𝑥𝑦𝑦 − 𝑓𝑥𝑥𝑦 − 𝑓𝑦𝑦𝑦)]. 

Theorem 3.1. If 𝑐 > 0, −2 < 𝑎 < 2 and 𝑎 ≠ −1, 𝑎 ≠ 0, the two-dimensional three-parameter 

discrete dynamical system with cubic terms (12) undergoes a Neimark-Sacker bifurcation at the fixed 

point (0,0) for 𝑏 = 1. Moreover, there exists a unique repelling invariant closed curve, which 

bifurcates from the fixed point (0,0). 

Proof of Theorem 3.1. The Jacobian matrix at the fixed point (0,0) of system (12) is 

𝐷𝐹(0,0) = [
𝑎 −1
𝑏 0

]. 

For the eigenvalues 𝜆 =
𝑎+√𝑎2−4𝑏

2
 and 𝜆̄ =

𝑎−√𝑎2−4𝑏

2
 to be a pair of complex conjugates and 

|𝜆(𝑏)| = 1, it requires 𝑏 = 1 and −2 < 𝑎 < 2. 

Through calculation, it is derived that if 𝑎 ≠ −1, 𝑎 ≠ 0, [𝜆(1)]𝑛 ≠ 1, where 𝑛 = 1,2,3,4; 

and 
𝑑

𝑑(𝑏)
(|𝜆(1)|) =

1

2
≠ 0. When −2 < 𝑎 < 2, let the invertible matrix 

𝑇 = [
√4−𝑎2

2

𝑎

2

0 1
], 𝑇−1 = [

2

√4−𝑎2
−

𝑎

√4−𝑎2

0 1
]. 

We use the translation (
𝑥
𝑦) = 𝑇 (

𝑢
𝑣
), and system (12) is transformed into 

(
𝑢
𝑣
) ↦ (

𝑎

2
−
√4−𝑎2

2

√4−𝑎2

2

𝑎

2

)(
𝑢
𝑣
) + (

𝑓(𝑢, 𝑣)
𝑔(𝑢, 𝑣)

). 

Moreover, 

𝑓(𝑢, 𝑣) = −
𝑎𝑐

√4−𝑎2
(
𝑎

2
𝑣 +

√4−𝑎2

2
𝑢)

3

, 𝑔(𝑢, 𝑣) = 𝑐 (
𝑎

2
𝑣 +

√4−𝑎2

2
𝑢)

3

. 

According to Lemma 3.1, we can obtain 

2 2

20 0, 02

3 ( 4 ) 3 ( 4 )
0

88 4
u v

ac u a av c u a av
i

a
 = =

 − + − +
= + = 

−  

；      

2 2

11 0, 02

3 ( 4 ) 3 ( 4 )
0

44 4
u v

ac u a av c u a av
i

a
 = =

 − + − +
= − + = 

−  

；      

2 2 3 4

2

02 0, 0
3 2 2 2

9 4 3 9 3
( )

32 8 8 32 4
0

3 3 3 4 3 4
( )

8 8 8 8

u v

a cv a a cu acu a cv

a

a cv acv a cu a cu a
i

 = =

 −
− + − + 

− = =
 

− − + − + − +
  

；     
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21 2

3

4 4

c
i

a
 =

−
；                

2
2 2

11 20 11 02 21

(1 2 ) 1 3
Re Re( ) .

1 2 8

c 
     



 −
= − − − + = 

− 
      

Thus, when −2 < 𝑎 < 2 and 𝑎 ≠ −1, 𝑎 ≠ 0, the two-dimensional three-parameter discrete 

dynamical system with cubic terms (12) undergoes a Neimark-Sacker bifurcation at the fixed point 

(0,0) for 𝑏 = 1 . In system (12), 𝑐 < 0 is equivalent to 𝑏 < 0 . Therefore, when 𝑐 < 0 , 

Neimark-Sacker bifurcation at 𝑏 = 1 needs not be considered. However, 𝑐 > 0 is equivalent to 

𝑏 > 0. When 𝑐 > 0, then 𝛼 > 0. The Neimark-Sacker bifurcation is subcritical; a closed curve 

exists, surrounding the fixed point (0,0) for 𝑏 < 1 and |𝑏 − 1| small. Based on a comprehensive 

analysis, if 𝑐 > 0, −2 < 𝑎 < 2 and 𝑎 ≠ −1, 𝑎 ≠ 0, discrete dynamical system (12) undergoes a 

Neimark-Sacker bifurcation at the fixed point (0,0) for 𝑏 = 1. Moreover, there exists a unique 

repelling invariant closed curve, which bifurcates from the fixed point (0,0). 

Theorem 3.2. 

(1) If 𝑐 < 0, 𝑎 < 1, two-dimensional three-parameter discrete dynamical system with cubic terms (12) 

undergoes a pitchfork bifurcation at the fixed point (0,0) for 𝑏 = 𝑎 − 1. Moreover, three fixed points 

lie on the right of 𝑏 = 𝑎 − 1 and one fixed point lies on the left of 𝑏 = 𝑎 − 1. 

(2) If 𝑐 > 0, 𝑎 > 1, and 𝑎 ≠ 2, two-dimensional three-parameter discrete dynamical system with 

cubic terms (12) undergoes a pitchfork bifurcation at the fixed point (0,0) for 𝑏 = 𝑎 − 1. Moreover, 

three fixed points lie on the left of 𝑏 = 𝑎 − 1 and one fixed point lies on the right of 𝑏 = 𝑎 − 1. 

Proof of Theorem 3.2. When 𝑏 = 𝑎 − 1, let 𝑏 = 𝑏 − (𝑎 − 1).Taking 𝑏̄ as an independent variable, 

system (12) is transformed into 

{

𝑥 ↦ 𝑎𝑥 − 𝑦,

𝑦 ↦ (𝑎 − 1)𝑥 + 𝑏̄𝑥 + 𝑐𝑥3,

𝑏̄ ↦ 𝑏̄.

        (15) 

Let the invertible matrix 𝑇 = (
1 1 0

𝑎 − 1 1 0
0 0 1

), and introduce the transformation 

( )1

x u u v

y T v a u v

w wb

  +   
     

= = − +     
    
    

, 

system (15) can be transformed into 

( )

( )

1 0 0 , ,

0 1 0 , , ,

0 0 1 0

u u f u v w

v a v g u v w

w w

     
     

− +      
      
      

      (16) 

where 
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( ) ( ) ( )
31

, ,
2

f u v w w u v c u v
a

 = + + +
 −

, 

( ) ( ) ( )
31

, ,
2

g u v w w u v c u v
a
 = + + +
 −

. 

According to the center manifold theorem, we seek a center manifold 

( ) ( ) ( ) ( ) ( ) 30 , , | , ; 0,0 0,0 0cW u v w R v h u w h Dh=  = = = . 

For 𝑢,𝑤 sufficiently small. We assume that ℎ(𝑢,𝑤) has the form 

( ) ( )( )32 2 3

1 2 3 4,v h u w a u a uw a w a u o u w= = + + + + + .     (17) 

The center manifold must satisfy the following equation: 

( )( ) ( )( ) ( ) ( ) ( )( ), , , , , 1 , , , , 0.N h u w h u f u h u w w w a h u w g u h u w w = + − − − =    (18) 

Balancing powers of coefficients of Eq (18), it is derived that 

( ) ( )
1 2 3 42 2

1
0, , 0,

2 2

c
a a a a

a a
= = = =

− −
. 

Hence, the center manifold is given by 

( ) ( )
( )( )33

2 2

1

2 2

c
v uw u o u w

a a
= + + +

− −
.      (19) 

The discrete dynamical system (16) restricted to 𝑊𝑐(0) is given by 

( ) ( )( )331
,

2 2

c
u f u w u uw u o u w

a a
= + + + +

− −
.     (20) 

By calculating 

( )0,0 0f = , 
( )0,0

1
f

u


=


, 

( )0,0
0

f

w


=


, 

( )2 0,0 1

2

f

u w a


=

  −
, 

( )2

2

0,0
0

f

u


=


, 

( )3

3

0,0 6

2

f c

u a


=

 −
, 

( )

( )

3

3

2

0,0

6 .
0,0

f

u c
f

u w



− = −


 
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Since 𝑐 ≠ 0, as long as 𝑎 ≠ 2, system (20) undergoes a pitchfork bifurcation at (𝑢, 𝑤) = (0,0). 

Moreover, if 𝑐 < 0, one of the curves of fixed points of system (20) lies on the right of 𝑤 = 0; if 

𝑐 > 0, one of the curves of fixed points of system (20) lies on the left of 𝑤 = 0 [28]. That is 

equivalent to if 𝑎 ≠ 2, then discrete dynamical system (12) undergoes a pitchfork bifurcation at the 

fixed point (0,0) for 𝑏 = 𝑎 − 1. When 𝑐 < 0, it requires 𝑏 = 𝑎 − 1 < 0. When 𝑐 > 0, it also 

requires 𝑏 = 𝑎 − 1 > 0 . Based on a comprehensive analysis, if 𝑐 < 0, 𝑎 < 1 , the discrete 

dynamical system (12) undergoes a pitchfork bifurcation at the fixed point (0,0) for 𝑏 = 𝑎 − 1. 

Moreover, three fixed points lie on the right of 𝑏 = 𝑎 − 1 , and one fixed point lies on the left of 

1b a= − . If 𝑐 > 0, 𝑎 > 1, and 𝑎 ≠ 2, discrete dynamical system (12) undergoes a pitchfork 

bifurcation at the fixed point (0,0) for 𝑏 = 𝑎 − 1. Moreover, three fixed points lie on the left of 

𝑏 = 𝑎 − 1 and one fixed point lies on the right of 𝑏 = 𝑎 − 1. 

Theorem 3.3. 

(1) If 𝑐 < 0, 𝑎 > −1, two-dimensional three-parameter discrete dynamical system with cubic terms (12) 

undergoes a period-doubling bifurcation at the fixed point (0,0) for 𝑏 = −𝑎 − 1. Moreover, the period 

two points are unstable and lie on the right of 𝑏 = −𝑎 − 1. 

(2) If 𝑐 > 0, 𝑎 < −1, and 𝑎 ≠ −2, two-dimensional three-parameter discrete dynamical system 

with cubic terms (12) undergoes a pitchfork bifurcation at the fixed point (0,0) for 𝑏 = −𝑎 − 1. 

Moreover, the period two points are stable and lie on the left of 𝑏 = −𝑎 − 1. 

Proof of Theorem 3.3. When 𝑏 = −𝑎 − 1, let 𝑏 = 𝑏 + 𝑎 + 1. Taking 𝑏̄ as an independent variable,  

𝑏 = 𝑏 − 𝑎 − 1, system (12) is transformed into 

( ) 3

,

1 ,

.

x ax y

y a x bx cx

b b

−


− − + +



        (21) 

Let the invertible matrix 𝑇 = (
1 1 0

1 + 𝑎 −1 0
0 0 1

), and introduce the transformation 

(1 )

x u u v

y T v a u v

w wb

  +   
     

= = + −     
    
    

. 

System (21) can be transformed into 

( )

( )

1 0 0 , ,

0 1 0 , , ,

0 0 1 0

u u f u v w

v a v g u v w

w w

−      
     

+ +      
      
      

     (22) 

where 
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( ) ( ) ( )
31

, ,
2 2

c
f u v w w u v u v

a a
= + + +

+ +
, 

( ) ( ) ( )
31

, ,
2 2

c
g u v w w u v u v

a a
= − + − +

+ +
. 

According to the center manifold theorem, we seek a center manifold 

( ) ( ) ( ) ( ) ( ) 30 , , | , , 0,0 0, 0,0 0cW u v w R v h u w h Dh=  = = = . 

For 𝑢,𝑤 sufficiently small. We assume that ℎ(𝑢, 𝑤) has the form 

( ) ( )( )32 2 3

1 2 3 4,v h u w b u b uw b w b u o u w= = + + + + + .     (23) 

The center manifold must satisfy the following equation: 

( )( ) ( )( ) ( ) ( ) ( )( ), , , , , 1 , , , , 0.N h u w h u f u h u w w w a h u w g u h u w w = − + − + − =    (24) 

Through calculation, it is derived that 

( ) ( )
1 2 3 42 2

1
0, , 0,

2 2

c
b b b b

a a
= = = =

+ +
. 

Thus, the center manifold is given by 

( ) ( )
( )( )33

2 2

1

2 2

c
v uw u o u w

a a
= + + +

+ +
.      (25) 

System (22) restricted to 𝑊𝑐(0) is given by 

u ( )( )331
( , )

2 2

c
f u w u uw u o u w

a a
= − + + + +

+ +
.    (26) 

The second iterate of 𝑓̄(𝑢, 𝑤) is given by 

( )( )32 32 2
( , )

2 2

c
u f u w u uw u o u w

a a
= − − + +

+ +
.    (27) 

It is sufficient for (26) and (27) to satisfy 

𝑓(0,0) = 0, 
𝜕𝑓(0,0)

𝜕𝑢
= −1, 

𝜕𝑓̄2(0,0)

𝜕𝑤
= 0, 

𝜕2𝑓
2
(0,0)

𝜕𝑢2
= 0, 𝜕

2𝑓
2
(0,0)

𝜕𝑢𝜕𝑤
= −

2

𝑎+2
, 𝜕

3𝑓
2
(0,0)

𝜕𝑢3
= −

12𝑐

𝑎+2
, 
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−

𝜕3𝑓(0,0)
𝜕𝑢3

𝜕2𝑓(0,0)
𝜕𝑢𝜕𝑤

= −6𝑐. 

