Research article Special Issues

Spectral solutions for nonlinear static beam and fractional Riccati problems using new Lucas coefficient polynomials

  • Published: 10 September 2025
  • MSC : 11B83, 65M70, 35R11

  • This study proposes novel spectral algorithms employing the Lucas coefficient polynomials to solve two significant nonlinear models: The static beam problem and the fractional Riccati equation. Our suggested approaches are based on developing novel theoretical findings that we derive for the introduced polynomials. These results include formulae for inversion, moment, derivatives, and linearization. Two methodologies are followed to treat the two nonlinear problems. The nonlinear fourth-order integro-differential static beam problem is treated using the collocation method, while the nonlinear fractional Riccati equation is treated using the tau method. Rigorous convergence and error analysis for the Lucas coefficient expansions are given. Compared to previous methods, the suggested algorithms exhibit exponential convergence and high accuracy, as verified by numerical testing. The findings demonstrate that spectral algorithms may effectively handle nonlinear differential equations using Lucas coefficient polynomials.

    Citation: Waleed Mohamed Abd-Elhameed, Shuja'a Ali Alsulami, Omar Mazen Alqubori, Naher Mohammed A. Alsafri, Mohamed Adel, Ahmed Gamal Atta. Spectral solutions for nonlinear static beam and fractional Riccati problems using new Lucas coefficient polynomials[J]. AIMS Mathematics, 2025, 10(9): 20862-20890. doi: 10.3934/math.2025932

    Related Papers:

  • This study proposes novel spectral algorithms employing the Lucas coefficient polynomials to solve two significant nonlinear models: The static beam problem and the fractional Riccati equation. Our suggested approaches are based on developing novel theoretical findings that we derive for the introduced polynomials. These results include formulae for inversion, moment, derivatives, and linearization. Two methodologies are followed to treat the two nonlinear problems. The nonlinear fourth-order integro-differential static beam problem is treated using the collocation method, while the nonlinear fractional Riccati equation is treated using the tau method. Rigorous convergence and error analysis for the Lucas coefficient expansions are given. Compared to previous methods, the suggested algorithms exhibit exponential convergence and high accuracy, as verified by numerical testing. The findings demonstrate that spectral algorithms may effectively handle nonlinear differential equations using Lucas coefficient polynomials.



