This article investigates the existence and stability of solutions for a class of three-point boundary value problems involving Riemann-Liouville fractional derivatives of order less than one. We considered nonlinear fractional differential equations subject to nonlocal boundary conditions that include a singular condition at the origin and a global fractional condition at interior points. Our approach generalizes previous work, allowing for singular behavior near zero, and employs the Leray-Schauder fixed point theorem to establish the existence of bounded solutions without requiring contractive conditions on the nonlinear term. Instead, we imposed a local integrability condition known as the $ L^p $-Carathéodory condition. Furthermore, we studied the Ulam-Hyers-Rassias stability of approximate solutions by means of a Gronwall-type inequality adapted to weakly singular kernels. Two concrete examples were also included to illustrate the theory.
Citation: Luís P. Castro, Edixon M. Rojas. On the existence and stability of bounded solutions for a class of three-point boundary value problems of fractional type[J]. AIMS Mathematics, 2025, 10(9): 20909-20931. doi: 10.3934/math.2025934
This article investigates the existence and stability of solutions for a class of three-point boundary value problems involving Riemann-Liouville fractional derivatives of order less than one. We considered nonlinear fractional differential equations subject to nonlocal boundary conditions that include a singular condition at the origin and a global fractional condition at interior points. Our approach generalizes previous work, allowing for singular behavior near zero, and employs the Leray-Schauder fixed point theorem to establish the existence of bounded solutions without requiring contractive conditions on the nonlinear term. Instead, we imposed a local integrability condition known as the $ L^p $-Carathéodory condition. Furthermore, we studied the Ulam-Hyers-Rassias stability of approximate solutions by means of a Gronwall-type inequality adapted to weakly singular kernels. Two concrete examples were also included to illustrate the theory.
| [1] |
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064 doi: 10.2969/jmsj/00210064
|
| [2] | N. Alghamdi, R. P. Agarwal, B. Ahmad, E. A. Alharbi, W. Shammakh, Existence and stability results for multi-term fractional delay differential equations equipped with nonlocal multi-point and multi-strip boundary conditions, Carpathian J. Math., 41 (2025), 651–671. |
| [3] |
M. I. Abbas, M. A. Ragusa, Nonlinear fractional differential inclusions with non-singular Mittag-Leffler kernel, AIMS Math., 7 (2022), 20328–20340. https://doi.org/10.3934/math.20221113 doi: 10.3934/math.20221113
|
| [4] |
L. C. Becker, T. A. Burton, I. K. Purnaras, Complementary equations: a fractional differential equation and a Volterra integral equation, Electron. J. Qual. Theory Differ. Equ., 12 (2015), 1–24. https://doi.org/10.14232/ejqtde.2015.1.12 doi: 10.14232/ejqtde.2015.1.12
|
| [5] |
F. Bouchelaghem, H. Boulares, A. Ardjouni, F. Jarad, T. Abdeljawad, B. Abdalla, et al., Existence of solutions of multi-order fractional differential equations, Partial Differ. Equ. Appl. Math., 13 (2025), 101104. https://doi.org/10.1016/j.padiff.2025.101104 doi: 10.1016/j.padiff.2025.101104
|
| [6] | L. P. Castro, A. Ramos, Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations, Banach J. Math. Anal., 3 (2009), 36–43. |
| [7] |
L. P. Castro, A. M. Simões, Different types of Hyers-Ulam-Rassias stabilities for a class of integro-differential equations, Filomat, 31 (2017), 5379–5390. https://doi.org/10.2298/FIL1717379C doi: 10.2298/FIL1717379C
|
| [8] |
L. P. Castro, A. M. Simões, Stabilities of Ulam-Hyers type for a class of nonlinear fractional differential equations with integral boundary conditions in Banach spaces, Filomat, 39 (2025), 617–628. https://doi.org/10.2298/FIL2502617C doi: 10.2298/FIL2502617C
|
| [9] |
V. S. Ertürk, A. Ali, K. Shah, P. Kumar, T. Abdeljawad, Existence and stability results for nonlocal boundary value problems of fractional order, Bound. Value Probl., 2022 (2022), 25. https://doi.org/10.1186/s13661-022-01606-0 doi: 10.1186/s13661-022-01606-0
|
| [10] | R. Herrmann, Fractional calculus: an introduction for physicists, 2 Eds., World Scientific, 2014. |
| [11] |
S. Hristova, Ulam-type stability for Caputo-type fractional delay differential equations, Demonstr. Math., 58 (2025), 20250112. https://doi.org/10.1515/dema-2025-0112 doi: 10.1515/dema-2025-0112
|
| [12] | D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222–224. |
| [13] |
D. H. He, L. G. Xu, Stability of conformable fractional delay differential systems with impulses, Appl. Math. Lett., 149 (2024), 108927. https://doi.org/10.1016/j.aml.2023.108927 doi: 10.1016/j.aml.2023.108927
|
| [14] | A. Kochubei, Y. Luchko, Handbook of fractional calculus with applications. Volume 2: Fractional differential equations, De Gruyter, 2019. |
| [15] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
| [16] | V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge: Cambridge Scientific Publishers, 2009. |
| [17] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity, London: Imperial College Press; Singapore: World Scientific, 2010. |
| [18] |
Y. Meng, X. R. Du, H. H. Pang, Iterative positive solutions to a coupled Riemann-Liouville fractional $q$-difference system with the Caputo fractional $q$-derivative boundary conditions, J. Funct. Spaces, 2023 (2023), 1–16. https://doi.org/10.1155/2023/5264831 doi: 10.1155/2023/5264831
|
| [19] |
B. D. Nghia, N. H. Luc, X. L. Qin, Y. Wang, On maximal solution to a degenerate parabolic equation involving a time fractional derivative, Electron. J. Appl. Math., 1 (2023), 62–80. https://doi.org/10.61383/ejam.20231129 doi: 10.61383/ejam.20231129
|
| [20] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
| [21] | G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis. Bd. I: Reihen, Integralrechnung, Funktionentheorie; Bd. II: Funktionentheorie, Nullstellen, Polynome, Determinanten, Zahlentheorie, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Berlin: Julius Springer, 1925. |
| [22] |
R. Poovarasan, M. E. Samei, V. Govindaraj, Analysis of existence, uniqueness, and stability for nonlinear fractional boundary value problems with novel integral boundary conditions, J. Appl. Math. Comput., 71 (2025), 3771–3802. https://doi.org/10.1007/s12190-025-02378-3 doi: 10.1007/s12190-025-02378-3
|
| [23] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. |
| [24] | S. M. Ulam, A collection of mathematical problems, New York: Interscience, 1960. https://doi.org/10.1126/science.132.3428.665 |
| [25] | J. R. L. Webb, Initial value problems for Caputo fractional equations with singular nonlinearities, Electron. J. Differ. Equ., 2019 (2019), 1–32. |
| [26] |
J. R. L. Webb, Weakly singular Gronwall inequalities and applications to fractional differential equations, J. Math. Anal. Appl., 471 (2019), 692–711. https://doi.org/10.1016/j.jmaa.2018.11.004 doi: 10.1016/j.jmaa.2018.11.004
|
| [27] |
J. R. L. Webb, Compactness of nonlinear integral operators with discontinuous and with singular kernels, J. Math. Anal. Appl., 509 (2022), 126000. https://doi.org/10.1016/j.jmaa.2022.126000 doi: 10.1016/j.jmaa.2022.126000
|
| [28] |
L. G. Xu, B. Z. Bao, H. X. Hu, Stability of impulsive delayed switched systems with conformable fractional-order derivatives, Int. J. Syst. Sci., 56 (2025), 1271–1288. https://doi.org/10.1080/00207721.2024.2421454 doi: 10.1080/00207721.2024.2421454
|
| [29] |
L. Xu, Q. X. Dong, G. Li, Existence and Hyers-Ulam stability for three-point boundary value problems with Riemann-Liouville fractional derivatives and integrals, Adv. Differ. Equ., 2018 (2018), 458. https://doi.org/10.1186/s13662-018-1903-5 doi: 10.1186/s13662-018-1903-5
|
| [30] | Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. |
| [31] | Y. Zhou, Fractional evolution equations and inclusions: Analysis and control, Amsterdam: Elsevier/Academic Press, 2016. |
| [32] |
M. Zakaria, A. Moujahid, A. Bouzelmate, Existence and uniqueness of a mild solution for a class of the fractional evolution equation with nonlocal condition involving $\varphi$-Riemann Liouville fractional derivative, Filomat, 37 (2023), 6041–6057. https://doi.org/10.2298/FIL2318041Z doi: 10.2298/FIL2318041Z
|