Since 𝑐 ≠ 0, according to the bifurcation theory, as long as 𝑎 ≠ −2, system (26) undergoes a 

period-doubling bifurcation at (𝑢, 𝑤) = (0,0). Moreover, if 𝑐 < 0, the period points are unstable and 

lie on the right of 𝑤 = 0; if 𝑐 > 0, the period points are stable and lie on the left of 𝑤 = 0. It is 

equivalent that if 𝑎 ≠ −2, system (12) undergoes a period-doubling bifurcation at the fixed point (0,0) 

for 𝑏 = −𝑎 − 1. When 𝑐 < 0, the period points lie on the right of 1b a= − − . When 𝑐 > 0, the 

period points lie on the left of 𝑏 = −𝑎 − 1. However, system (12) requires that 𝑏𝑐 > 0.Therefore, 

when 𝑐 < 0, then 𝑏 = −𝑎 − 1 < 0; when 𝑐 > 0, then 1 0b a= − −  . Based on a comprehensive 

analysis, if 𝑐 < 0, 𝑎 > −1, system (12) undergoes a period-doubling bifurcation at the fixed point 

(0,0) for 𝑏 = −𝑎 − 1, and the period points are unstable and lie on the right of 𝑏 = −𝑎 − 1. If c > 0, 

a < –1, and 𝑎 ≠ −2, system (12) undergoes a period-doubling bifurcation at the fixed point (0,0) for 

𝑏 = −𝑎 − 1, and the period points are stable and lie on the left of 𝑏 = −𝑎 − 1. 

3.1.2. Numerical experiment of the existence of bifurcations 

In Section 3.1.1, we derive the critical parameter conditions for Neimark-Sacker, pitchfork, and 

period-doubling bifurcations in system (12) through theoretical analysis. To validate the theoretical 

analysis, a series of numerical experiments are conducted in this section. 

To verify the existence conditions of the Neimark-Sacker bifurcation, a set of numerical 

experiments are conducted with a = –0.2, b = 1, and c = 0.4. The initial state is (0.01,0.01). The 

results of the experiments are shown in Figures 1 and 2. Figure 1 is the phase portrait of an 

invariant circle for 1b = . Figure 2 lists two Lyapunov exponents of discrete system (12) with 

varying c . From Figure 2, one of the Lyapunov exponents is positive with 𝑐 > 0. This means that 

system (12) is unstable as 𝑐 > 0. These results are consistent with Theorem 3.1. When 0c  , the 

increase of 𝑐 may lead system (12) to have chaotic behavior. 

 

Figure 1. Phase portrait of discrete system (12) for a= –0.2, b = 1, and c = 0.4. 
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Figure 2. Lyapunov exponents of discrete system (12) at a = –0.2 and b = 1. 

 Two sets of experiments are conducted to verify the correctness of Theorem 3.2. The initial 

state is (0.01,0.01). Figure 3 illustrates the output 𝑥0 of the first component of the fixed point 

(𝑥0, 𝑦0) as varying 𝑏. The blue line shows the trivial fixed point branch, and the red curve shows 

the nontrivial fixed point branch. As such, when 𝑎 = −0.2, 𝑐 = −0.4, system (12) undergoes a 

pitchfork bifurcation at 𝑏 = −1.2, and one of the curves of the fixed points of (12) lies on the right 

of 𝑏 = −1.2. When 𝑎 = 2.5, 𝑐 = 0.4, system (12) undergoes a pitchfork bifurcation at 𝑏 = 1.5, 

and one of the curves of fixed points of system (12) lies on the left of 𝑏 = 1.5. These results are 

consistent with the results of Theorem 3.2. Figure 4 illustrates the maximum eigenvalue modulus of 

the Jacobian matrix 𝐷𝐹(0,0). From Figure 4, we obtain the stability of the trivial fixed point (0,0) 

with varying 𝑏. The results of stability are in accordance with Proposition 2.2. 

 

 

Figure 3. Output of the first component of the fixed point (𝑥0, 𝑦0) with respect to 𝑏. 
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Figure 4. Maximum eigenvalue modulus of the Jacobian matrix at (0,0) with respect to 𝑏. 

To verify the correctness of Theorem 3.3, two sets of experiments are conducted with 𝑎 =

−1.8,  𝑐 = 0.5 and 𝑎 = −0.5,  𝑐 = −0.8. The initial state is (0.01,0.01) in the experiments. The 

results of the numerical experiments are shown in Figures 5 and 6. Figure 5 shows the variations of 

the first component of the system state (𝑥, 𝑦) with respect to 𝑏 under different parameter values. 

This indicates that when a = –1.8 and c = 0.5, system (12) undergoes a period-doubling bifurcation 

at 𝑏 = 0.8, and the period points lie on the left of 𝑏 = 0.8. Moreover, when a = –0.5 and c = –0.8, 

system (12) undergoes a period-doubling bifurcation at 𝑏 = −0.5, and the period points lie on the 

left of 𝑏 = −0.5. These results are consistent with Theorem 3.3. When 𝑏 < −0.5, Lyapunov 

exponents tend to infinity. Therefore, this is not shown in Figure 6. Figure 6 shows that 𝑏 = 0.8 is a 

supercritical bifurcation point, and 𝑏 = −0.5 is a subcritical bifurcation point. 

  

Figure 5. Output of the first component of the system state (𝑥, 𝑦) with respect to 𝑏. 
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Figure 6. Lyapunov exponents of the discrete system (12) with respect to 𝑏. 

3.2. Application analysis of bifurcations 

In Section 3.1, the existence of bifurcations is analyzed theoretically and numerically. The 

theoretical analysis yields the critical value conditions under which discrete dynamical system (12) 

exhibits various bifurcations. Additionally, the correctness of the theoretical results is verified by 

several sets of numerical experiments. Some Lyapunov exponents of discrete system (12) are positive 

in Figures 2 and 6. They indicate that Neimark-Sacker bifurcation and period-doubling bifurcation 

are the way to induce the chaos. The chaotic sequence exhibits a high degree of randomness and 

unpredictability. These chaotic features provide the core support for the encryption algorithm and 

improve the anti-cracking ability of the encryption systems [29]. Hence, bifurcations of system (12) 

have significant application potential in image encryption.  

To further validate the practical application potential of the bifurcation of system (12) in image 

encryption, the numerical experiments are presented in this section. When a = –1.8, b = 0.8, and c = 0.4, 

system (12) is used to generate pseudo-random sequences for pixel position permutation or pixel gray 

value encryption. The plaintext image is Peppers (512×512) in color. In image encryption, system (12) 

is iterated 500000 times. States of the first 1000 iterations are discarded, and the subsequent iterations’ 

results are used in image encryption. Initial state is x = 0.01 and y = 0.01. Figure 7 shows the 

encryption effect. The number of pixel change rate (NPCR) in Figure 7 is 99.6126%, which is 

remarkably close to the theoretical optimum of approximately 99.6094% [30]. It is an ideal value, 

indicating that this encryption has extremely strong diffusion characteristics and sensitivity to plaintext. 

Figure 8 shows the encryption and decryption effect. 
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Figure 7. Encryption effect diagram with system (12). 

 

Figure 8. Encryption and decryption effect diagrams. 

Tables 1 to 3 enumerate the correlation analysis results of this encryption. By comparing the 

plaintext images, the correlation of ciphertext images is approaching 0. This implies that the 

encryption utilizing system (12) enables invalid statistical attacks. Table 4 enumerates the results of 

the information entropy. Information entropy in the ciphertext image is approaching 8. This indicates 

a higher degree of information uncertainty in the ciphertext image. In this encryption experiment, the 

unified average changing intensity (UACI) is 32.2826%, which approaches the ideal theoretical 

benchmark of approximately 33.4%, confirming that the average intensity change is significant and 

uniform. These metrics confirm that the encryption utilizing system (12) effectively resists 

differential cryptanalysis. The security performance of image encryption utilizing system (12) 

demonstrates a high level of effectiveness. 

Key sensitivity is a fundamental requirement for an ideal encryption scheme. Even if one bit of 

the key changes, the encryption results should be completely different. The key of this image 

encryption is composed of a random sequence generated by system (12). Moreover, the condition for 

the occurrence of period-doubling bifurcation in system (12) is 𝑏 = −𝑎 − 1. Thus, the influential 

factors of the key include parameter 𝑎, 𝑐 and the initial states of 𝑥, 𝑦. Based on these, key sensitivity 

is tested in two steps. First, each key component (parameters and initial states) is individually 

perturbed by a tiny value, with other components fixed. Then, the resulting divergence between the 

encrypted images is evaluated using NPCR and UACI. Table 5 enumerates the key sensitivity 
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analysis results of this encryption. Most parameters of this encryption exhibit good sensitivity, with a 

NPCR value close to 99.6% and UACI value around 33.4%. Since the first 1000 iteration results of 

system (12) are not used in key generation, the initial states of 𝑥, 𝑦 exhibit low sensitivity under 

minor perturbations. The key generation algorithm is required to be optimized. Table 6 summarizes 

the performance comparison data of image encryption between system (12) and other systems. The 

comparative results indicate that the encryption effectiveness of system (12) is slightly superior to 

that of other systems. 

Based on comprehensive analysis, bifurcations of system (12) are effective in image encryption. 

Table 1. R-channel correlation. 

 Horizontal correlation Vertical correlation Diagonal correlation 

Plaintext image R-channel  0.9643 0.9644 0.9566 

Ciphertext image R-channel  0.0007 0.0183 0.0098−  

Table 2. G-channel correlation. 

 Horizontal correlation Vertical correlation Diagonal correlation 

Plaintext image G-channel 0.9814 0.9824 0.9685 

Ciphertext image G-channel  0.0004 0.0140−  0.0064−  

Table 3. B-channel correlation. 

 Horizontal correlation Vertical correlation Diagonal correlation 

Plaintext image B-channel  0.9637 0.9629 0.9423 

Ciphertext image B-channel  0.0088 0.0194 0.0158−  

Table 4. Information entropy. 

Color Channel Information Entropy 

Plaintext image R-channel 0 

Ciphertext image R-channel  7.9993 

Plaintext image G-channel 0.3269 

Ciphertext image G-channel 7.9993 

Plaintext image B-channel 0.3075 

Ciphertext image B-channel 7.9993 
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Table 5. Results of the sensitivity test. 

Perturbation value Test object NPCR (%) UACI (%) 

1110−  

Initial value of 𝑥 34.1656 6.1697 

Initial value of 𝑦 67.3244 6.4206 

Parameter 𝑎 99.6426 33.3318 

Parameter 𝑐 99.6395 34.8203 

810−
 

Initial value of 𝑥 99.6098 33.3773 

Initial value of 𝑦 99.6067 33.4090 

Parameter 𝑎 99.6010 33.4755 

Parameter 𝑐 99.5945 33.4924 

510−
 

Initial value of 𝑥 99.5983 33.4936 

Initial value of  𝑦 99.6109 33.5144 

Parameter 𝑎 99.6010 33.3769 

Parameter 𝑐 99.5914 33.3390 

210−
 

Initial value of 𝑥 99.6120 33.4309 

Initial value of 𝑦 99.6193 33.4427 

Parameter 𝑎 99.6067 33.4643 

Parameter 𝑐 99.6265 33.4665 

Table 6. Performance comparison of image encryption. 

System NPCR (%) UACI (%) 

Information 

Entrpy 

(R-channel) 

Information 

Entropy 

(G-channel) 

Information 

Entropy 

(B-channel) 

System (12) 99.6126 32.2826 7.9993 7.9993 7.9993 

Ref. [8] 99.6042 32.2117 7.9994 7.9994 7.9993 

Ref. [9] 99.6171 32.2603 7.9993 7.9993 7.9993 

Ref. [31] 99.6076 32.2410 7.9992 7.9993 7.9992 

4. Anti-control of bifurcations in two-dimensional, three-parameter discrete dynamical 

system with cubic terms 

In Section 3, we demonstrate the practical value of the bifurcations of system (12) in image 

encryption. To broaden their applicability and enhance flexibility, the occurrence of bifurcation is 

required. Anti-control of bifurcations can achieve this purpose. Anti-control of bifurcations refers to 

the process of deliberately inducing desired bifurcations through control actions applied at 

pre-specified parameter values within a system. Rather than suppressing or avoiding bifurcations, 

this approach actively generates and harnesses bifurcation phenomena for beneficial applications in 

engineering and scientific domains. In this section, we focus on the design of the anti-control of 

bifurcations and verify the effectiveness of the proposed controller through numerical experiments. 
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4.1. Anti-control of Neimark-Sacker bifurcation 

4.1.1. Design of the controller 

Anti-control of the Neimark-Sacker bifurcation can actively and deliberately induce the 

occurrence of Neimark-Sacker bifurcation, thereby driving the system transition from simple 

dynamical behavior to complex dynamics. In this paper, a controller is designed using the state 

feedback method to perform anti-control on the Neimark-Sacker bifurcation of the two-dimensional 

three-parameter discrete dynamical system with cubic terms (12), which enables the Neimark-Sacker 

bifurcation to occur prematurely at a preset value. 

For the discrete system (12), we aim to induce a Neimark-Sacker bifurcation at the fixed point 

(0, 0) by applying anti-control, with the preset value as 𝑏0. The controller of anti-control of the 

Neimark-Sacker bifurcation is designed as 

1

3

2

,

,

x ax y u

y bx cx u

− +


+ +
         (28) 

where 𝑢1 = 𝑘1𝑥 + 𝑘2𝑦, 𝑢2 = 𝑘3𝑥 + 𝑘4𝑦. 

The control system (28) is described as 

1 2

3

3 4

,

.

x ax y k x k y

y bx cx k x k y

− + +


+ + +
       (29) 

Jacobian matrix of the control system (29) at the fixed point (0,0) is 

1 2

3 4

1a k k
J

b k k

+ − + 
=  

+ 
.        (30) 

The characteristic equation of the Jacobian matrix (30) is 

2

4 1 4 1 4 3 2 2 3( ) 0k a k ak k k b k bk k k − + + + + + + − − = .     (31) 

In order to undergo the Neimark-Sacker bifurcation at 𝑏 = 𝑏0, controlled system (29) must satisfy 

the following conditions: 

(1) The characteristic equation must have a pair of conjugate complex roots, that is 

2

4 1 4 1 4 0 3 0 2 2 3( ) 4( ) 0k a k ak k k b k b k k k = + + − + + + − −  , 

and 

2

4 1 4 1 4 1 4 0 3 0 2 2 3( ) 4( )

2

k a k k a k ak k k b k b k k k


+ + + + + − + + + − −
= , 
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2

4 1 4 1 4 1 4 0 3 0 2 2 3( ) 4( )

2

k a k k a k ak k k b k b k k k


+ + − + + − + + + − −
= . 

(2) |𝜆(𝑏0)| = √𝑎𝑘4 + 𝑘1𝑘4 + 𝑏0 + 𝑘3 − 𝑏0𝑘2 − 𝑘2𝑘3 = 1. 

(3) 𝜆𝑛(𝑏0) ≠ 1，𝑛 = 1,2,3,4. 

(4) 
𝑑

𝑑(𝑏)
|𝜆(𝑏0)| ≠ 0. 

(5) 𝛼 ≠ 0. 

(6) The control system (29) is invertible, that is  

2 1 41, 0, 0k a k k= +   or 2 1 4 2 0 3 21,[( ) ( 1)( )] ( 1) 0.k a k k k b k k c + − − +  −    

Based on the aforementioned conditions, it can be concluded that the control parameters 𝑘1, 𝑘2, 

𝑘3, and 𝑘4 must satisfy the following conditions: 

 

{
 
 
 
 

 
 
 
 |𝑘1 + 𝑎| ≠

1

2
,

𝑘2 ≠ 1,

|𝑘4| ≠
1

2
,

𝑘3 =
1−(𝑎+𝑘1)𝑘4

1−𝑘2
− 𝑏0,

−2 < 𝑎 + 𝑘1 + 𝑘4 < 2,
𝑎𝑘1 + 𝑎𝑘4 + 𝑘1𝑘4 ≠ 1,
(𝑘2 − 1) ⋅ 𝑐 < 0.

        (32) 

For the control system (29), when the control parameters 𝑘1, 𝑘2, 𝑘3, 𝑎𝑛𝑑 𝑘4 satisfy formula (32), 

the discrete system (29) will undergo a Neimark-Sacker bifurcation at the preset value 𝑏0. 

4.1.2. Numerical experiment 

In this section, a series of numerical experiments are conducted to verify the effectiveness of the 

anti-controller of the Neimark-Sacker bifurcation. In Section 3.1, we discussed the Neimark-Sacker 

bifurcation of system (12) with 𝑎 = −0.2 and 𝑏 = 0.4, and clarified that when 𝑏 = 1, system (12) 

undergoes a Neimark-Sacker bifurcation. To enable system (12) to trigger Neimark-Sacker 

bifurcation in advance at the preset value 𝑏 = 0.5, we implement anti-control of Neimark-Sacker 

bifurcation on system (12). Control system (29) is 

1 2

3

3 4

0.2 ,

0.5 0.4 ,

x x y k x k y

y x x k x k y

− − + +


+ + +
       (33) 

where 𝑘1 = −1,  𝑘2 = 0.2,  𝑘3 = 3.75,  𝑘4 = 2, and the initial state is (0.001,0.001). Figure 9 is the 

phase diagram of control system (33). This indicates that when 𝑏 = 0.5, control system (33) 

undergoes a Neimark-Sacker bifurcation at the fixed point (0,0). 

To verify the robustness of the anti-controller of the Neimark-Sacker bifurcation, random 
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perturbations at varying levels (0%-10%) are applied to the control parameters 𝑘1, 𝑘2, 𝑘3, and 𝑘4 

of system (33). For each perturbation level, 100 random trials are conducted. Figure 10 illustrates the 

trend of the mean bifurcation point deviation versus the perturbation level. Even under the maximum 

perturbation of 10%, the mean deviation remains at a low level. This indicates that the anti-controller (33) 

possesses good robustness against parameter uncertainties. 

To thoroughly evaluate the influence of each control parameter 𝑘1, 𝑘2, 𝑘3, and 𝑘4, sensitivity 

analysis is conducted for each parameter individually. The sensitivity index ( SI ) is defined as 

𝑆𝐼 =
𝛥𝑏0/𝑏0

△𝑝/𝑝
,          (34) 

where 𝑏0 is the preset bifurcation value (𝑏0 = 0.5), 𝛥𝑏0 is the actual shift of the bifurcation point, 

and 𝛥𝑝/𝑝 is the relative perturbation amplitude of the control parameter. For each parameter, 100 

random perturbation trials are performed, and the average deviation is used to compute the sensitivity. 

When the perturbation level is 3%, the sensitivity indexes of 𝑘1, 𝑘2, 𝑘3, and 𝑘4 are 5.0000, 2.1333, 

6.2667, and 5.5167, respectively. This result shows that parameter 3k exhibits the highest sensitivity. 

This quantitative sensitivity analysis provides crucial guidance for practical implementation. 