    加载中


    [1] S. Vajda, Fibonacci and Lucas numbers, and the golden section: Theory and applications, Courier Corp., 2008.
    [2] T. Koshy, Fibonacci and Lucas numbers with applications, Volume 2, John Wiley & Sons, 2019.
    [3] O. Postavaru, An efficient numerical method based on Fibonacci polynomials to solve fractional differential equations, Math. Comput. Simul., 212 (2023), 406–422. https://doi.org/10.1016/j.matcom.2023.04.028 doi: 10.1016/j.matcom.2023.04.028
    [4] Ö. Oruç, A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation, Commun. Nonlinear Sci. Numer. Simul., 57 (2018), 14–25. https://doi.org/10.1016/j.cnsns.2017.09.006 doi: 10.1016/j.cnsns.2017.09.006
    [5] B. P. Moghaddam, A. Dabiri, A. M. Lopes, J. A. T. Machado, Numerical solution of mixed-type fractional functional differential equations using modified Lucas polynomials, Comput. Appl. Math., 38 (2019), 46. https://doi.org/10.1007/s40314-019-0813-9 doi: 10.1007/s40314-019-0813-9
    [6] W. M. Abd-Elhameed, O. M. Alqubori, A. G. Atta, A collocation procedure for treating the time-fractional FitzHugh–Nagumo differential equation using shifted Lucas polynomials, Mathematics, 12 (2024), 3672. https://doi.org/10.3390/math12233672 doi: 10.3390/math12233672
    [7] W. M. Abd-Elhameed, A. F. A. Sunayh, M. H. Alharbi, A. G. Atta, Spectral Tau technique via Lucas polynomials for the time-fractional diffusion equation, AIMS Math., 9 (2024), 34567–34587. https://doi.org/10.3934/math.20241646 doi: 10.3934/math.20241646
    [8] M. Pourbabaee, A. Saadatmandi, A numerical schemes based on Vieta-Lucas polynomials for evaluating the approximate solution of some types of fractional optimal control problems, Iran. J. Sci. Technol. Trans. Electr. Eng., 2025, 1–23. https://doi.org/10.1007/s40998-025-00791-9
    [9] S. Sharma, A. Bala, S. Aeri, R. Kumar, K. S. Nisar, Vieta–Lucas matrix approach for the numeric estimation of hyperbolic partial differential equations, Part. Differ. Equ. Appl. Math., 11 (2024), 100770. https://doi.org/10.1016/j.padiff.2024.100770 doi: 10.1016/j.padiff.2024.100770
    [10] S. Sabermahani, Y. Ordokhani, M. Razzaghi, Numerical solution of different kinds of fractional-order optimal control problems using generalized Lucas wavelets and the least squares method, Optim. Contr. Appl. Met., 45 (2024), 2702–2721. https://doi.org/10.1002/oca.3182 doi: 10.1002/oca.3182
    [11] R. Magin, Fractional calculus in bioengineering, part 1, Crit. Rev. Biomed. Eng., 32 (2004).
    [12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, volume 204 of North-Holland Math. Stud., Elsevier, 2006.
    [13] M. Harker, Fractional differential equations: Numerical methods for applications, Studies in Systems, Decision and Control, Springer Cham, 2025.
    [14] T. Sandevm, Y. Tomovskim, Fractional equations and models: Theory and applications, Springer, 2019.
    [15] R. Saadeh, A. Burqan, A. El-Ajou, Reliable solutions to fractional Lane-Emden equations via Laplace transform and residual error function, Alex. Eng. J., 61 (2022), 10551–10562. https://doi.org/10.1016/j.aej.2022.04.004 doi: 10.1016/j.aej.2022.04.004
    [16] A. Afreen, A. Raheem, Study of a nonlinear system of fractional differential equations with deviated arguments via Adomian decomposition method, Int. J. Appl. Comput. Math., 8 (2022), 269. https://doi.org/10.1007/s40819-022-01464-5 doi: 10.1007/s40819-022-01464-5
    [17] A. Rysak, M. Gregorczyk, Differential transform method as an effective tool for investigating fractional dynamical systems, Appl. Sci., 11 (2021), 6955. https://doi.org/10.3390/app11156955 doi: 10.3390/app11156955
    [18] P. K. Singh, S. S. Ray, A numerical approach based on Pell polynomial for solving stochastic fractional differential equations, Numer. Algorithms, 97 (2024), 1513–1534. https://doi.org/10.1007/s11075-024-01760-9 doi: 10.1007/s11075-024-01760-9
    [19] L. Brugnano, K. Burrage, P. Burrage, F. Iavernaro, A spectrally accurate step-by-step method for the numerical solution of fractional differential equations, J. Sci. Comput., 99 (2024), 48. https://doi.org/10.1007/s10915-024-02517-1 doi: 10.1007/s10915-024-02517-1
