Research article

Leader-follower consensus of a fractional-order multi-agent system based on event-triggered control and extended state observer

  • Published: 10 July 2025
  • MSC : 34D23, 34H05, 93A16, 93D05

  • A leader-follower consensus of a fractional-order multi-agent system with external disturbances is addressed throughout this paper. To suppress disturbance, we established a predictive extended state observer and designed an event-triggered control. Utilizing the Lyapunov method along with stability theory for fractional-order systems, we constructed a sufficient condition to attain a leader-follower consensus. Furthermore, we demonstrated that Zeno behavior does not appear during the triggering process. Last, we performed some numerical simulations to confirm the effectiveness of the control strategy.

    Citation: Xingyun Shi, Xuqiong Luo. Leader-follower consensus of a fractional-order multi-agent system based on event-triggered control and extended state observer[J]. AIMS Mathematics, 2025, 10(7): 15785-15810. doi: 10.3934/math.2025707

    Related Papers:

  • A leader-follower consensus of a fractional-order multi-agent system with external disturbances is addressed throughout this paper. To suppress disturbance, we established a predictive extended state observer and designed an event-triggered control. Utilizing the Lyapunov method along with stability theory for fractional-order systems, we constructed a sufficient condition to attain a leader-follower consensus. Furthermore, we demonstrated that Zeno behavior does not appear during the triggering process. Last, we performed some numerical simulations to confirm the effectiveness of the control strategy.