 

Figure 9. Phase diagram of control system (33). 
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Figure 10. Robustness analysis diagram of control system (33). 

4.2. Anti-control of period-doubling bifurcation 

4.2.1. Design of the controller 

In this section, we design the anti-controller of period-doubling bifurcation to induce a 

period-doubling bifurcation. Since we aim to induce a period-doubling bifurcation at the preset 

parameter value 𝑏 = 𝑏0, the anti-control system of period-doubling bifurcation is designed as 

1

3

2

,

,

x ax y u

y bx cx u

− +


+ +
         (35) 

where 𝑢1 𝑎𝑛𝑑 𝑢2are the controllers, 𝑢1 = 𝑘1𝑥 , 𝑢2 = (𝑏0 − 𝑏 + 𝑘2)𝑥, and 𝑘1, 𝑘2  are the control 

parameters. 

Based on Theorem 3.3, the parameters must satisfy the following conditions: 

0 2 1

1

0 2

( ) 1,

2,

( ) 0.

b k a k

a k

b k c

+ = − + −


+  −
 +  

        (36) 

4.2.2. Numerical experiment 

To verify the effectiveness of anti-control of period-doubling bifurcation, a set of comparative 

experiments are conducted in this section. From Figure 5, when 𝑎 = −1.8, 𝑏 = 0.8, 𝑐 =
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0.5, 𝑎𝑛𝑑 𝑢1 = 𝑢2 = 0, discrete system (12) undergoes a period-doubling bifurcation at the fixed 

point (0,0). To enable system (12) to trigger a period-doubling bifurcation in advance at the preset 

value 𝑏 = 0.6, anti-control of period-doubling bifurcation is applied. The control system is 

1

3

2

1.8 ,

0.5 ( 0.4) ,

x x y k x

y x x k x

− − +


+ + −
        (37) 

where 𝑘1 = 0.5 and 𝑘2 = −0.3. Figure 11 shows the variations of the first component of the system 

state (𝑥, 𝑦) with respect to 𝑏. Thus, control system (37) undergoes a period-doubling bifurcation at 

𝑏 = 0.6. 

To verify the robustness of the anti-controller of the period-doubling bifurcation, random 

perturbations at varying levels (0%-10%) are applied to the control parameters of system (37). For 

each perturbation level, 100 random trials are conducted. Figure 12 illustrates the trend of the mean 

bifurcation-point deviation versus the perturbation level. As the perturbation level increases from 0% to 

10%, the mean bifurcation point deviation increases correspondingly from 0% to approximately 2.43%. 

Even under the maximum perturbation of 10%, the mean deviation remains at a low level. This 

indicates that the anti-controller (37) possesses good robustness against parameter uncertainties. To 

evaluate the influence of each control parameter 𝑘1 and 𝑘2, a sensitivity analysis is conducted 

for each parameter individually, which is computed with formula (34). The sensitivity index of 

𝑘1 is 1.6667. The sensitivity index of 𝑘2 is 1. Parameter 𝑘1 is more sensitive than 𝑘2. 

 

Figure 11. Output of the first component of (𝑥, 𝑦) of system (37) with respect to 𝑏. 
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Figure 12. Robustness analysis diagram of control system (37). 

5. Conclusions 

In this paper, a class of two-dimensional, three-parameter discrete systems with cubic terms is 

presented. Existence and local stability conditions of the fixed points are analytically deduced in the 

proposed system, which establish a solid theoretical foundation for the bifurcations analysis. 

Furthermore, the bifurcations of proposed discrete system (12) are investigated through theoretical 

and numerical analyses. The critical parameter conditions for the onset of the Neimark-Sacker, 

pitchfork, and period-doubling bifurcations are derived through the theoretical derivation. Several 

numerical experiments are conducted in this paper. These simulations not only verify the correctness 

of the critical parameter conditions of bifurcations, but also show that proposed system (12) is 

suitable to be used in image encryption. Finally, one anti-controller is designed to induce 

Neimark-Sacker bifurcation at the predetermined parameter values, and the other anti-controller is 

designed to induce the period-doubling bifurcation. The anti-controllers combine the state feedback 

control method with the conditions of the bifurcations existence. Numerical simulations confirm the 

effectiveness and robustness of the proposed anti-controllers.  

The two-dimensional, three-parameter discrete system with cubic terms has an asymmetric, 

invertible, and linear-nonlinear hybrid structure. This structure achieves linear cross-coupling by 

confining the cubic term to a single dimension. As a result, the system exhibits complex dynamical 

behaviors, laying a dynamical foundation for generating highly random and unpredictable sequences. 

To expand the key space and enhance real-time performance, we will focus on designing and 

optimizing more secure and computationally efficient key generation algorithms based on system (12) 

in the future. 
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