    [20] Z. Barary, A. B. Y. Cherati, S. Nemati, An efficient numerical scheme for solving a general class of fractional differential equations via fractional-order hybrid Jacobi functions, Commun. Nonlinear Sci. Numer. Simul., 128 (2024), 107599. https://doi.org/10.1016/j.cnsns.2023.107599 doi: 10.1016/j.cnsns.2023.107599
    [21] S. M. Sivalingam, P. Kumar, V. Govindaraj, A neural networks-based numerical method for the generalized Caputo-type fractional differential equations, Math. Comput. Simul., 213 (2023), 302–323. https://doi.org/10.1016/j.matcom.2023.06.012 doi: 10.1016/j.matcom.2023.06.012
    [22] Kamran, S. Ahmad, K. Shah, T. Abdeljawad, B. Abdalla, On the approximation of fractal-fractional differential equations using numerical inverse Laplace transform methods, CMES-Comput. Model. Eng. Sci., 135 (2023). https://doi.org/10.32604/cmes.2023.023705
    [23] Z. Odibat, A universal predictor-corrector algorithm for numerical simulation of generalized fractional differential equations, Nonlinear Dyn., 105 (2021), 2363–2374. https://doi.org/10.1007/s11071-021-06670-2 doi: 10.1007/s11071-021-06670-2
    [24] I. Lasiecka, R. Triggiani, Differential and algebraic Riccati equations with application to boundary/point control problems: Continuous theory and approximation theory, Springer, Berlin/Heidelberg, Germany, 1991.
    [25] D. Tverdyi, R. Parovik, Application of the fractional Riccati equation for mathematical modeling of dynamic processes with saturation and memory effect, Fractal Fract., 6 (2022), 163. https://doi.org/10.3390/fractalfract6030163 doi: 10.3390/fractalfract6030163
    [26] S. Momani, N. Shawagfeh, Decomposition method for solving fractional Riccati differential equations, Appl. Math. Comput., 182 (2006), 1083–1092. https://doi.org/10.1016/j.amc.2006.05.008 doi: 10.1016/j.amc.2006.05.008
    [27] N. A. Khan, A. Ara, M. Jamil, An efficient approach for solving the Riccati equation with fractional orders, Comput. Math. Appl., 61 (2011), 2683–2689. https://doi.org/10.1016/j.camwa.2011.03.017 doi: 10.1016/j.camwa.2011.03.017
    [28] M. Ahsan, W. Lei, A. A. Khan, M. Bohner, The multi-resolution Haar wavelets collocation procedure for fractional Riccati equations, Phys. Scr., 99 (2024), 115265. https://doi.org/10.1088/1402-4896/ad85a7 doi: 10.1088/1402-4896/ad85a7
    [29] F. Soleyman, I. Area, Müntz–Legendre wavelet collocation method for solving fractional Riccati equation, Axioms, 14 (2025), 185. https://doi.org/10.3390/axioms14030185 doi: 10.3390/axioms14030185
    [30] A. Akgül, N. Attia, Advancing differential equation solutions: A novel Laplace-reproducing kernel Hilbert space method for nonlinear fractional Riccati equations, Int. J. Mod. Phys. C, 36 (2025), 1–28. https://doi.org/10.1142/S0129183124501869 doi: 10.1142/S0129183124501869
    [31] B. Xie, Y. Gao, Numerical analysis for fractional Riccati differential equations based on finite difference method, J. Nonlinear Model. Anal., 7 (2025), 189–208. https://doi.org/10.12150/jnma.2025.189 doi: 10.12150/jnma.2025.189
    [32] E. Abuteen, Solving fractional Riccati differential equation with Caputo-Fabrizio fractional derivative, Eur. J. Pure Appl. Math., 17 (2024), 372–384. https://doi.org/10.29020/nybg.ejpam.v17i1.5013 doi: 10.29020/nybg.ejpam.v17i1.5013
    [33] Y. H. Youssri, Orthonormal ultraspherical operational matrix algorithm for fractal-fractional Riccati equation with generalized Caputo derivative, Fractal Fract., 5 (2021), 100. https://doi.org/10.3390/fractalfract5030100 doi: 10.3390/fractalfract5030100
    [34] A. Burqan, A. Sarhan, R. Saadeh, Constructing analytical solutions of the fractional Riccati differential equations using Laplace residual power series method, Fractal Fract., 7 (2022), 14. https://doi.org/10.3390/fractalfract7010014 doi: 10.3390/fractalfract7010014
    [35] L. Sadek, A. S. Bataineh, H. T. Alaoui, I. Hashim, The novel Mittag–Leffler–Galerkin method: Application to a Riccati differential equation of fractional order, Fractal Fract., 7 (2023), 302. https://doi.org/10.3390/fractalfract7040302 doi: 10.3390/fractalfract7040302