    加载中


    [1] R. Mu, A. Wei, H. Li, Z. Wang, Event-triggered leader-following consensus for multi-agent systems with external disturbances under fixed and switching topologies, IET Control Theory Appl., 14 (2020), 1486–1496. https://doi.org/10.1049/iet-cta.2019.0925} doi: 10.1049/iet-cta.2019.0925
    [2] Y. Luo, X. Xiao, J. Cao, A. Li, G. Lin, Event-triggered guaranteed cost consensus control for second-order multi-agent systems based on observers, Inform. Sci., 546 (2021), 283–297. https://doi.org/10.1016/j.ins.2020.08.010 doi: 10.1016/j.ins.2020.08.010
    [3] B. Yang, H. Yan, L. Zeng, X. Zhan, K. Shi, Decoupled design of distributed event-triggered circle formation control for multi-agent system, Internat. J. Systems Sci., 53 (2022), 3205–3214. https://doi.org/10.1080/00207721.2022.2076174 doi: 10.1080/00207721.2022.2076174
    [4] W. Lin, S. Peng, Z. Fu, T. Chen, Z. Gu, Consensus of fractional-order multi-agent systems via event-triggered pinning impulsive control, Neurocomputing, 494 (2022), 409–417. https://doi.org/10.1016/j.neucom.2022.04.099 doi: 10.1016/j.neucom.2022.04.099
    [5] J. Liu, N. Zhou, K. Qin, B. Chen, Y. Wu, K. Choi, Distributed optimization for consensus performance of delayed fractional-order double-integrator multi-agent systems, Neurocomputing, 522 (2023), 105–115. https://doi.org/10.1016/j.neucom.2022.12.005 doi: 10.1016/j.neucom.2022.12.005
    [6] J. Ren, Q. Song, Y. Gao, M. Zhao, G. Lu, Leader-following consensus of nonlinear singular multi-agent systems under signed digraph, Internat. J. Systems Sci., 52 (2021), 277–290. https://doi.org/10.1080/00207721.2020.1825873 doi: 10.1080/00207721.2020.1825873
    [7] Y. Zhong, A. Khan, M. A. Javeed, H. Raza, W. Ul Hassan, A. U. K. Niazi, et al., Securing consensus in fractional-order multi-agent systems: Algebraic approaches against Byzantine attacks, Heliyon, 10 (2024), e40335. https://doi.org/10.1016/j.heliyon.2024.e40335 doi: 10.1016/j.heliyon.2024.e40335
    [8] A. Khan, M. A. Javeed, A. U. K. Niazi, S. Rehman, W. Ul Hassan, Y. Zhong, A robust control framework for multi-agent systems under Byzantine attacks using hybrid event-triggered techniques, Ain Shams Eng. J., 15 (2024), 103149. https://doi.org/10.1016/j.asej.2024.103149 doi: 10.1016/j.asej.2024.103149
    [9] X. Yang, W. Zhao, J. Yuan, T. Chen, C. Zhang, L. Wang, Distributed optimization for fractional-order multi-agent systems based on adaptive backstepping dynamic surface control technology, Fractal Fract., 6 (2022), 642. https://doi.org/10.3390/fractalfract6110642 doi: 10.3390/fractalfract6110642
    [10] B. Zhou, Y. Yang, L. Li, X. Xu, R. Yang, Bipartite consensus for second-order multi-agent systems with external disturbances via constraint data-sampled impulsive method, Commun. Nonlinear Sci. Numer. Simul., 109 (2022), 106314. https://doi.org/10.1016/j.cnsns.2022.106314 doi: 10.1016/j.cnsns.2022.106314
    [11] R. Yang, S. Liu, X. Li, Observer-based bipartite containment control of fractional multi-agent systems with mixed delays, Inform. Sci., 626 (2023), 204–222. https://doi.org/10.1016/j.ins.2023.01.025 doi: 10.1016/j.ins.2023.01.025
    [12] F. Sun, Y. Han, W. Zhu, J. Kurths, Group consensus for fractional-order heterogeneous multi-agent systems under cooperation-competition networks with time delays, Commun. Nonlinear Sci. Numer. Simul., 133 (2024), 107951. https://doi.org/10.1016/j.cnsns.2024.107951 doi: 10.1016/j.cnsns.2024.107951
    [13] B. Ning, Q. Han, X. Ge, Practical bipartite consensus for multi-agent systems: A barrier function-based adaptive sliding-mode control approach, J. Autom. Intell., 2 (2023), 14–19. https://doi.org/10.1016/j.jai.2023.100019 doi: 10.1016/j.jai.2023.100019
    [14] Q. Luo, H. Wang, N. Li, W. Zheng, Multi-unmanned surface vehicle model-free sliding mode predictive adaptive formation control and obstacle avoidance in complex marine environment via model-free extended state observer, Ocean Eng., 293 (2024), 116773. https://doi.org/10.1016/j.oceaneng.2024.116773 doi: 10.1016/j.oceaneng.2024.116773
    [15] H. Li, J. Cao, Observer-based output feedback event-triggered bounded consensus of multi-agent systems under DoS attacks, Commun. Nonlinear Sci. Numer. Simul., 131 (2024), 107843. https://doi.org/10.1016/j.cnsns.2024.107843 doi: 10.1016/j.cnsns.2024.107843
    [16] J. Zhang, D. Yang, H. Zhang, H. Su, Adaptive secure practical fault-tolerant output regulation of multiagent systems with DoS attacks by asynchronous communications, IEEE Trans. Netw. Sci. Eng., 10 (2023), 4046–4055. https://doi.org/10.1109/TNSE.2023.3281899 doi: 10.1109/TNSE.2023.3281899
    [17] T. Chen, F. Wang, C. Xia, Z. Chen, Containment control for second-order multi-agent systems with intermittent sampled position data under directed topologies, Knowl. Based Syst., 257 (2022), 109892. https://doi.org/10.1016/j.knosys.2022.109892 doi: 10.1016/j.knosys.2022.109892
    [18] F. Wang, N. Li, Y. Yang, Quantized-observer based consensus for fractional order multi-agent systems under distributed event-triggered mechanism, Math. Comput. Simul., 204 (2023), 679–694. https://doi.org/10.1016/j.matcom.2022.09.011 doi: 10.1016/j.matcom.2022.09.011
    [19] B. Chen, J. Hu, Y. Zhao, B. K. Ghosh, Leader-following consensus of linear fractional-order multi-agent systems via event-triggered control strategy, IFAC-PapersOnLine, 53 (2020), 2909–2914. https://doi.org/10.1016/j.ifacol.2020.12.964 doi: 10.1016/j.ifacol.2020.12.964
    [20] T. Feng, Y. Wang, L. Liu, B. Wu, Observer-based event-triggered control for uncertain fractional-order systems, J. Franklin Inst., 357 (2020), 9423–9441. https://doi.org/10.1016/j.jfranklin.2020.07.017 doi: 10.1016/j.jfranklin.2020.07.017
    [21] Y. Chang, Q. Liu, X. Zhang, Y. Qi, H. Zhao, Output feedback consensus for input-delayed nonlinear multi-agent systems via event-triggered communication, Commun. Nonlinear Sci. Numer. Simul., 131 (2024), 107811. https://doi.org/10.1016/j.cnsns.2023.107811 doi: 10.1016/j.cnsns.2023.107811
    [22] X. Zhao, H. Wu, J. Cao, L. Wang, Prescribed-time synchronization for complex dynamic networks of piecewise smooth systems: A hybrid event-triggering control approach, Qual. Theory Dyn. Syst., 24 (2025), 11. https://doi.org/10.1007/s12346-024-01166-x doi: 10.1007/s12346-024-01166-x
    [23] X. You, M. Shi, B. Guo, Y. Zhu, W. Lai, S. Dian, et al., Event-triggered adaptive fuzzy tracking control for a class of fractional-order uncertain nonlinear systems with external disturbance, Chaos Solitons Fract., 161 (2022), 112393. https://doi.org/10.1016/j.chaos.2022.112393 doi: 10.1016/j.chaos.2022.112393
    [24] X. Zhang, S. Chen, J. Zhang, Adaptive sliding mode consensus control based on neural network for singular fractional order multi-agent systems, Appl. Math. Comput., 343 (2022), 127442. https://doi.org/10.1016/j.amc.2022.127442 doi: 10.1016/j.amc.2022.127442
    [25] X. Zhang, J. Zhang, W. Huang. P. Shi, Non-fragile sliding mode observer based fault estimation for interval type-2 fuzzy singular fractional order systems, Internat. J. Systems Sci., 54 (2023), 1451–1470. https://doi.org/10.1080/00207721.2023.2177904 doi: 10.1080/00207721.2023.2177904
    [26] Q. Wang, C. Jiang, N. Zhang, Y. Wang, Disturbance observer-based sliding mode control strategy of PMSM against mismatched disturbance, Franklin Open, 7 (2024), 100118. https://doi.org/10.1016/j.fraope.2024.100118 doi: 10.1016/j.fraope.2024.100118
    [27] E. Dilmen, State space LS-SVM as a disturbance observer in sliding mode control of a quadrotor UAV, IFAC-PapersOnLine, 56 (2023), 3086–3091. https://doi.org/10.1016/j.ifacol.2023.10.1439 doi: 10.1016/j.ifacol.2023.10.1439
    [28] Y. Li, Z. Qin, H. Zhu, S. Peeta, X. Gao, Platoon control of connected vehicles with heterogeneous model structures considering external disturbances, Green Energy Intell. Transport., 1 (2022), 100038. https://doi.org/10.1016/j.geits.2022.100038 doi: 10.1016/j.geits.2022.100038
    [29] X. Liang, Z. Yao, Y. Ge, J. Yao, Disturbance observer based actor-critic learning control for uncertain nonlinear systems, Chinese J. Aeronaut., 36 (2023), 271–280. https://doi.org/10.1016/j.cja.2023.06.028 doi: 10.1016/j.cja.2023.06.028
    [30] Y. Xie, B. Zhao, X. Yao, Refined disturbance observer based prescribed performance fixed-time control of high-speed EMS trains with track irregularities, High-speed Railway, 1 (2023), 171–178. https://doi.org/10.1016/j.hspr.2023.09.001 doi: 10.1016/j.hspr.2023.09.001
    [31] Z. S. Aghayan, A. Alfi, A. M. Lopes, Disturbance observer-based delayed robust feedback control design for a class of uncertain variable fractional-order systems: Order-dependent and delay-dependent stability, ISA Trans., 138 (2023), 20–36. https://doi.org/10.1016/j.isatra.2023.03.008 doi: 10.1016/j.isatra.2023.03.008
    [32] R. Mu, A. Wei, H. Li, Z. M. Wang, Event-triggered leader-following consensus for multi-agent systems with external disturbances under fixed and switching topologies, IET Control Theory Appl., 14 (2020), 1486–1496. https://doi.org/10.1049/iet-cta.2019.0925 doi: 10.1049/iet-cta.2019.0925
    [33] C. Ma, J. Wang, Applicability analysis of extended state observer-based control for systems subject to parametric disturbances, ISA Trans., 130 (2022), 226–234. https://doi.org/10.1016/j.isatra.2022.03.026 doi: 10.1016/j.isatra.2022.03.026
    [34] G. Wu, Y. Ding, T. Tahsin, I. Atilla, Adaptive neural network and extended state observer-based non-singular terminal sliding modetracking control for an underactuated USV with unknown uncertainties, Appl. Ocean Res., 135 (2023), 103560. https://doi.org/10.1016/j.apor.2023.103560 doi: 10.1016/j.apor.2023.103560
    [35] X. Shen, J. Hu, W. Xue, B. Meng, Finite-time output consensus control of nonlinear uncertain multi-agent systems via extended state observer, Syst. Control Lett., 194 (2024), 105967. https://doi.org/10.1016/j.sysconle.2024.105967 doi: 10.1016/j.sysconle.2024.105967
    [36] B. Thai, W. Youn, Enhancing tracking performance of motion control based on a novel fuzzy adaptive finite time extended state observer subject to uncertainties and measurement noises, Measurement, 253 (2025), 117624. https://doi.org/10.1016/j.measurement.2025.117624 doi: 10.1016/j.measurement.2025.117624
    [37] X. Meng, B. Jiang, H. R. Karimi, C. Gao, Leader-follower sliding mode formation control of fractional-order multi-agent systems: A dynamic event-triggered mechanism, Neurocomputing, 557 (2023), 126691. https://doi.org/10.1016/j.neucom.2023.126691 doi: 10.1016/j.neucom.2023.126691
    [38] B. Ning, Q. Han, Z. Zuo, Bipartite consensus tracking for second-order multiagent systems: A time-varying function-based preset-time approach, IEEE Trans. Automat. Control, 66 (2021), 2739–2745. https://doi.org/10.1109/TAC.2020.3008125 doi: 10.1109/TAC.2020.3008125
    [39] N. Zhao, X. Zhan, J. Wu, T. Han, H. Yan, Guaranteed-performance consensus control for multi-agent systems with external disturbances via event-triggered strategy, Neurocomputing, 574 (2024), 127268. https://doi.org/10.1016/j.neucom.2024.127268 doi: 10.1016/j.neucom.2024.127268
    [40] W. Ren, R. W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE Trans. Automat. Control, 50 (2005), 655–661. https://doi.org/10.1109/TAC.2005.846556 doi: 10.1109/TAC.2005.846556
    [41] I. Podlubny, Fractional differential equations, New York: Academic Press, 1998.
    [42] M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A. Gallegos, R. Castro-Linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 650–659. https://doi.org/10.1016/j.cnsns.2014.10.008 doi: 10.1016/j.cnsns.2014.10.008
    [43] D. S. Bernstein, Matrix mathematics: Theory, facts, and formulas, 2 Eds., Princeton: Princeton University Press, 2009.
    [44] M. Wu, Y. He, J. She, Stability analysis and robust control of time-delay systems, Heidelberg: Springer Berlin, 2010. http://dx.doi.org/10.1007/978-3-642-03037-6
    [45] X. Peng, H. Wu, K. Song, J. Shi, Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays, Neural Netw., 94 (2017), 46–54. https://doi.org/10.1016/j.neunet.2017.06.011 doi: 10.1016/j.neunet.2017.06.011
    [46] S. Liu, W. Jiang, X. Li, X. Zhou, Lyapunov stability analysis of fractional nonlinear systems, Appl. Math. Lett., 51 (2016), 13–19. https://doi.org/10.1016/j.aml.2015.06.018 doi: 10.1016/j.aml.2015.06.018
    [47] S. Boyd, L. Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, In: Studies in applied mathematics, 1994. https://doi.org/10.1137/1.9781611970777
    [48] C. Wang, Z. Zuo, Z. Qi, Z. Ding, Predictor-based extended-state-observer design for consensus of MASs with delays and disturbances, IEEE Trans. Cybernet., 49 (2019), 1259–1269. https://doi.org/10.1109/TCYB.2018.2799798 doi: 10.1109/TCYB.2018.2799798
    [49] X. Chen, Y. Chen, B. Zhang, D. Qiu, A modeling and analysis method for fractional-order DC–DC converters, IEEE Trans. Power Electron., 32 (2017), 7034–7044. https://doi.org/10.1109/TPEL.2016.2628783 doi: 10.1109/TPEL.2016.2628783
    [50] A. G. Radwana, A. A. Emirac, A. M. AbdelAtyd, A. T. Azar, Modeling and analysis of fractional order DC-DC converter, ISA Trans., 82 (2018), 184–199. https://doi.org/10.1016/j.isatra.2017.06.024 doi: 10.1016/j.isatra.2017.06.024
    [51] K. Aseem, S. S. Kumar, Closed loop control of DC-DC converters using PID and FOPID controllers, Int. J. Power Electronics Drive Syst., 11 (2020), 1323–1332. https://doi.org/10.11591/ijpeds.v11.i3.pp1323-1332 doi: 10.11591/ijpeds.v11.i3.pp1323-1332
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(832) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog