In the present paper, we employ the generalized Mittag-Leffler function to investigate several fuzzy differential subordination results associated with suitable families of admissible functions in the open unit disk. By utilizing a refined analytic framework, we derive new inclusion relationships and establish sufficient conditions for fuzzy subordinating functions defined via Mittag-Leffler-type operators. Furthermore, the obtained results unify and extend a number of earlier findings in the theory of fuzzy analytic functions. These developments provide a deeper insight into the interaction between generalized special functions and the structure of fuzzy differential subordinations, offering potential applications to broader subclasses of analytic and bi-univalent functions, as well as to various operator-defined families in geometric function theory.
Citation: Dalal Alhwikem, Abbas Kareem Wanas, Bedaa Alawi Abd, Ala Amourah, Sheza M. El-Deeb. Certain families of admissible functions defined via fuzzy differential subordination and a generalized Mittag-Leffler function[J]. AIMS Mathematics, 2026, 11(1): 943-956. doi: 10.3934/math.2026041
In the present paper, we employ the generalized Mittag-Leffler function to investigate several fuzzy differential subordination results associated with suitable families of admissible functions in the open unit disk. By utilizing a refined analytic framework, we derive new inclusion relationships and establish sufficient conditions for fuzzy subordinating functions defined via Mittag-Leffler-type operators. Furthermore, the obtained results unify and extend a number of earlier findings in the theory of fuzzy analytic functions. These developments provide a deeper insight into the interaction between generalized special functions and the structure of fuzzy differential subordinations, offering potential applications to broader subclasses of analytic and bi-univalent functions, as well as to various operator-defined families in geometric function theory.
| [1] |
E. E. Ali, G. I. Oros, R. M. El-Ashwah, A. M. Albalahi, Applications of fuzzy differential subordination theory on analytic $p$-valent functions connected with $\mathfrak{q}$-calculus operator, AIMS Math., 9 (2024), 21239–21254. https://doi.org/10.3934/math.20241031 doi: 10.3934/math.20241031
|
| [2] |
S. Altinkaya, A. K. Wanas, Some properties for fuzzy differential subordination defined by Wanas operator, Earthline J. Math. Sci., 4 (2020), 51–62. https://doi.org/10.34198/ejms.4120.5162 doi: 10.34198/ejms.4120.5162
|
| [3] | W. G. Atshan, K. O. Hussain, Fuzzy differential superordination, Theory Appl. Math. Comput. Sci., 7 (2017), 27–38. |
| [4] |
A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075–2081. https://doi.org/10.2298/FIL1607075A doi: 10.2298/FIL1607075A
|
| [5] |
A. A. Azzam, S. A. Shah, A. Catas, L. I. Cotîrla, On fuzzy spiral-like functions associated with the family of linear operators, Fractal Fract., 7 (2023), 145. https://doi.org/10.3390/fractalfract7020145 doi: 10.3390/fractalfract7020145
|
| [6] |
M. Garg, P. Manoha, S. L. Kalla, A Mittag-Leffler-type function of two variables, Integr. Transf. Spec. Funct., 24 (2013), 934–944. https://doi.org/10.1080/10652469.2013.789872 doi: 10.1080/10652469.2013.789872
|
| [7] |
E. A. Haydar, On fuzzy differential subordination, Math. Moravica, 19 (2015), 123–129. https://doi.org/10.5937/MatMor1501123H doi: 10.5937/MatMor1501123H
|
| [8] |
V. Kiryakova, The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus, Comput. Math. Appl., 59 (2010), 1885–1895. https://doi.org/10.1016/j.camwa.2009.08.025 doi: 10.1016/j.camwa.2009.08.025
|
| [9] |
A. A. Lupas, S. A. Shah, L. F. Iambor, Fuzzy differential subordination and superordination results for $q$-analogue of multiplier transformation, AIMS Math., 8 (2023), 15569–15584. https://doi.org/10.3934/math.2023794 doi: 10.3934/math.2023794
|
| [10] | S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, CRC Press, 2000. https://doi.org/10.1201/9781482289817 |
| [11] | G. M. Mittag-Leffler, Sur la nouvelle function, C. R. Acad. Sci., Paris Ser. II, 137 (1903), 554–558. |
| [12] | G. M. Mittag-Leffler, Sur la representation analytiqued'une function monogene (cinquieme note), Acta Math., 29 (1905), 101–181. |
| [13] |
K. I. Noor, M. A. Noor, Fuzzy differential subordination involving generalized Noor-Salagean operator, Inf. Sci. Lett., 11 (2022), 1905–1911. https://doi.org/10.18576/isl/110606 doi: 10.18576/isl/110606
|
| [14] | U. H. Naik, R. M. Shaikh, M. T. Gophane, A. K. Wanas, Some differential subordinations and fuzzy differential subordinations using generalized integral operator, Ital. J. Pure Appl. Math., 48 (2022), 830–842. |
| [15] | G. I. Oros, G. Oros, The notion of subordination in fuzzy set theory, Gen. Math., 19 (2011), 97–103. |
| [16] | G. I. Oros, G. Oros, Fuzzy differential subordination, Acta Univ. Apulensis, 30 (2012), 55–64. |
| [17] | G. I. Oros, G. Oros, Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math., 57 (2012), 39–248. |
| [18] | G. I. Oros, Briot-Bouquet fuzzy differential subordination, An. Univ. Oradea Fasc. Mat., 19 (2012), 83–87. |
| [19] |
G. I. Oros, G. Oros, Ö. Güney, Introduction in third-order fuzzy differential subordination, Hacettepe J. Math. Stat., 53 (2024), 1627–1641. https://doi.org/10.15672/hujms.1319541 doi: 10.15672/hujms.1319541
|
| [20] |
J. C. Prajapati, R. K. Jana, R. K. Saxena, A. K. Shukla, Some results on the generalized Mittag-Leffler function operator, J. Inequal. Appl., 2013 (2013), 33. https://doi.org/10.1186/1029-242X-2013-33 doi: 10.1186/1029-242X-2013-33
|
| [21] |
A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797–811. https://doi.org/10.1016/j.jmaa.2007.03.018 doi: 10.1016/j.jmaa.2007.03.018
|
| [22] |
M. M. Soren, L. I. Cotirla, Fuzzy differential subordination and superordination results for the Mittag-Leffler type Pascal distribution, AIMS Math., 9 (2024), 21053–21078. https://doi.org/10.3934/math.20241023 doi: 10.3934/math.20241023
|
| [23] |
H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198–210. https://doi.org/10.1016/j.amc.2009.01.055 doi: 10.1016/j.amc.2009.01.055
|
| [24] |
H. M. Srivastava, S. M. El-deeb, Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution, Symmetry, 13 (2021), 1023. https://doi.org/10.3390/sym13061023 doi: 10.3390/sym13061023
|
| [25] | A. K. Wanas, A. H. Majeed, Fuzzy differential subordinations for prestarlike functions of complex order and some applications, Far East J. Math. Sci., 102 (2017), 1777–1788. |
| [26] | A. K. Wanas, A. H. Majeed, Fuzzy differential subordination properties of analytic functions involving generalized differential operator, Sci. Int. (Lahore), 30 (2018), 297–302. |
| [27] |
A. K. Wanas, A. H. Majeed, Fuzzy subordination results for fractional integral associated with generalized Mittag-Leffler function, Eng. Math. Lett., 2019 (2019), 1–13. https://doi.org/10.28919/eml/4073 doi: 10.28919/eml/4073
|
| [28] |
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
|