    [36] Q. Ren, H. Tian, Numerical solution of the static beam problem by Bernoulli collocation method, Appl. Math. Model., 40 (2016), 8886–8897. https://doi.org/10.1016/j.apm.2016.05.018 doi: 10.1016/j.apm.2016.05.018
    [37] H. Temimi, A. R. Ansari, A. M. Siddiqui, An approximate solution for the static beam problem and nonlinear integro-differential equations, Comput. Math. Appl., 62 (2011), 3132–3139. https://doi.org/10.1016/j.camwa.2011.08.026 doi: 10.1016/j.camwa.2011.08.026
    [38] L. Wang, Y. Liu, Y. Zhou, F. Yang, A gradient reproducing kernel based stabilized collocation method for the static and dynamic problems of thin elastic beams and plates, Comput. Mech., 68 (2021), 709–739. https://doi.org/10.1007/s00466-021-02031-3 doi: 10.1007/s00466-021-02031-3
    [39] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods: Fundamentals in single domains, Springer, 2006.
    [40] J. P. Boyd. Chebyshev and Fourier spectral methods, Dover Publ., 2 Eds., 2001.
    [41] J. Shen, T. Tang, L. L. Wang, Spectral methods: Algorithms, analysis and applications, Springer Ser. Comput. Math., Springer, 41 (2011).
    [42] M. Kashif, M. Singh, T. Som, E. M. Craciun, Numerical study of variable order model arising in chemical processes using operational matrix and collocation method, J. Comput. Sci., 80 (2024), 102339. https://doi.org/10.1016/j.jocs.2024.102339 doi: 10.1016/j.jocs.2024.102339
    [43] W. M. Abd-Elhameed, O. M. Alqubori, N. M. A. Alsafri, A. K. Amin, A. G. Atta, A matrix approach by convolved Fermat polynomials for solving the fractional Burgers' equation, Mathematics, 13 (2025), 1135. https://doi.org/10.3390/math13071135 doi: 10.3390/math13071135
    [44] W. M. Abd-Elhameed, O. M. Alqubori, A. G. Atta, A collocation procedure for the numerical treatment of FitzHugh–Nagumo equation using a kind of Chebyshev polynomials, AIMS Math., 10 (2025), 1201–1223. https://doi.org/10.3934/math.2025057 doi: 10.3934/math.2025057
    [45] R. M. Hafez, H. M. Ahmed, O. M. Alqubori, A. K. Amin, W. M. Abd-Elhameed, Efficient spectral Galerkin and collocation approaches using telephone polynomials for solving some models of differential equations with convergence analysis, Mathematics, 13 (2025), 918. https://doi.org/10.3390/math13060918 doi: 10.3390/math13060918
    [46] W. M. Abd-Elhameed, Y. H. Youssri, A. G. Atta, Adopted spectral Tau approach for the time-fractional diffusion equation via seventh-kind Chebyshev polynomials, Bound. Value Probl., 2024 (2024), 102. https://doi.org/10.1186/s13661-024-01907-6 doi: 10.1186/s13661-024-01907-6
    [47] W. M. Abd-Elhameed, O. M. Alqubori, A. K. Al-Harbi, M. H. Alharbi, A. G. Atta, Generalized third-kind Chebyshev Tau approach for treating the time fractional Cable problem, Electron. Res. Arch., 32 (2024), 6200–6224. https://doi.org/10.3934/era.2024288 doi: 10.3934/era.2024288
    [48] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 198 (1998).
    [49] A. G. Atta, Spectral collocation approach with shifted Chebyshev third-kind series approximation for nonlinear generalized fractional Riccati equation, Int. J. Appl. Comput. Math., 10 (2024), 59. https://doi.org/10.1007/s40819-024-01696-7 doi: 10.1007/s40819-024-01696-7
    [50] W. M. Bell, Special functions for scientists and engineers, Dover Publ., 2004.
    [51] Z. Odibat, S. Momani. Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order, Chaos Soliton. Fract., 36 (2008), 167–174. https://doi.org/10.1016/j.chaos.2006.06.041 doi: 10.1016/j.chaos.2006.06.041
    [52] S. R. Saratha, M. Bagyalakshmi, G. S. S. Krishnan, Fractional generalised homotopy analysis method for solving nonlinear fractional differential equations, Comput. Appl. Math., 39 (2020), 112. https://doi.org/10.1007/s40314-020-1133-9 doi: 10.1007/s40314-020-1133-9
    [53] E. U. Haq, M. Ali, A. S. Khan, On the solution of fractional Riccati differential equations with variation of parameters method, Eng. Appl. Sci. Lett., 3 (2020), 1–9. https://doi.org/10.30538/psrp-easl2020.0041 doi: 10.30538/psrp-easl2020.0041
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(650) PDF downloads(35) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog