
A path in a graph encompassing its whole vertex set is called Hamiltonian. Such a path with sharing the same initial and terminal vertices is called a Hamiltonian cycle. A graph comprising a Hamiltonian path (resp. cycle) is said to be traceable (resp. Hamiltonian). Graphs possessing Hamiltonian paths between every pair of their vertices are said to be Hamilton-connected. The computational complexity of evaluating a graph to be Hamilton-connected is NP-complete. A detour is the longest path in a graph. The detour index is the sum of the length of detours between every unordered pair of vertices. Computing the detour index of a graph is an NP-complete problem as well. A finite subset P⊂Rε is called a convex polytope if P is a convex hull. In this paper, we devised two distinct methods to prove a graph to be Hamilton-connected and employed these methods to construct some infinite families of Hamilton-connected convex polytopes. The convex polytope Bε has been shown to be non-Hamilton-connected in the literature. We showed that the existing proof for Bε is false and showed that this family is, in fact, Hamilton-connected. The paper is concluded with study implications followed by some future directions.
Citation: Sakander Hayat, Bagus Imanda, Asad Khan, Mohammed J. F. Alenazi. Three infinite families of Hamilton-connected convex polytopes and their detour index[J]. AIMS Mathematics, 2025, 10(5): 12343-12387. doi: 10.3934/math.2025559
[1] | Suliman Khan, Sakander Hayat, Asad Khan, Muhammad Yasir Hayat Malik, Jinde Cao . Hamilton-connectedness and Hamilton-laceability of planar geometric graphs with applications. AIMS Mathematics, 2021, 6(4): 3947-3973. doi: 10.3934/math.2021235 |
[2] | Milica Anđelić, Tamara Koledin, Zoran Stanić . Notes on Hamiltonian threshold and chain graphs. AIMS Mathematics, 2021, 6(5): 5078-5087. doi: 10.3934/math.2021300 |
[3] | Ali N. A. Koam, Adnan Khalil, Ali Ahmad, Muhammad Azeem . Cardinality bounds on subsets in the partition resolving set for complex convex polytope-like graph. AIMS Mathematics, 2024, 9(4): 10078-10094. doi: 10.3934/math.2024493 |
[4] | Adnan Khali, Sh. K Said Husain, Muhammad Faisal Nadeem . On bounded partition dimension of different families of convex polytopes with pendant edges. AIMS Mathematics, 2022, 7(3): 4405-4415. doi: 10.3934/math.2022245 |
[5] | Wenke Zhou, Guo Chen, Hongzhi Deng, Jianhua Tu . Enumeration of dissociation sets in grid graphs. AIMS Mathematics, 2024, 9(6): 14899-14912. doi: 10.3934/math.2024721 |
[6] | Xia Liu . A related problem on s-Hamiltonian line graphs. AIMS Mathematics, 2022, 7(10): 19553-19561. doi: 10.3934/math.20221073 |
[7] | Zhen Lin . The biharmonic index of connected graphs. AIMS Mathematics, 2022, 7(4): 6050-6065. doi: 10.3934/math.2022337 |
[8] | Shama Liaqat, Zeeshan Saleem Mufti, Yilun Shang . Newly defined fuzzy Misbalance Prodeg Index with application in multi-criteria decision-making. AIMS Mathematics, 2024, 9(8): 20193-20220. doi: 10.3934/math.2024984 |
[9] | Hongzhuan Wang, Xianhao Shi, Ber-Lin Yu . On the eccentric connectivity coindex in graphs. AIMS Mathematics, 2022, 7(1): 651-666. doi: 10.3934/math.2022041 |
[10] | Kooi-Kuan Yoong, Roslan Hasni, Gee-Choon Lau, Muhammad Ahsan Asim, Ali Ahmad . Reflexive edge strength of convex polytopes and corona product of cycle with path. AIMS Mathematics, 2022, 7(7): 11784-11800. doi: 10.3934/math.2022657 |
A path in a graph encompassing its whole vertex set is called Hamiltonian. Such a path with sharing the same initial and terminal vertices is called a Hamiltonian cycle. A graph comprising a Hamiltonian path (resp. cycle) is said to be traceable (resp. Hamiltonian). Graphs possessing Hamiltonian paths between every pair of their vertices are said to be Hamilton-connected. The computational complexity of evaluating a graph to be Hamilton-connected is NP-complete. A detour is the longest path in a graph. The detour index is the sum of the length of detours between every unordered pair of vertices. Computing the detour index of a graph is an NP-complete problem as well. A finite subset P⊂Rε is called a convex polytope if P is a convex hull. In this paper, we devised two distinct methods to prove a graph to be Hamilton-connected and employed these methods to construct some infinite families of Hamilton-connected convex polytopes. The convex polytope Bε has been shown to be non-Hamilton-connected in the literature. We showed that the existing proof for Bε is false and showed that this family is, in fact, Hamilton-connected. The paper is concluded with study implications followed by some future directions.
In this paper, all graphs are assumed to be simple, finite, connected, and without loops. Any terms not explicitly defined can be found in Section 2.
Ore in 1963 [24] was the first graph-theorist who put forward the notion of Hamilton-connected structures, sparking significant research into the topics of Hamilton-connectedness and Hamiltonicity. Computational complexity of evaluating a graph to be Hamiltonian-connected or even Hamiltonian is categorized as NP-complete [11]. A study of cubic Hamiltonian graphs was conducted by Frucht [9] who delivered their canonical representations. In 1993, Wei [34] provided valency restrictions, which ensures a graph to possess pair-wise Hamiltonian paths. Wei [34] also demonstrated that any 3-connected graph meeting these conditions have to satisfy Hamilton-connectedness property. Yang et al. [38] presented a proof for Hamiltonicity of generalized torus graphs. Moreover, Hamiltonicity of triangular grid graphs was explored by Gordon et al. [12]. Additionally, Hamiltonian and super-Eulerian graphs were explored by Yang et al. [37] who pinpointed forbidden subgraphs in these structures. For more on applications of Hamiltonian paths and detours in communication systems and network design, we refer to [6,13,31,39].
The Hamilton-connectivity of block graph's square was proven by Chartrand et al. [7]. Hamiltonian-connected tournament structures were researched by Thomasson [30]. Adequate conditions for graphs to possess Hamilton-connectedness structure were studied by Kewen et al. [18]. Zhou et al. [40] established Hamilton-connectivity conditions based on signless Laplacian spectral radius, adjacency spectral radius, and edge count. The Harary and Wiener topological invariants of large-diametrical Hamilonian-connected graphs were computed by Zhou et al. [42]. A spectral analogy of Erdös' theorems was explored by Wei et al. [36] for Hamiltonian-connected graphs. The alphabet-grid graph and its Hamilton-connectivity was investigated by Hung et al. [16]. An extension of Nikiforov and Fiedler's results was derived by Zhou et al. [41] who considered Hamiltonian-connected graphs to have sufficiently-large smallest valency and put forward a spectral condition with respect to the signless Laplacian matrix. Network coherence is studied by Liu et al. [23] for 2p-tree networks.
Convex polytopes' graphs are constructed by retaining the vertex-vertex adjacency as well as vertex-edge incidence relations. Bača [2,3,4] is among the first mathematician to study these geometric graphs. Bača in [4] and [3] investigated convex polytopes for their magic labeling, as well as graceful and anti-graceful labeling. Later, in [2], his focus was shifted to anti-magic face labeling. Imran et al. [17] determined the exact value of the metric dimension for several classes of convex polytopes and classified it as constant. Raza et al. [27] and Raza et al. [28] explored the fault-tolerance and vertex-edge resolvability in convex polytopes, respectively. Raza et al. [26] and Simić et al. [29] computed exact values of the locating-domination number of some classes of convex polytopes and established tight bounds for some other families.
In structure-property modeling, Lukovits [20] presented a strong applicability of the detour index in chemistry. Trinajstić et al. [33] expanded on the detour index's applications to the Wiener index by conducting a comparative test, assessing its usefulness in predicting the boiling points of hydrocarbons and organic compounds. Additionally, Rücker and Rücker [25] employed the detour index to forecast the boiling points in alkanes.
Lukovits et al. [22] introduced an algorithm for tracing detours between two vertices in a graph and applied it to compute its detour indices representing fused bicyclic skeletons. Furthermore, Rücker et al. [25] and Trinajstić et al. [32] developed computational methods for identifying detours and calculating the detour index of graphs. It is noted in [14] that determining a graph's detour index is an NP-complete problem. Trinajstić et al. [32] put forward a computational method for the detour matrix for graphs of manageable size, where the detour index is from the detour matrix. The computational complexity of the longest path problem has been investigated by Fomin et al. [10].
Determining whether a graph is Hamilton-connected or calculating its detour index are known to be NP-complete problems [11,14]. Due to this complexity, it is natural to focus on these problems for specific graph families. Here, we investigate the Hamilton-connectivity of certain infinite families of convex polytopes. We also generate certain families of Hamilton-connected convex polytopes and employ two distinct proof techniques to establish our results. Notably, we correct a significant error made by Hayat et al. [15], who incorrectly claimed that the convex polytope Bε is not Hamilton-connected, whereas we prove that the family Bε is indeed Hamilton-connected.
Next, we remark on the computational complexity of the longest path problem above the diameter.
Theorem 1.1. The problem of the Longest Path above Diameter is NP-complete.
Proof. Let G be a graph with n≥2 vertices. We construct graph G′ as follows (see Figure 1):
● Construct a copy of G.
● Construct a vertex u and make it adjacent to every vertex of the copy of G.
● Construct two vertices s and t, and then (s,u) and (u,t) paths Ps and Pt, respectively, of length n≥1.
Notice that diam(G)=length(Ps)+length(Pt)=2n−2. It is easy to verify that G′ has a path of length 2n−1 if and only if G has a path of length n−1, that is, G is Hamiltonian. Because the Hamiltonian path is well-known to be NP-complete [11], we conclude that the Longest Path above Diameter is NP-complete.
A graph Ω is defined as an ordered pair Ω=(V(Ω),E(Ω)), where V(Ω) represents the vertex set (i.e., a set of points called vertices) and E(Ω)⊆(V(Ω)2) denotes the edge set (i.e., a set of lines connecting the points, known as edges). The number of vertices, denoted by ε:=|V(Ω)|, is referred to as the order of Ω. For two vertices y,z∈V(Ω), the notation y∼z indicates that y and z are adjacent, meaning they are connected by an edge. For a subset Y⊆V(Ω) and vertices w,x∈V(Ω), if Z=zi:1≤i≤p, then w∼zi:1≤i≤p∼x signifies that w∼z1 and zp∼x, while the adjacency between the intermediate vertices zi (2≤i≤p) remains unchanged. For a positive integer ε∈Z+, we use ε∣2 (respectively, ε∤2) to indicate that ε is even (respectively, odd).
A cycle in a graph Ω is called Hamiltonian if it passes through all vertices of Ω exactly once. Similarly, a path in Ω is referred to as a Hamiltonian path if it visits every vertex in the graph. Not all graphs contain a Hamiltonian cycle; for instance, any tree is acyclic and therefore cannot have a Hamiltonian cycle, although it may contain a Hamiltonian path. A graph Ω is considered Hamiltonian if it possesses a Hamiltonian cycle. By definition, cycle graphs and clique graphs are Hamiltonian. A graph is said to be traceable if it has a Hamiltonian path. While every Hamiltonian graph is traceable, some traceable graphs are not Hamiltonian. A classic example is the Petersen graph, which contains a Hamiltonian path but lacks a Hamiltonian cycle. A graph is defined as Hamilton-connected if there is a Hamiltonian path between every pair of vertices in Ω.
Let Ω be a graph. A subset S⊆V(Ω) (resp. T⊆E(Ω)) is called a vertex-cut (resp. edge-cut) if removing S (resp. T) from Ω results in a graph with more than one connected component. A vertex cut of size 1 corresponds to an articulation vertex. The vertex connectivity κ(Ω) (resp. edge connectivity λ(Ω)) is defined as the minimum cardinality of a vertex-cut (resp. edge-cut) in Ω. A graph is said to be k-vertex-connected (resp. k-edge-connected) if its vertex-connectivity (resp. edge-connectivity) is greater than or equal to a fixed number k. In other words, a graph is k-vertex-connected or simply k-connected if there is no vertex-cut of cardinality k−1 in Ω.
Let δ(Ω) be the minimum degree of Ω. Whitney [35] in 1932 showed the following result:
Theorem 2.1. [35] For any graph Ω, the following inequalities hold:
κ(Ω)≤λ(Ω)≤δ(Ω). |
The following well-known Kužel-Xiong Theorem was shown by Kužel in his Ph.D. thesis [19].
Theorem 2.2. [19] Every 4-connected line graph is Hamiltonian if and only if it is Hamilton-connected.
Beineke [5] independently gave the following characterization of line graphs.
Theorem 2.3. The following statement are equivalent for a graph Ω:
(i) Ω is the line graph of some graph.
(ii) The nine graphs in Figure 2 are forbidden in Ω, i.e., none of these graphs can be induced subgraphs of Ω.
See page 47 of Harary's book [14] for more information on this characterization.
For a graph Ω, let δ(x,y) represent the length of the longest path (i.e., detour) between vertices x and y in Ω. The detour index [21] is defined as the sum of the detours between all unordered pairs of vertices in Ω. The detour index of a graph Ω is typically denoted by ω(Ω).
ω(Ω)=∑{y,z}⊂V(Ω)δ(y,z). |
We end this section with an important and well-known result bounding the detour index in terms of graph parameters.
Theorem 2.4. [8] Let Ω be an n-vertex graph with n≥3 and ω(Ω) be its detour index. Then
(n−1)2≤ω(Ω)≤n(n−1)22 |
with left equality holds if and only if Ω is Hamilton-connected, and right inequality holds if and only if Ω≅Sn.
In this section, we introduce a novel family of convex polytopes called the convex polytope Eε of dimension ε. Here, we aim to prove Hamilton-connectedness of Eε and employ it to evaluate its detour index.
Assuming the subscript r to be modulo ε, the vertex/edge sets for Eε are:
V(Eε)={ar,br,cr:1≤r≤ε},E(Eε)={arar+1,arbr,arbr+1,brbr+1,brcr,brcr+1,crcr+1:1≤r≤ε}. |
With its vertices' labeling, Figure 3 delivers the construction of Eε. For our proofs, we define panels 1, 2, and 3 to comprise the vertices ar, br, and cr, respectively.
The next theorem delivers the main result of this section. The proof technique employs Theorem 2.2 by Kužel and Xiong [19], which asserts that a 4-connected Hamiltonian line graph is Hamilton-connected. Thus, we divide our proof for Ω in three steps: (1) Ω is a line graph; (2) Ω is 4-connected; and (3) Ω is Hamiltonian.
Theorem 3.1. If ε≥5, then Eε is Hamilton-connected.
Proof. Let Ω be the ε-dimensional convex polytope Eε. We divide the proof into a number of claims.
Claim 1: Ω is a line graph.
Note that Ω does not contain any of the nine forbidden subgraphs in Figure 2. Thus, by Theorem 2.3, Ω is a line graph. Moreover, it can be seen that Eε is the line graph of prism graph Cε×P2, which is also a family of convex polytopes (see Section 1).
Claim 2: For ε≥5, Ω is a 4-connected, i.e., κ(Ω)=4.
Note that Ω is a 4-regular graph. For z∈V(Ω), let S=NΩ(z)={z1,z2,z3,z4} represent the neighborhood of z in Ω. Observe that V∖Ω is disconnected, with z as an isolated connected component. This implies that κ(Ω)≤4. To demonstrate that κ(Ω)≥4, let S={v,w,x} be a subset of V(Ω), where v, w, and x are arbitrary vertices. We show that deleting S from Ω leaves the graph connected.
Here, we divide our discussion into a number of cases.
Case 1. Panels 1 or 3 of Ω comprise all three vertices of S.
In panels 1 or 3, the vertices v, w, and x may be arranged as either consecutive vertices, two adjacent vertices with one non-adjacent, or all three being non-adjacent. If v, w, and x are positioned in panel 1, their neighbors will be found in panels 1 and 2. Conversely, if they are in panel 3, the neighboring vertices will be in panels 2 and 3. In every situation, these neighboring vertices exhibit degrees of either two or three in the graph Ω−S. This demonstrates that S does not constitute a vertex cut set for Ω, as the graph Ω−S continues to be connected.
Case 2. All three vertices of S are situated in panel 2 of Ω.
In panel 2, the vertices v, w, and x can be either consecutive or non-consecutive. Regardless of their arrangement, the neighboring vertices are in panels 1 and 3 if they are part of panel 2. All neighboring vertices in panels 1 or 3 have degrees of either 2 or 3 in Ω−S. Examining the structure of Ω as shown in Figure 3, it is evident that S does not serve as a vertex cut set for Ω, since Ω−S remains connected.
Case 3. Two vertices of S are positioned in either panel 1 or panel 3, and the remaining vertex is in panel 2.
If all three vertices of S are adjacent, forming a triangle, then the neighbors of v, w, and x are found in panels 1, 2, or 3 of Ω, each having degrees of either 2 or 3 in Ω−S. Additionally, if the two vertices in panel 1 or 3 are adjacent while the vertex in panel 2 is non-adjacent to the other two vertices of S, the neighbors of v, w, and x will also belong to panels 1, 2, or 3, maintaining degrees of either 2 or 3 in Ω−S. Last, if the two vertices in panel 1 or 3 are non-adjacent, the number of neighbors for v, w, and x increases, with these neighbors still having degrees of either 2 or 3 in Ω−S. Therefore, as shown in Figure 3, S does not constitute a vertex cut set in this scenario either, since Ω−S remains connected.
Case 4. Two vertices of S are situated in panel 2, while the third vertex is located in either panel 1 or panel 3.
This scenario is quite straightforward since the two vertices in panel 2 cannot be adjacent. Consequently, all neighbors of v, w, and x are present in panels 1, 2, and 3, irrespective of whether the remaining vertex is in panel 1 or panel 3. Each of these neighbors has a degree of at least 2, indicating that S does not function as a vertex cut set for Ω, as Ω−S remains connected.
Case 5. Each vertex of S is located in a different panel in Ω.
Applying the same reasoning as in the previous cases, we conclude that Ω−S remains connected in this scenario as well.
By integrating our findings from Cases 1–5, we determine that no set of three vertices in Ω can serve as a vertex cut set. This establishes that κ(Ω)≥4. When combined with the result κ(Ω)≤4, this completes the proof of Claim 2.
Claim 3: Ω is a Hamiltonian.
The following is the Hamiltonian cycle in Ω:
x=cε∘{cε−s:1≤s≤ε−1}∘{bsas:1≤s≤ε−1}∘aεbεcε=x. |
Claims 1–3 show that Ω is a family of Hamiltonian, 4-connected line graphs. By using Theorem 2.2, Ω is Hamilton-connected.
Note that |V(Eε)|=3ε. Theorems 2.4 and 3.1, together with |V(Eε)|=3ε, deliver the following corollary:
Corollary 3.1. Assuming ε≥5, we have
ω(Eε)=3ε(3ε−1)22. |
Proof. Since |V(Eε)|=3ε. Theorem 2.4 with n=3ε finishes the proof.
In this section, we explore Hamilton-connectivity of the convex polytope Qε of dimension ε. It was introduced by Bača [3] in 1988. We, in this section, aim to prove Hamilton-connectedness of Qε and employ it to evaluate its detour index.
Assuming the subscript r to be modulo ε, the vertex/edge sets for Qε are:
V(Qε)={ar,br,cr,dr:1≤r≤ε},E(Qε)={arar+1,arbr,brbr+1,brcr,brcr+1,crdr,drdr+1:1≤r≤ε}. |
With its vertices' labeling, Figure 4 delivers the construction of Qε.
Here, we prove the main result, asserting that Qε is Hamilton-connected. The proof technique utilizes the methodology of Alspach and Liu [1] using the well-known Posa exchange in constructing Hamiltonian paths between every pair of vertices in a graph.
Theorem 4.1. Assuming ε≥6, the graph Qε is Hamilton-connected.
Proof. We show the result by constructing pairwise Hamiltonian paths between vertices of Qε. Assume Hp(w,z) is a Hamiltonian path between w,z∈V(Qε). Furthermore, assume Qε = A∪B∪C∪D such that A={a1,a2,…,aε}, B={b1,b2,…,bε}, C={c1,c2,…,cε} and D={d1,d2,…,dε}.
Case 1. w=a1 and z=ar,2≤r≤ε
Subcase 1.1. r = 2
Hp(w,z):w=a1∘{bjcs:1≤s≤ε−1}∘{dε−s:1≤s≤ε−1}∘dεcεbε∘ |
{aε−s:0≤s≤ε−2}=z. |
Subcase 1.2. r≡0(mod2), 2 < r < ε
Hp(w,z):w=a1∘{as:2≤s≤r−1}∘br−1∘{b2sc2sd2sd2s−1c2s−1b2s−1: |
max(1,r−22)≤s≤min(1,r−22)}∘cε∘{dε−s:0≤s≤ε−r+1}∘cr−1∘ |
{bjcs:r≤s≤ε−1}∘ bε∘{aε−s:0≤s≤ε−r}=z. |
Subcase 1.3. r≡1(mod2), 2 < r < ε−1
Hp(w,z):w=a1∘{as:2≤s≤r−1}∘{b2sc2sd2sd2s−1c2s−1b2s−1:max(1,r−12)≤s≤min(1,r−12)}∘ |
cε∘{dε−s:0≤s≤ε−r}∘cibr∘{bjcs:r+1≤s≤ε−1}∘bε∘{aε−s:0≤s≤ε−r}=z. |
Subcase 1.4. r=ε−1, and ε≡0(mod2)
Hp(w,z):w=a1∘{as:2≤s≤r−1}∘{b2sc2sd2sd2s−1c2s−1b2s−1:1≤s≤r−12}∘cε∘ |
{dε−s:0≤s≤ε−r}∘cibibεaεaε−1=z. |
Subcase 1.5. r = ε
Hp(w,z):w=a1∘{as:2≤s≤ε−1}∘bε−1∘{cε−sbε−s:2≤s≤ε−1}∘cεdε∘ |
{ds:1≤s≤ε−1}∘cε−1bεaε=z. |
Case 2. w=a1 and z=br,1≤r≤ε
Subcase 2.1. r = 1
Hp(w,z):w=a1∘{as:2≤s≤ε}∘bε∘{cε−sbε−s:1≤s≤ε−2}∘c1∘{ds:1≤s≤ε}∘cεb1=z. |
Subcase 2.2. r≡0(mod2), 2 ≤ r < ε
Hp(w,z):w=a1∘{as:2≤s≤ε}∘bε∘{cε−sbε−s:1≤s≤ε−r−2}∘br+1cr+1∘{ds:r+1≤s≤ε}∘ |
cε∘{b2s−1c2s−1d2s−1d2sc2sb2s:1≤s≤r2}=z. |
Subcase 2.3. r≡1(mod2), 2 < r < ε−1
Hp(w,z):w=a1∘{as:2≤s≤ε}∘bε∘{cε−sbε−s:1≤s≤ε−r−1}∘cr∘{ds:r≤s≤ε}∘ |
cε∘{b2s−1c2s−1d2s−1d2sc2sb2s:1≤s≤r−12}∘br=z. |
Subcase 2.4. r=ε−1, and ε≡0(mod2)
Hp(w,z):w=a1∘{as:2≤s≤ε}∘bεcε−1dε−1dεcε∘{b2s−1c2s−1d2s−1d2sc2sb2s:1≤s≤r−12}∘ |
br=z. |
Subcase 2.5. r = ε
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−2}∘b2c2d2d1c1b1cε∘{dε−s:0≤s≤ε−3}∘c3b3∘ |
{bjcs:4≤s≤ε−1}∘bε=z. |
Case 3. w=a1 and z=cr,1≤r≤ε
Subcase 3.1. r = 1
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−2}∘{bjcs:2≤s≤ε−1}∘bεb1cε∘{dε−s:0≤s≤ε−1}∘ |
d1c1=z. |
Subcase 3.2. r = 2
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−2}∘b2∘{bjcs:3≤s≤ε}∘b1c1d1∘{dε−s:0≤s≤ε−2}∘ |
c2=z. |
Subcase 3.3. r = 3
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−2}∘b2c2∘{ds:2≤s≤ε}∘d1c1b1∘ |
{cε−sbε−s:0≤s≤ε−4}∘b3c3=z. |
Subcase 3.4. r≡0(mod2), 3 < r < ε−1
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−2}∘{b2sc2sd2sd2s−1c2s−1b2s−1: |
max(1,r−22)≤s≤min(1,r−22)}∘br∘{bjcs:r+1≤s≤ε}∘b1c1d1∘{dε−s:0≤s≤ε−r}∘ |
cr=z. |
Subcase 3.5. r≡1(mod2), 3 < r < ε−1
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−2}∘{b2sc2sd2sd2s−1c2s−1b2s−1: |
max(1,r−32)≤s≤min(1,r−32)}∘br−1cr−1∘{ds:r−1≤s≤ε}∘d1c1b1∘ |
{cε−sbε−s:0≤s≤ε−r−1}∘bicr=z. |
Subcase 3.6. r = ε−1
Hp(w,z):w=a1∘{as:2≤s≤ε}∘bεcε∘{dε−s:0≤s≤ε−1}∘d1c1b1∘ |
{bjcs:2≤s≤ε−1}=z. |
Subcase 3.7. r = ε
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−2}∘{bjcs:2≤s≤ε−1}∘bεb1c1∘{ds:1≤s≤ε}∘ |
cε=z. |
Case 4. w=a1 and z=dr,1≤r≤ε
Subcase 4.1. r = 1
Hp(w,z):w=a1∘{as:1≤s≤ε}∘bε∘{cε−sbε−s:1≤s≤ε−1}∘cε∘ |
{dε−s:0≤s≤ε−1}=z. |
Subcase 4.2. r = 2
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−2}∘{bjcs:r≤s≤ε}∘b1c1d1∘ |
{dε−s:0≤s≤ε−2}=z. |
Subcase 4.3. r = 3
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−2}∘b2b1c1d1d2c2∘{bjcs:3≤s≤ε}∘ |
{dε−s:0≤s≤ε−3}=z. |
Subcase 4.4. r≡0(mod2), 3 < r < ε
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−2}∘{b2sc2sd2sd2s−1c2s−1b2s−1: |
max(1,r−22)≤s≤min(1,r−22)}∘{bjcs:r≤s≤ε}∘ b1c1d1∘{dε−s:0≤s≤ε−r}=z. |
Subcase 4.5. r≡1(mod2), 3 < r < ε
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−2}∘b2b1c1d1d2c2∘{b2s−1c2s−1d2s−1d2sc2sb2s: |
2≤s≤r−12}∘{bjcs:r≤s≤ε}∘{dε−s:0≤s≤ε−r}=z. |
Subcase 4.6. r = ε
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−2}∘{bjcs:2≤s≤ε}∘b1c1∘{ds:1≤s≤ε}=z. |
Case 5. w=b1 and z=ar,1≤r≤ε
Subcase 5.1. r = 1
Hp(w,z):w=b1cε∘{dε−s:0≤s≤ε−1}∘c1∘{bjcs:2≤s≤ε−1}∘bε∘{aε−s:0≤s≤ε−1}=z. |
Subcase 5.2. r = 2
Hp(w,z):w=b1∘{cε−sbε−s:0≤s≤ε−5}∘b4c4∘{ds:4≤s≤ε}∘d1c1b2c2d2d3c3b3∘ |
{as:3≤s≤ε}∘a1a2=z. |
Subcase 5.3. r≡0(mod2), 2 < r < ε−1
Hp(w,z):w=b1bεcεdεd1c1∘{b2sc2sd2sd2s+1c2s+1b2s+1:1≤s≤r−22}∘{aε−s:r+1≤s≤ε−1}∘ |
{aε−s:0≤s≤r−1}∘{bjcs:r+1≤s≤ε−1}∘{dε−s:1≤s≤ε−r}∘cibiar=z. |
Subcase 5.4. r≡1(mod2), 2 < r < ε−1
Hp(w,z):w={b2s−1c2s−1d2s−1d2sc2sb2s:1≤s≤r−12}∘{aε−s:r+1≤s≤ε−1}∘ |
{aε−s:0≤s≤r−1}∘{bjcs:r+1≤s≤ε}∘{dε−s:0≤s≤ε−r}∘cibiar=z. |
Subcase 5.5. r = ε−1
Hp(w,z):w=b1cε∘{dε−s:0≤s≤ε−1}∘c1∘{bjcs:2≤s≤ε−1}∘bεaε∘{as:1≤s≤ε−1}=z. |
Subcase 5.6. r = ε
Hp(w,z):w={bjcs:1≤s≤ε−3}∘{dε−s:3≤s≤ε−1}∘dεcεbεcε−1dε−1dε−2cε−2bε−2bε−1∘ |
{aε−s:1≤s≤ε−1}∘aε=z. |
Case 6. w=b1 and z=br,2≤r≤ε
Subcase 6.1. r = 2, and ε≡0(mod2)
Hp(w,z):w=b1∘{as:1≤s≤ε}∘{b2sc2sd2sd2s−1c2s−1b2s−1:max(2,ε2)≤s≤min(2,ε2)}∘ |
b3c2d2d1c1b2=z. |
Subcase 6.2. r = 2, and ε≡1(mod2)
Hp(w,z):w=b1cεdεdε−1cε−1bεaε∘{as:1≤s≤ε−3}∘bε−3cε−3bε−2aε−2aε−1bε−1cε−2dε−2dε−3∘ |
{d2s+1c2s+1b2s+1b2sc2sd2s:max(2,ε−52)≤s≤min(2,ε−52)}∘d3c3b3c2d2d1c1b2=z. |
Subcase 6.3. r = 3
Hp(w,z):w=b1∘{as:1≤s≤ε}∘bεcεdεd1c1b2c2∘{ds:2≤s≤ε−1}∘ |
{cε−sbε−s:1≤s≤ε−3}=z. |
Subcase 6.4. r≡0(mod2), 3 < r < ε
Hp(w,z):w={b2s−1c2s−1d2s−1d2sc2sb2s:1≤s≤r−22}∘{aε−s:ε−r+2≤s≤ε−1}∘ |
{aε−s:0≤s≤ε−r+1}∘br−1cr−1∘{ds:r−1≤s≤ε}∘{cε−sbε−s:0≤s≤ε−r}=z. |
Subcase 6.5. r≡1(mod2), 3 < r < ε
Hp(w,z):w=b1∘{as:1≤s≤ε}∘bεcεdεd1c1∘{b2sc2sd2sd2s+1c2s+1b2s+1:1≤s≤r−32}∘ |
br−1cr−1∘{ds:r≤s≤ε−1}∘{cε−sbε−s:1≤s≤ε−r}=z. |
Subcase 6.6. r = ε, and ε≡0(mod2)
Hp(w,z):w=b1c1d1d2c2b2a2a1∘{aε−s:0≤s≤ε−3}∘{b2s−1c2s−1d2s−1d2sc2sb2s: |
2≤s≤ε−12}=z. |
Subcase 6.7. r = ε, and ε≡1(mod2)
Hp(w,z):w=b1c1d1d2c2b2a2a1∘{aε−s:0≤s≤ε−5}∘b5c4b4a4a3b3c3d3d4d5c5∘ |
{b2sc2sd2sd2s+1c2s+1b2s+1:3≤s≤ε−12}=z. |
Case 7. w=b1 and z=cr,1≤r≤ε
Subcase 7.1. r = 1
Hp(w,z):w=b1a1∘{aε−s:0≤s≤ε−2}∘{bjcs:2≤s≤ε}∘{dε−s:0≤s≤ε−1}∘c1=z. |
Subcase 7.2. r = 2
Hp(w,z):w=b1a1∘{aε−s:0≤s≤ε−2}∘b2c1∘{ds:1≤s≤ε}∘{cε−sbε−s:0≤s≤ε−3}∘ |
c2=z. |
Subcase 7.3. r≡0(mod2), 2 < r < ε−1, and ε≡0(mod2)
Hp(w,z):w=b1∘{as:1≤s≤ε}∘{b2sc2sd2sd2s−1c2s−1b2s−1: |
max(r+22,ε2)≤s≤min(r+22,ε2)}∘br∘{cε−sbε−s:ε−r+1≤s≤ε−2}∘c1∘{ds:1≤s≤r}∘ |
cr=z. |
Subcase 7.4. r≡1(mod2), 2 < r < ε−1, and ε≡0(mod2)
Hp(w,z):w=b1∘{as:1≤s≤ε}∘{b2sc2sd2sd2s−1c2s−1b2s−1:max(r+32,ε2)≤s≤min(r+32,ε2)}∘ |
br+1cr+1∘{dε−s:ε−r−1≤s≤ε−1}∘c1∘{bjcs:2≤s≤r}=z. |
Subcase 7.5. r≡0(mod2), 2 < r < ε−1, and ε≡1(mod2)
Hp(w,z):w=b1∘{as:1≤s≤ε}∘{b2s+1c2s+1d2s+1d2sc2sb2s: |
max(r+22,ε−12)≤s≤min(r+22,ε−12)}∘br+1cr+1∘{dε−s:ε−r−1≤s≤ε−1}∘c1∘ |
{bjcs:2≤s≤r}=z. |
Subcase 7.6. r≡1(mod2), 2 < r < ε−1, and ε≡1(mod2)
Hp(w,z):w=b1∘{as:1≤s≤ε}∘{b2s+1c2s+1d2s+1d2sc2sb2s: |
max(r+12,ε−12)≤s≤min(r+12,ε−12)}∘br∘{cε−sbε−s:ε−r+1≤s≤ε−2}∘c1∘ |
{ds:1≤s≤r}∘cr=z. |
Subcase 7.7. r = ε−1
Hp(w,z):w=b1∘{as:1≤s≤ε}∘bεcε∘{dε−s:0≤s≤ε−1}∘c1∘{bjcs:2≤s≤ε−1}=z. |
Subcase 7.8. r = ε
Hp(w,z):w=b1∘{as:1≤s≤ε}∘bε∘{cε−sbε−s:1≤s≤ε−2}∘c1∘{ds:1≤s≤ε}∘cε=z. |
Case 8. w=b1 and z=dr,1≤r≤ε
Subcase 8.1. r = 1, ε≡0(mod2)
Hp(w,z):w=b1c1∘{b2sc2sd2sd2s+1c2s+1b2s+1:1≤s≤ε−22}∘{aε−s:1≤s≤ε−1}∘ |
aεbεcεdεd1=z. |
Subcase 8.2. r = 1, ε≡1(mod2)
Hp(w,z):w=b1∘{as:1≤s≤ε}∘{b2s+1c2s+1d2s+1d2sc2sb2s:max(1,ε−12)≤s≤min(1,ε−12)}∘ |
c1d1=z. |
Subcase 8.3. r = 2
Hp(w,z):w=b1∘{as:1≤s≤ε}∘bεcεdεd1c1∘{bjcs:2≤s≤ε−1}∘{dε−s:1≤s≤ε−2}=z. |
Subcase 8.4. r≡0(mod2), 2 < r < ε, and ε≡0(mod2)
Hp(w,z):w=b1∘{as:1≤s≤ε}∘{b2sc2sd2sd2s−1c2s−1b2s−1:max(r+22,ε2)≤s≤min(r+22,ε2)}∘ |
{cε−sbε−s:ε−r≤s≤ε−2}∘c1∘{ds:1≤s≤r}=z. |
Subcase 8.5. r≡1(mod2), 2 < r < ε, and ε≡0(mod2)
Hp(w,z):w={b2s−1c2s−1d2s−1d2sc2sb2s:1≤s≤r−12}∘{aε−s:ε−r+1≤s≤ε−1}∘ |
{aε−s:0≤s≤ε−r}∘{bjcs:r≤s≤ε}∘{dε−s:0≤s≤ε−r}=z. |
Subcase 8.6. r≡0(mod2), 2 < r < ε, and ε≡1(mod2)
Hp(w,z):w=b1∘{as:1≤s≤ε}∘bεcεdεd1c1∘{b2sc2sd2sd2s+1c2s+1b2s+1:1≤s≤r−22}∘ |
{bjcs:r≤s≤ε−1}∘{dε−s:1≤s≤ε−r}=z. |
Subcase 8.7. r≡1(mod2), 2 < r < ε, and ε≡1(mod2)
Hp(w,z):w=b1∘{as:1≤s≤ε}∘{b2s+1c2s+1d2s+1d2sc2sb2s: |
max(r+12,ε−12))≤s≤min(r+12,ε−12)}∘{cε−sbε−s:ε−r≤s≤ε−2}∘c1∘{ds:1≤s≤r}=z. |
Subcase 8.8. r = ε, and ε≡0(mod2)
Hp(w,z):w=b1cεbεaε∘{as:1≤s≤ε−1}∘{b2s+1c2s+1d2s+1d2sc2sb2s: |
max(1,ε−22)≤s≤min(1,ε−22)}∘ c1d1dε=z. |
Subcase 8.9. r = ε, and ε≡1(mod2)
Hp(w,z):w=b1c1d1d2c2b2a2a1∘{aε−s:0≤s≤ε−3}∘{b2s−1c2s−1d2s−1d2sc2sb2s: |
2≤s≤ε−12}∘bεcεdε=z. |
Case 9. w=c1 and z=ar,1≤r≤ε
Subcase 9.1. r = 1
Hp(w,z):w=c1∘{ds:1≤s≤ε}∘cεb1∘{bjcs:2≤s≤ε−1}∘bε∘{aε−s:0≤s≤ε−1}=z. |
Subcase 9.2. r = 2
Hp(w,z):w=c1∘{ds:1≤s≤ε}∘{cε−sbε−s:0≤s≤ε−2}∘b1a1∘{aε−s:0≤s≤ε−2}=z. |
Subcase 9.3. r = 3
Hp(w,z):w=c1∘{ds:1≤s≤ε}∘cεb1bε∘{cε−sbε−s:1≤s≤ε−2}∘a2a1∘ |
{aε−s:0≤s≤ε−3}=z. |
Subcase 9.4. r≡0(mod2), 3 < r < ε, and ε≡0(mod2)
Hp(w,z):w=c1d1∘{d2sc2sb2sa2sa2s−1b2s−1c2s−1d2s−1:max(r+22,ε2)≤s≤min(r+22,ε2)}∘ |
{d2sc2sb2sb2s−1c2s−1d2s−1:max(2,r2)≤s≤min(2,r2)}∘d2c2b2b1∘{as:1≤s≤r}=z. |
Subcase 9.5. r≡1(mod2), 3 < r < ε, and ε≡0(mod2)
Hp(w,z):w=c1∘{ds:1≤s≤r−1}∘cr−1∘{b2s−1c2s−1d2s−1d2sc2sb2s:r+12≤s≤ε2}∘ |
b1∘{bjcs:2≤s≤r−2}∘br−1∘{aε−s:ε−r+1≤s≤ε−1}∘{aε−s:0≤s≤ε−r}=z. |
Subcase 9.6. r≡0(mod2), 3 < r < ε, and ε≡1(mod2)
Hp(w,z):w=c1∘{ds:1≤s≤r−1}∘cr−1∘{b2sc2sd2sd2s+1c2s+1b2s+1:r2≤s≤ε−12}∘ |
b1∘{bjcs:2≤s≤r−2}∘br−1∘{aε−s:ε−r+1≤s≤ε−1}∘{aε−s:0≤s≤ε−r}=z. |
Subcase 9.7. r≡1(mod2), 3 < r < ε, and ε≡1(mod2)
Hp(w,z):w=c1∘{ds:1≤s≤r−2}∘{cε−sbε−s:ε−r+2≤s≤ε−2}∘b1∘{b2s+1c2s+1d2s+1d2sc2sb2s: |
max(r−12,ε−12)≤s≤min(r−12,ε−12)}∘{aε−s:ε−r+1≤s≤ε−1}∘{aε−s:0≤s≤ε−r}=z. |
Subcase 9.8. r = ε
Hp(w,z):w=c1∘{ds:1≤s≤ε}∘{cε−sbε−s:0≤s≤ε−2}∘b1∘{as:1≤s≤ε}=z. |
Case 10. w=c1 and z=br,1≤r≤ε
Subcase 10.1. r = 1
Hp(w,z):w=c1∘{ds:1≤s≤ε}∘cεb1bε∘{cε−sbε−s:1≤s≤ε−2}∘{as:2≤s≤ε}∘a1b1=z. |
Subcase 10.2. r = 2
Hp(w,z):w=c1d1∘{dε−s:0≤s≤ε−2}∘c2∘{bjcs:3≤s≤ε}∘b1a1∘{aε−s:0≤s≤ε−2}∘ |
b2=z. |
Subcase 10.3. r≡0(mod2), 2 < r < ε, and ε≡0(mod2)
Hp(w,z):w=c1∘{bjcs:2≤s≤r−1}∘{dε−s:ε−r+1≤s≤ε−1}∘dεcεb1∘{as:1≤s≤ε}∘ |
bε∘{b2s+1c2s+1d2s+1d2sc2sb2s:max(r2,ε−22)≤s≤min(r2,ε−22)}=z. |
Subcase 10.4. r≡1(mod2), 2 < r < ε, and ε≡0(mod2)
Hp(w,z):w=c1∘{ds:1≤s≤r−1}∘{cε−sbε−s:ε−r+1≤s≤ε−2}∘b1∘{as:1≤s≤ε}∘ |
{b2sc2sd2sd2s−1c2s−1b2s−1:max(r+12,ε2)≤s≤min(r+12,ε2)}=z. |
Subcase 10.5. r≡0(mod2), 2 < r < ε, and ε≡1(mod2)
Hp(w,z):w=c1d1∘{d2sc2sb2sb2s+1c2s+1d2s+1:1≤s≤r−22}∘{ds:r≤s≤ε}∘cεb1∘ |
{as:1≤s≤ε}∘bε∘{cε−sbε−s:1≤s≤ε−r}=z. |
Subcase 10.6. r≡1(mod2), 2 < r < ε, and ε≡1(mod2)
Hp(w,z):w=c1∘{bjcs:2≤s≤r−1}∘{dε−s:ε−r+1≤s≤ε−1}∘dεcεb1∘{as:1≤s≤ε}∘ |
bε∘{b2sc2sd2sd2s−1c2s−1b2s−1:max(r+12,ε−12)≤s≤min(r+12,ε−12)}=z. |
Subcase 10.7. r = ε
Hp(w,z):w=c1∘{ds:1≤s≤ε}∘cεb1a1∘{aε−s:0≤s≤ε−2}∘{bjcs:2≤s≤ε−1}∘bε=z. |
Case 11. w=c1 and z=cr,2≤r≤ε
Subcase 11.1. r = 2
Hp(w,z):w=c1d1∘{ds:2≤s≤ε}∘cεb1∘{as:1≤s≤ε}∘bε∘{cε−sbε−s:1≤s≤ε−3}∘ |
b2c2=z. |
Subcase 11.2. r = 3
Hp(w,z):w=c1d1d2c2b2b3∘{bjcs:4≤s≤ε−1}∘bε∘{aε−s:0≤s≤ε−1}∘b1cε∘ |
{dε−s:0≤s≤ε−r}∘cr=z. |
Subcase 11.3. r≡0(mod2), 2 < r < ε
Hp(w,z):w=c1d1∘{d2sc2sb2sb2s+1c2s+1d2s+1:1≤s≤r−22}∘{ds:r≤s≤ε}∘cεb1∘ |
{as:1≤s≤ε}∘bε∘{cε−sbε−s:1≤s≤ε−r−1}∘bicr=z. |
Subcase 11.4. r≡1(mod2), 3 < r < ε
Hp(w,z):w=c1d1∘{d2sc2sb2sb2s+1c2s+1d2s+1:1≤s≤r−32}∘dr−1cr−1br−1br∘ |
{bjcs:r+1≤s≤ε−1}∘bε∘{aε−s:0≤s≤ε−1}∘b1cε∘{dε−s:0≤s≤ε−r}∘cr=z. |
Subcase 11.5. r = ε−1, and ε≡0(mod2)
Hp(w,z):w=c1d1∘{d2sc2sb2sb2s+1c2s+1d2s+1:1≤s≤r−32}∘dr−1cr−1br−1bibε∘ |
{aε−s:0≤s≤ε−1}∘b1cε∘{dε−s:0≤s≤r}∘cr=z. |
Subcase 11.6. r = ε−1, and ε≡1(mod2)
Hp(w,z):w=c1d1∘{d2sc2sb2sb2s+1c2s+1d2s+1:1≤s≤r−22}∘{ds:r≤s≤ε}∘cεb1∘ |
{as:1≤s≤ε}∘bεbε−1cε−1=z. |
Subcase 11.7. r = ε
Hp(w,z):w=c1d1∘{dε−s:0≤s≤ε−2}∘c2b2∘{bjcs:3≤s≤ε−1}∘bε∘{aε−s:0≤s≤ε−1}∘ |
b1cε=z. |
Case 12. w=c1 and z=dr,1≤r≤ε
Subcase 12.1. r = 1
Hp(w,z):w=c1b1a1∘{aε−s:0≤s≤ε−2}∘{bjcs:2≤s≤ε}∘{dε−s:0≤s≤ε−1}=z. |
Subcase 12.2. r = 2
Hp(w,z):w=c1d1dεcεb1a1∘{aε−s:0≤s≤ε−2}∘{bjcs:2≤s≤ε−2}∘bε−1bεcε−1∘ |
{dε−s:1≤s≤ε−2}=z. |
Subcase 12.3. r≡0(mod2), 2 < r < ε, and ε≡0(mod2)
Hp(w,z):w=c1∘{ds:1≤s≤r−1}∘{cε−sbε−s:ε−r+1≤s≤ε−2}∘{as:2≤s≤ε}∘ |
a1b1∘{b2sc2sd2sd2s−1c2s−1b2s−1:max(r+22,ε2)≤s≤min(r+22,ε2)}∘bicidr=z. |
Subcase 12.4. r≡1(mod2), 2 < r < ε, and ε≡0(mod2)
Hp(w,z):w=c1b1a1∘{aε−s:0≤s≤ε−2}∘{bjcs:2≤s≤r−1}∘{dε−s:ε−r+1≤s≤ε−1}∘ |
{d2sc2sb2sb2s−1c2s−1d2s−1:max(r+12,ε2)≤s≤min(r+12,ε2)}=z. |
Subcase 12.5. r≡0(mod2), 2 < r < ε, and ε≡1(mod2)
Hp(w,z):w=c1b1a1∘{aε−s:0≤s≤ε−2}∘{bjcs:2≤s≤r−1}∘{dε−s:ε−r+1≤s≤ε−1}∘ |
{d2s+1c2s+1b2s+1b2sc2sd2s:max(r2,ε−12)≤s≤min(r2,ε−12)}=z. |
Subcase 12.6. r≡1(mod2), 2 < r < ε, and ε≡1(mod2)
Hp(w,z):w=c1∘{ds:1≤s≤r−1}∘{cε−sbε−s:ε−r+1≤s≤ε−2}∘{as:2≤s≤ε}∘ |
a1b1∘{b2s+1c2s+1d2s+1d2sc2sb2s:max(r+12,ε−12)≤s≤min(r+12,ε−12)}∘bicidr=z. |
Subcase 12.7. r = ε
Hp(w,z):w=c1∘{ds:1≤s≤ε−1}∘{cε−sbε−s:1≤s≤ε−2}∘b1∘{as:1≤s≤ε}∘ |
bεcεdε=z. |
Case 13. w=d1 and z=ar,1≤r≤ε
Subcase 13.1. r = 1
Hp(w,z):w=d1∘{ds:2≤s≤ε}∘cε∘{bjcs:1≤s≤ε−1}∘bε∘{aε−s:0≤s≤ε−1}=z. |
Subcase 13.2. r = 3
Hp(w,z):w=d1∘{dε−s:0≤s≤ε−2}∘c2∘{bjcs:3≤s≤ε}∘b1c1b2a2a1∘{aε−s:0≤s≤ε−3}=z. |
Subcase 13.3. r≡0(mod2)
Hp(w,z):w={d2s−1c2s−1b2s−1b2sc2sd2s:1≤s≤r2}∘{ds:r+1≤s≤ε}∘ |
{cε−sbε−s:0≤s≤ε−r−1}∘{as:r+1≤s≤ε}∘{as:1≤s≤r}=z. |
Subcase 13.4. r≡1(mod2), 3 < r < ε, and ε≡0(mod2)
Hp(w,z):w=d1c1b1∘{as:1≤s≤r−1}∘br−1∘{cε−sbε−s:ε−r+2≤s≤ε−3}∘b2c2∘ |
{ds:2≤s≤r−1}∘cr−1∘{b2s−1c2s−1d2s−1d2sc2sb2s:r+12≤s≤ε2}∘{aε−s:0≤s≤ε−r}=z. |
Subcase 13.5. r≡1(mod2), 3 < r < ε, and ε≡1(mod2)
Hp(w,z):w={d2s−1c2s−1b2s−1a2s−1a2sb2sc2sd2s:1≤s≤r−12}∘{d2s−1c2s−1b2s−1b2sc2sd2s: |
r+12≤s≤ε−12}∘dεcεbε∘{aε−s:0≤s≤ε−r}=z. |
Subcase 13.6. r = ε
Hp(w,z):w=d1∘{ds:2≤s≤ε}∘{cε−sbε−s:0≤s≤ε−1}∘{as:1≤s≤ε}=z. |
Case 14. w=d1 and z=br,1≤r≤ε
Subcase 14.1. r = 1, and ε≡0(mod2)
Hp(w,z):w=d1dεcεbεaε∘{as:1≤s≤ε−1}∘{b2s+1c2s+1d2s+1d2sc2sb2s: |
max(1,ε−22)≤s≤min(1,ε−22)}∘c1b1=z. |
Subcase 14.2. r = 1, and ε≡1(mod2)
Hp(w,z):w=d1c1∘{b2sc2sd2sd2s+1c2s+1b2s+1:1≤s≤ε−12}∘{aε−s:0≤s≤ε−1}∘b1=z. |
Subcase 14.3. r = 2, and ε≡0(mod2)
Hp(w,z):w=d1d2c2∘{b2s−1c2s−1d2s−1d2sc2sb2s:2≤s≤ε2}∘{aε−s:0≤s≤ε−1}∘b1c1b2=z. |
Subcase 14.4. r = 2, and ε≡1(mod2)
Hp(w,z):w=d1c1b1∘{as:1≤s≤ε}∘{b2s+1c2s+1d2s+1d2sc2sb2s: |
max(1,ε−12)≤s≤min(1,ε−12)}=z. |
Subcase 14.5. r≡0(mod2), 2 < r < ε, and ε≡0(mod2)
Hp(w,z):w=d1∘{ds:2≤s≤r−1}∘dicr∘{b2s−1c2s−1d2s−1d2sc2sb2s:r+22≤s≤ε2}∘ |
{aε−s:0≤s≤ε−1}∘{bjcs:1≤s≤r−1}∘br=z. |
Subcase 14.6. r≡1(mod2), 2 < r < ε, and ε≡0(mod2)
Hp(w,z):w=d1∘{ds:2≤s≤r−1}∘{cε−sbε−s:ε−r+1≤s≤ε−1}∘{as:1≤s≤ε}∘ |
{b2sc2sd2sd2s−1c2s−1b2s−1:max(r+12,ε2)≤s≤min(r+12,ε2)}=z. |
Subcase 14.7. r≡0(mod2), 2 < r < ε, and ε≡1(mod2)
Hp(w,z):w=d1∘{ds:2≤s≤r−1}∘{cε−sbε−s:ε−r+1≤s≤ε−1}∘{as:1≤s≤ε}∘ |
{b2s+1c2s+1d2s+1d2sc2sb2s:max(r2,ε−12)≤s≤min(r2,ε−12)}=z. |
Subcase 14.8. r≡1(mod2), 2 < r < ε, and ε≡1(mod2)
Hp(w,z):w=d1∘{ds:2≤s≤r}∘cr∘{b2sc2sd2sd2s+1c2s+1b2s+1:r+12≤s≤ε−12}∘ |
{aε−s:0≤s≤ε−1}∘{bjcs:1≤s≤r−1}∘br=z. |
Subcase 14.9. r = ε
Hp(w,z):w=d1c1b2∘{as:2≤s≤ε}∘a1b1cε∘{dε−s:0≤s≤ε−2}∘c2∘{bjcs:3≤s≤ε−1}∘ bε=z. |
Case 15. w=d1 and z=cr,1≤r≤ε
Subcase 15.1. r = 1
Hp(w,z):w=d1∘{ds:2≤s≤ε}∘cεb1∘{as:1≤s≤ε}∘bε∘{cε−sbε−s:1≤s≤ε−2}∘c1=z. |
Subcase 15.2. r = 2
Hp(w,z):w=d1c1b1a1∘{aε−s:0≤s≤ε−2}∘b2∘{bjcs:3≤s≤ε}∘{dε−s:0≤s≤ε−2}∘c2=z. |
Subcase 15.3. r = 3
Hp(w,z):w=d1c1b1a1∘{aε−s:0≤s≤ε−2}∘b2c2∘{ds:2≤s≤ε}∘{cε−sbε−s:0≤s≤ε−4}∘ |
b3c3=z. |
Subcase 15.4. r≡0(mod2), 3 < r < ε
Hp(w,z):w=d1c1b1a1∘{aε−s:0≤s≤ε−2}∘{b2sc2sd2sd2s+1c2s+1b2s+1: |
1≤s≤r−22}∘ br∘{bjcs:r+1≤s≤ε}∘{dε−s:0≤s≤ε−r}∘cr=z. |
Subcase 15.5. r≡1(mod2), 3 < r < ε
Hp(w,z):w=d1∘{dε−s:0≤s≤ε−r+1}∘cr−1br∘{as:r≤s≤ε}∘{as:1≤s≤r−1}∘ |
br−1∘{b2s+1c2s+1d2s+1d2sc2sb2s:max(1,r−32)≤s≤min(1,r−32)}∘c1b1∘ |
{cε−sbε−s:0≤s≤ε−r−1}∘cr=z. |
Subcase 15.6. r = ε
Hp(w,z):w=d1c1b1∘{as:1≤s≤ε}∘bε∘{cε−sbε−s:1≤s≤ε−3}∘b2c2∘{ds:2≤s≤ε}∘ |
cε=z. |
Case 16. w=d1 and z=dr,2≤r≤ε
Subcase 16.1. r = 2
Hp(w,z):w=d1∘{dε−s:0≤s≤ε−3}∘c3b3a3a2a1∘{aε−s:0≤s≤ε−4}∘{bjcs:4≤s≤ε}∘ |
b1c1b2c2d2=z. |
Subcase 16.2. r≡0(mod2), 2 < r < ε−1
Hp(w,z):w=d1∘{dε−s:0≤s≤ε−r−1}∘cr+1br+1∘{bjcs:r+2≤s≤ε}∘b1c1∘ |
{b2sc2sd2sd2s+1c2s+1b2s+1:1≤s≤r−22}∘{aε−s:ε−r+1≤s≤ε−1}∘{aε−s:0≤s≤ε−r}∘ |
bicidr=z. |
Subcase 16.3. r≡1(mod2), 2 < r < ε−1, and ε≡0(mod2)
Hp(w,z):w=d1∘{ds:2≤s≤r−1}∘{cε−sbε−s:ε−r+1≤s≤ε−1}∘{as:1≤s≤r}∘bicibr+1∘ |
{as:r+1≤s≤ε}∘{b2sc2sd2sd2s−1c2s−1b2s−1:max(r+32,ε2)≤s≤min(r+32,ε2)}∘cr+1dr+1dr=z. |
Subcase 16.4. r≡1(mod2), 2 < r < ε−1, and ε≡1(mod2)
Hp(w,z):w=d1∘{ds:2≤s≤r−1}∘{cε−sbε−s:ε−r+1≤s≤ε−1}∘{as:1≤s≤ε}∘ |
{b2s+1c2s+1d2s+1d2sc2sb2s:max(r+12,ε−12)≤s≤min(r+12,ε−12)}∘bicidr=z. |
Subcase 16.5. r = ε−1, and ε≡0(mod2)
Hp(w,z):w=d1dεcεbε∘{aε−s:0≤s≤ε−4}∘b4c3b3a3a2a1b1c1b2c2d2d3d4c4∘ |
{b2s−1c2s−1d2s−1d2sc2sb2s:ε>6,3≤s≤ε−22}∘bε−1cε−1dε−1=z. |
Subcase 16.6. r = ε−1, and ε≡1(mod2)
Hp(w,z):w={d2s−1c2s−1b2s−1b2sc2sd2s:1≤s≤ε−32}∘dε−2cε−2bε−2∘{aε−s:2≤s≤ε−1}∘ |
aεaε−1bε−1cε−1bεcεdεdε−1=z. |
Subcase 16.7. r = ε
Hp(w,z):w=d1∘{ds:2≤s≤ε−1}∘{cε−sbε−s:1≤s≤ε−1}∘{as:1≤s≤ε}∘bεcεdε=z. |
Existence of Hamiltonian path between any two vertices of the Qε completes the proof.
Having |V(Qε)|=4ε, Theorems 2.4 and 4.1 deliver the following immediate result:
Corollary 4.1. Assuming ε≥6, we have
ω(Qε)=4ε(4ε−1)22. |
Proof. Since |V(Qε)|=4ε. Theorem 2.4 with n=4ε delivers the formula in the corollary.
In this section, we explore Hamilton-connectivity of the convex polytope Bε of dimension ε, which was introduced by Imran et al. [17] in 2016. We, in this section, aim to prove Hamilton-connectedness of Bε and employ it to evaluate its detour index.
Assuming the subscript r to be modulo ε, the vertex/edge sets for Bε are:
V(Bε)={ar,br,cr,dr,er:1≤r≤ε},E(Bε)={arar+1,arbr,arbr+1,brbr+1,brcr,crbr+1,crdr,drdr+1,drer,erer+1:1≤r≤ε}. |
With its vertices' labeling, Figure 5 delivers the construction of Bε.
Note that Hayat et al. [15, Thereom 5] showed the following result:
Theorem 5.1. [15, Thereom 5] Considering ε≥4, the graph B∈ is not Hamilton-connected.
They show in the proof that there is no Hamiltonian path between er and er+1 if ε is odd. We show that their proof was wrong and there are multiple Hamiltonian paths between er and er+1 if ε is odd. Correcting their proof, we show that the graph B∈ is, in fact, Hamilton-connected.
Next, we show this section's major results, delivering the proof for Hamilton-connectivity of Bε. The proof technique utilizes the methodology of Alspach and Liu [1] using the well-known Posa exchange in constructing Hamiltonian paths between every pair of vertices in a graph.
Theorem 5.2. If ε≥6, then Bε is, in fact, Hamilton-connected.
Proof. We show the result by constructing pairwise Hamiltonian paths between vertices of Qε. Assume Hp(w,z) is a Hamiltonian path between w,z∈V(Qε). Let Bε = A∪B∪C∪D∪E where A={a1,a2,…,aε}, B={b1,b2,…,bε}, C={c1,c2,…,cε}, D={d1,d2,…,dε}, and E={e1,e2,…,eε}.
Case 1. w=a1 and z=ar,2≤r≤ε
Subcase 1.1. r = 2
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−3}∘{bjcs:3≤s≤ε}∘b1c1d1∘{dε−s:0≤s≤ε−3}∘ |
{es:3≤s≤ε}∘e1e2d2c2b2a2=z. |
Subcase 1.2. r≡0(mod2), and 2 < r < ε−1
Hp(w,z):w=a1∘{as:2≤s≤r−1}∘br−1∘{b2sc2sd2sd2s−1c2s−1b2s−1: |
max(1,r−22)≤s≤min(1,ε−22)}∘ cεdεeε∘{es:1≤s≤ε−1}∘{dε−s:1≤s≤ε−r+1}∘ |
cr−1∘{bjcs:r≤s≤ε−1}∘ bε∘{aε−s:0≤s≤ε−r}=z. |
Subcase 1.3. r≡1(mod2), and 2 < r < ε−1
Hp(w,z):w=a1∘{as:2≤s≤r−1}∘{b2sc2sd2sd2s−1c2s−1b2s−1: |
max(1,r−12)≤s≤min(1,r−12)}∘ cεdεeε∘{es:1≤s≤ε−1}∘{dε−s:1≤s≤ε−r}∘ |
cibr∘{bjcs:r+1≤s≤ε−1}∘bε∘{aε−s:0≤s≤ε−r}=z. |
Subcase 1.4. r=ε−1
Hp(w,z):w=a1aεbεbε−1cε−1dε−1∘{eε−s:1≤s≤ε−1}∘eεdεcεb1c1∘{ds:1≤s≤ε−2}∘ |
{cε−sbε−s:2≤s≤ε−2}∘{as:2≤s≤ε−1}=z. |
Subcase 1.5. r = ε
Hp(w,z):w=a1b1c1d1e1∘{eε−s:0≤s≤ε−2}∘{ds:2≤s≤ε}∘{cε−sbε−s:0≤s≤ε−2}∘ |
{as:2≤s≤ε}=z. |
Case 2. w=a1 and z=br,1≤r≤ε
Subcase 2.1. r = 1
Hp(w,z):w=a1∘{aε−s:0≤s≤ε−2}∘{bjcs:2≤s≤ε}∘{dε−s:0≤s≤ε−2}∘ |
{es:2≤s≤ε}∘e1d1c1b1=z. |
Subcase 2.2. r = 2
Hp(w,z):w=a1∘{as:2≤s≤ε}∘bεbε−1cε−1dε−1∘{eε−s:1≤s≤ε−1}∘eεdεcεb1c1∘ |
{ds:1≤s≤ε−2}∘{cε−sbε−s:2≤s≤ε−2}=z. |
Subcase 2.3. r≡0(mod2), and 2 ≤ r < ε−1
Hp(w,z):w=a1∘{as:2≤s≤ε}∘bεbε−1cε−1dε−1∘{eε−s:1≤s≤ε−1}∘eεdεcε∘ |
{b2s−1c2s−1d2s−1d2sc2sb2s:1≤s≤r−22}∘br−1cr−1∘{ds:r−1≤s≤ε−2}∘ |
{cε−sbε−s:2≤s≤ε−r}=z. |
Subcase 2.4. r≡1(mod2), and 2 < r < ε−1
Hp(w,z):w=a1∘{as:2≤s≤ε}∘bεcεdε∘{eε−s:0≤s≤ε−1}∘{d2s−1c2s−1b2s−1b2sc2sd2s: |
1≤s≤r−12}∘{ds:r≤s≤ε−1}∘ {cε−sbε−s:1≤s≤ε−r}=z. |
Subcase 2.5. r = ε−1
Hp(w,z):w=a1∘{as:2≤s≤ε}∘bεcε∘{bjcs:1≤s≤ε−2}∘{dε−s:2≤s≤ε−1}∘dεeε∘ |
{es:1≤s≤ε−1}∘dε−1cε−1bε−1=z. |
Subcase 2.6. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ b_2b_1c_1d_1e_1e_2d_2c_2\circ \{b_jc_s:3\le s\le \varepsilon -1\}\circ |
\{d_{ \varepsilon -s}:1\le s\le \varepsilon -3\}\circ \{e_s:3\le s\le \varepsilon \} \circ d_ \varepsilon c_ \varepsilon b_ \varepsilon = z. |
Case 3. w = a_1 and z = c_r, 1\le r\le \varepsilon
Subcase 3.1. r\ = \ 1
H_{p}\left(w,z\right):w = a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_jc_s:2\le s\le \varepsilon -1\}\circ b_ \varepsilon b_1c_ \varepsilon d_ \varepsilon e_ \varepsilon \circ |
\{e_s:1\le s \le \varepsilon -1 \} \circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ c_1 = z. |
Subcase 3.2. r\ = \ 2
H_{p}\left(w,z\right):w = a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ b_2b_1c_1d_1e_1\circ \{e_{ \varepsilon -s}:0\le s \le \varepsilon -2\} \circ \{d_s:2\le s\le \varepsilon \} \circ |
\ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -3\}\circ c_2 = z. |
Subcase 3.3. r\equiv 0(\mod 2), and 2\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = a_1\circ \{a_s:2\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ d_1c_1b_1 \circ \{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}: |
\ 1\le s\le \frac{r-2}{2}\}\circ b_r \circ \{b_jc_s:r+1\le s\le \varepsilon -1\}\circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -r\}\circ c_r = z. |
Subcase 3.4. r\equiv 1(\mod 2), and 2\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = a_1\circ \{a_s:2\le s\le \varepsilon \} \circ b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ \{d_{2s-1}c_{2s-1}b_{2s-1}b_{2s}c_{2s}d_{2s}: |
1\le s\le \frac{r-1}{2}\}\circ \{d_s:r\le s\le \varepsilon -1\}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\}\circ b_ic_r = z. |
Subcase 3.5. r\ = \ \varepsilon -1
H_{p}\left(w,z\right):w = a_1 \circ \{a_s:2\le s\le \varepsilon \}\circ b_ \varepsilon b_{ \varepsilon -1}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:2\le s\le \varepsilon -1\}\circ c_ \varepsilon d_ \varepsilon \circ |
\{d_s:1\le s\le \varepsilon -2\} \circ \{e_{ \varepsilon -s}:2\le s\le \varepsilon -1\} \circ e_ \varepsilon e_{ \varepsilon -1}d_{ \varepsilon -1}c_{ \varepsilon -1} = z. |
Subcase 3.6. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_jc_s:2\le s\le \varepsilon -1\}\circ b_ \varepsilon b_1c_1d_1e_1 \circ |
\{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{d_s:2\le s\le \varepsilon \}\circ c_ \varepsilon = z. |
Case 4. w = a_1 and z = d_r, 1\le r\le \varepsilon
Subcase 4.1. r\ = \ 1
H_{p}\left(w,z\right):w = a_1 \circ \{a_s:2\le s\le \varepsilon \}\circ b_ \varepsilon \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ c_ \varepsilon \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ |
\{e_s:2\le s\le \varepsilon \} \circ e_1d_1 = z. |
Subcase 4.2. r\ = \ 2
H_{p}\left(w,z\right):w = a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_jc_s:2\le s\le \varepsilon \}\circ b_1c_1d_1\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ |
\{e_s:2\le s\le \varepsilon \} \circ e_1e_2d_2 = z. |
Subcase 4.3. r\equiv 0(\mod 2), and 2\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_jc_s:2\le k\le \varepsilon \}\circ b_1c_1d_1e_1\circ \{e_{2s}d_{2s}d_{2s+1}e_{2s+1}: |
1\le s\le \frac{r-2}{2}\} \circ \{e_s:r\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r\} = z. |
Subcase 4.4. r\equiv 1(\mod 2), and 3\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = a_1\circ \{a_s:2\le s\le \varepsilon \}\circ b_ \varepsilon \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -1\} \circ c_ \varepsilon d_ \varepsilon e_ \varepsilon \circ \{e_{2s-1}d_{2s-1}d_{2s}e_{2s}: |
\ 1\le s\le \frac{r-1}{2}\}\circ \{e_s:r\le s\le \varepsilon -1\} \circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -r\} = z. |
Subcase 4.5. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = a_1\circ \{a_s:2\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon \circ \{b_jc_s:1\le s\le \varepsilon -1\} \circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -1\} \circ |
\{e_s:1\le s\le \varepsilon \} \circ d_ \varepsilon = z. |
Case 5. w = a_1 and z = e_r, 1\le r\le \varepsilon
Subcase 5.1. r\ = \ 1
H_{p}\left(w,z\right):w = a_1 \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_jc_s:2\le s\le \varepsilon \}\circ b_1c_1 \circ \{d_s:1\le s\le \varepsilon \} \circ |
\{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\} = z. |
Subcase 5.2. r\ = \ 2
H_{p}\left(w,z\right):w = a_1\circ \{a_s:2\le s\le \varepsilon \}\circ b_ \varepsilon \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ c_ \varepsilon d_ \varepsilon e_ \varepsilon e_1\circ |
\{d_s:1\le s\le \varepsilon -1\} \circ \{e_{ \varepsilon -s}:1\le s\le \varepsilon -2\} = z. |
Subcase 5.3. r\equiv 0(\mod 2), and 2\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = a_1\circ \{a_s:2\le s\le \varepsilon \}\circ b_ \varepsilon \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ c_ \varepsilon d_ \varepsilon e_ \varepsilon e_1d_1\circ |
\{d_{2s}e_{2s}e_{2s+1}d_{2s+1}: 1\le s\le \frac{r-2}{2}\} \circ \{d_s:r\le s\le \varepsilon -1\} \circ \{e_{ \varepsilon -s}:1\le s\le \varepsilon -r\} = z. |
Subcase 5.4. r\equiv 1(\mod 2), and 2\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_jc_s:2\le s\le \varepsilon \} \circ b_1c_1 \circ \{d_{2s-1}e_{2s-1}e_{2s}d_{2s}: |
\ 1\le s\le \frac{r-1}{2}\}\circ \{d_s:r\le s\le \varepsilon \} \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -r\} = z. |
Subcase 5.5. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = a_1 \circ \{a_s:2\le s\le \varepsilon \}\circ b_ \varepsilon \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ c_ \varepsilon \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ |
\{e_s:1\le s\le \varepsilon \} = z. |
Case 6. w = b_1 and z = a_r, 1\le r\le \varepsilon
Subcase 6.1. r\ = \ 1
H_{p}\left(w,z\right):w = b_1c_1\circ \{b_jc_s:2\le s\le \varepsilon -1\} \circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ \{e_s:1\le s\le \varepsilon \} \circ d_ \varepsilon c_ \varepsilon b_ \varepsilon \circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -1\} = z. |
Subcase 6.2. r\ = \ 2
H_{p}\left(w,z\right):w = b_1b_ \varepsilon c_ \varepsilon d_ \varepsilon d_1c_1b_2c_2d_2e_2e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -3\}\circ \{d_s:3\le s\le \varepsilon -1\}\circ |
\{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -3\}\circ \{a_s:3\le s\le \varepsilon \}\circ a_1a_2 = z. |
Subcase 6.3. r\equiv 0(\mod 2), and 2\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = b_1b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ d_1c_1 \circ \{b_{2s} c_{2s} d_{2s} d_{2s+1} c_{2s+1} b_{2s+1}: |
1\le s\le \frac{r-2}{2}\}\circ \{a_{ \varepsilon -s}: \varepsilon -r+1\le s\le \varepsilon -1\}\circ\{a_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\}\circ |
\{b_jc_s:r+1\le s\le \varepsilon -1\}\circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -r\}\circ c_ib_ia_r = z. |
Subcase 6.4. r\equiv 1(\mod 2), and 2\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = b_1c_1d_1e_1\circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{d_{2s}c_{2s}b_{2s}b_{2s+1}c_{2s+1}d_{2s+1}:1\le s\le \frac{r-1}{2}\}\circ |
\{d_s:r+1\le s\le \varepsilon \}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\}\circ \{a_s:r+1\le s\le \varepsilon \}\circ \{a_s:1\le s\le r\} = z. |
Subcase 6.5. r\ = \ \varepsilon -1
H_{p}\left(w,z\right):w = b_1c_1\circ \{b_jc_s:2\le s\le \varepsilon -1\} \circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ \{e_s:1\le s\le \varepsilon \}\circ d_ \varepsilon c_ \varepsilon b_ \varepsilon a_ \varepsilon \circ |
\{a_s:1\le s\le \varepsilon -1\} = z. |
Subcase 6.6. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = b_1c_1d_1e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{d_s:2\le s\le \varepsilon \}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ |
\{a_s:2\le s\le \varepsilon \} = z. |
Case 7. w = b_1 and z = b_r, 2\le r\le \varepsilon
Subcase 7.1. r\ = \ 2
H_{p}\left(w,z\right):w = b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon e_ \varepsilon e_{ \varepsilon -1}d_{ \varepsilon -1}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -3\} \circ c_2 \circ |
\{d_s:2\le s\le \varepsilon \} \circ \{e_{ \varepsilon -s}:2\le s\le \varepsilon -1\} \circ d_1c_1b_2 = z. |
Subcase 7.2. r\ = \ 3
H_{p}\left(w,z\right):w = b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ d_1c_1b_2c_2 \circ |
\{d_s:3\le s\le \varepsilon -1\}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -3\} = z. |
Subcase 7.3. r\equiv 0(\mod 2), and 3\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = \{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}:1\le k\le \frac{r-2}{2}\}\circ \{a_{ \varepsilon -s}: \varepsilon -r+2\le s\le \varepsilon -1\}\circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -r+1\}\circ b_{r-1}c_{r-1}d_{r-1} \circ \{e_{ \varepsilon -s}: \varepsilon -r+1\le s\le \varepsilon -1\} \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -r\}\circ |
\{d_s:r\le s\le \varepsilon \}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -r\} = z. |
Subcase 7.4. r\equiv 1(\mod 2), and 3\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ d_1c_1 \circ \{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}: |
1\le s\le \frac{r-3}{2}\}\circ\ b_{r-1}c_{r-1}\circ \{d_s:r-1\le s\le \varepsilon -1\}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -r\} = z. |
Subcase 7.5. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ b_2c_1d_1e_1e_2d_2c_2 \circ \{b_jc_s:3\le s\le \varepsilon -1\} \circ |
\{d_{ \varepsilon -s}:1\le s\le \varepsilon -3\} \circ \{e_s:3\le s\le \varepsilon \} \circ d_ \varepsilon c_ \varepsilon b_ \varepsilon = z. |
Case 8. w = b_1 and z = c_r, 1\le r\le \varepsilon
Subcase 8.1. r\ = \ 1
H_{p}\left(w,z\right):w = b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_jc_s:2\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ |
\{e_s:2\le s\le \varepsilon \} \circ e_1d_1c_1 = z. |
Subcase 8.2. r\ = \ 2
H_{p}\left(w,z\right):w = b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ b_2b_1c_1d_1e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{d_s:2\le s\le \varepsilon \}\circ |
\{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -3\}\circ c_2 = z. |
Subcase 8.3. r\ = \ 3
H_{p}\left(w,z\right):w = b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ b_2c_2 \circ \{d_s:2\le s\le \varepsilon \}\circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ |
d_1c_1b_1 \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -4\} \circ b_3c_3 = z. |
Subcase 8.4. r\equiv 0(\mod 2), \ \ 3\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ d_1c_1 \circ |
\{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}: 1\le s\le \frac{r-2}{2}\} \circ b_r \circ \{b_jc_s:r+1\le s\le \varepsilon -1\} \circ |
\{d_{ \varepsilon -s}:1\le s\le \varepsilon -r\}\circ c_r = z. |
Subcase 8.5. r\equiv 1(\mod 2), \ \ 3\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = \{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}:1\le s\le \frac{r-1}{2}\}\circ \{a_{ \varepsilon -s}: \varepsilon -r+1\le s\le \varepsilon -1\} \circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -r\} \circ b_r \circ \{b_jc_s:r+1\le s\le \varepsilon \} \circ d_ \varepsilon e_ \varepsilon \circ \{e_s:1\le s\le \varepsilon -1\} \circ |
\{d_{ \varepsilon -s}:1\le s\le \varepsilon -r\}\circ c_r = z. |
Subcase 8.6. r\ = \ \varepsilon -1
H_{p}\left(w,z\right):w = b_1c_1\circ \{b_jc_s:2\le s\le \varepsilon -2\} \circ b_{ \varepsilon -1} \circ \{a_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ a_ \varepsilon b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ |
\{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ \{d_s:1\le s\le \varepsilon -1\}\circ c_{ \varepsilon -1} = z. |
Subcase 8.7. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ b_2c_1d_1\circ \{e_s:1\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ |
c_2\circ \{b_jc_s:3\le s\le \varepsilon \} = z. |
Case 9. w = b_1 and z = d_r, 1\le r\le \varepsilon
Subcase 9.1. r\ = \ 1 , \varepsilon \equiv 0(\mod 2)
H_{p}\left(w,z\right):w = b_1c_1\circ \{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}:1\le s\le \frac{ \varepsilon -2}{2}\}\circ \{a_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ |
a_ \varepsilon b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ d_1 = z. |
Subcase 9.2. r\ = \ 1 , \varepsilon \equiv 1(\mod 2)
H_{p}\left(w,z\right):w = b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon e_ \varepsilon \circ \{e_s:1\le s\le \varepsilon -1\} \circ \{d_{2s}c_{2s}b_{2s}b_{2s-1}c_{2s-1}d_{2s-1}: |
\max (2,\frac{ \varepsilon -1}{2})\le s\le \min (2,\frac{ \varepsilon -1}{2})\}\circ d_2c_2b_2c_1d_1 = z. |
Subcase 9.3. r\ = \ 2
H_{p}\left(w,z\right):w = b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ d_1c_1 \circ \{b_jc_s:2\le s\le \varepsilon -1\} |
\circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -2\} = z. |
Subcase 9.4. r\ = \ 3
H_{p}\left(w,z\right):w = b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ b_2c_1d_1e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ d_2c_2 \circ |
\{b_jc_s:3\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -3\} = z. |
Subcase 9.5. r\equiv 0(\mod 2), \ 2\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ d_1c_1 \circ |
\{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}:1\le s\le \frac{r-2}{2}\}\circ \{b_jc_s:r\le s\le \varepsilon -1\}\circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -r\} = z. |
Subcase 9.6. r\equiv 1(\mod 2), \ 2\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = b_1a_1 \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ b_2c_1d_1e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ d_2c_2 \circ |
\{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}:2\le s\le \frac{r-1}{2}\}\circ \{b_jc_s:r\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r\} = z. |
Subcase 9.7. r\ = \ \varepsilon, and \varepsilon \equiv 0(\mod 2)
H_{p}\left(w,z\right):w = b_1c_ \varepsilon b_ \varepsilon a_ \varepsilon \circ \{a_s:1\le s\le \varepsilon -1\}\circ \{b_{2s+1}c_{2s+1}d_{2s+1}d_{2s}c_{2s}b_{2s}: |
\max (1,\frac{ \varepsilon -2}{2})\le s\le \min (1,\frac{ \varepsilon -2}{2})\}\circ \ c_1d_1 \circ \{e_s:1\le s\le \varepsilon \} \circ d_ \varepsilon = z. |
Subcase 9.8. r\ = \ \varepsilon, and \varepsilon \equiv 1(\mod 2)
H_{p}\left(w,z\right):w = b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ b_2c_1d_1e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ d_2c_2 \circ |
\{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}: 2\le s\le \frac{ \varepsilon -1}{2}\}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon = z. |
Case 10. w = b_1 and z = e_r, 1\le r\le \varepsilon
Subcase 10.1. r\ = \ 1
H_{p}\left(w,z\right):w = b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{d_s:2\le s\le \varepsilon -1\}\circ |
\{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -2\} \circ c_1d_1e_1 = z. |
Subcase 10.2. r\ = \ 2
H_{p}\left(w,z\right):w = b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ b_2c_1d_1e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -3\} \circ \{d_s:3\le s\le \varepsilon \} \circ |
\{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -3\}\circ c_2d_2e_2 = z. |
Subcase 10.3. r\equiv 0(\mod 2), \ 2\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ b_2c_1d_1e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\} \circ \{d_s:r+1\le s\le \varepsilon \} \circ |
\{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -3\}\circ c_2 \circ \{d_{2s}e_{2s}e_{2s+1}d_{2s+1}:1\le s\le \frac{r-2}{2}\} \circ d_ie_r = z. |
Subcase 10.4. r\equiv 1(\mod 2), \ 2\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\} \circ \{d_s:r+1\le s\le \varepsilon -1\}\circ |
\{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -2\} \circ c_1 \circ \{d_{2s-1}e_{2s-1}e_{2s}d_{2s}:1\le s\le \frac{r-1}{2}\} \circ d_ie_r = z. |
Subcase 10.5. r\ = \ \varepsilon -1
H_{p}\left(w,z\right):w = b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon \circ \{b_jc_s:1\le s\le \varepsilon -1\} \circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -1\} \circ |
d_ \varepsilon e_ \varepsilon \circ \{e_s:1\le s\le \varepsilon -1\} = z. |
Subcase 10.6. r\ = \ \varepsilon and \varepsilon \equiv 1(\mod 2)
H_{p}\left(w,z\right):w = b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ b_2c_1d_1 \circ \{e_s:1\le s\le \varepsilon -1\} \circ |
\{d_{ \varepsilon -s}:1\le s\le \varepsilon -2\} \circ c_2 \circ \{b_jc_s:3\le s\le \varepsilon \} \circ d_ \varepsilon e_ \varepsilon = z. |
Case 11. w = c_1 and z = a_r, 1\le r\le \varepsilon
Subcase 11.1. r\ = \ 1
H_{p}\left(w,z\right):w = c_1d_1\circ \{e_s:1\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ c_2 \circ \{b_jc_s:3\le s\le \varepsilon \}\circ b_1b_2\circ |
\{a_s:2\le s\le \varepsilon \} \circ a_1 = z. |
Subcase 11.2. r\ = \ 2
H_{p}\left(w,z\right):w = c_1d_1\circ \{e_s:1\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ c_2b_2 \circ \{b_jc_s:3\le s\le \varepsilon \} \circ |
b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\} = z. |
Subcase 11.3. r\ = \ 3
H_{p}\left(w,z\right):w = c_1d_1 \circ \{e_s:1\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ c_2\circ \{b_jc_s:3\le s\le \varepsilon \} \circ |
b_1b_2a_2a_1 \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -3\} = z. |
Subcase 11.4. r\equiv 0(\mod 2), \ 3\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = c_1d_1\circ \{e_s:1\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r\}\circ c_ib_r \circ \{b_jc_s:r+1\le s\le \varepsilon \} \circ b_1 \circ |
\{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}:1\le s\le \frac{r-2}{2}\} \circ \{a_{ \varepsilon -s}: \varepsilon -r+1\le s\le \varepsilon -1\} \circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -r\} = z. |
Subcase 11.5. r\equiv 1(\mod 2), \ 3\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = c_1d_1e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{d_{2s}c_{2s}b_{2s}b_{2s+1}c_{2s+1}d_{2s+1}:1\le s\le \frac{r-1}{2}\} \circ |
\{d_s:r+1\le s\le \varepsilon \}\circ c_ \varepsilon b_1b_ \varepsilon \circ\ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -r-1\}\circ \{a_s:r+1\le s\le \varepsilon \}\circ |
\{a_s:1\le s\le r\} = z. |
Subcase 11.6. r\ = \ \varepsilon -1
H_{p}\left(w,z\right):w = c_1b_1\circ \{b_jc_s:2\le s\le \varepsilon -1\} \circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ \{e_s:1\le s\le \varepsilon \}\circ |
d_ \varepsilon c_ \varepsilon b_ \varepsilon a_ \varepsilon \circ \{a_s:1\le s\le \varepsilon -1\} = z. |
Subcase 11.7. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = c_1d_1\circ \{e_s:1\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ c_2b_2 \circ \{b_jc_s:3\le s\le \varepsilon \}\circ b_1\circ |
\{a_s:1\le s\le \varepsilon \} = z. |
Case 12. w = c_1 and z = b_r, 1\le r\le \varepsilon
Subcase 12.1. r\ = \ 1
H_{p}\left(w,z\right):w = c_1d_1e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{d_s:2\le s\le \varepsilon \}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ |
\{a_s:2\le s\le \varepsilon \}\circ\ a_1b_1 = z. |
Subcase 12.2. r\ = \ 2
H_{p}\left(w,z\right):w = c_1d_1 \circ \{e_s:1\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ c_2\circ \{b_jc_s:3\le s\le \varepsilon \}\circ |
b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ\ b_2 = z. |
Subcase 12.3. r\ = \ 3
H_{p}\left(w,z\right):w = c_1d_1 \circ \{e_s:1\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ c_2b_2 \circ \{a_s:2\le s\le \varepsilon \}\circ\ a_1b_1 \circ |
\{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -3\} = z. |
Subcase 12.4. r\equiv 0(\mod 2), \ 3\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = c_1d_1 \circ \{e_s:1\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r\}\circ c_r\circ \{b_jc_s:r+1\le s\le \varepsilon \}\circ |
b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}:1\le s\le \frac{r-2}{2}\} \circ\ b_r = z. |
Subcase 12.5. r\equiv 1(\mod 2), \ 3\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = c_1d_1 \circ \{e_s:1\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r\} \circ \{d_{2s}c_{2s}b_{2s}b_{2s-1}c_{2s-1}d_{2s-1}: |
\max (2,\frac{r-1}{2})\le s\le \min (2,\frac{r-1}{2})\} \circ d_2c_2b_2 \circ \{a_s:2\le s\le \varepsilon \}\circ\ a_1b_1 \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -r\} = z. |
Subcase 12.6. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = c_1d_1e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{d_s:2\le s\le \varepsilon \}\circ c_ \varepsilon b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ |
\{b_jc_s:2\le s\le \varepsilon -1\}\circ b_ \varepsilon = z. |
Case 13. w = c_1 and z = c_r, 2\le r\le \varepsilon
Subcase 13.1. r\ = \ 2
H_{p}\left(w,z\right):w = c_1d_1e_1\circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{d_s:2\le s\le \varepsilon \}\circ c_ \varepsilon b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon \circ |
\ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -3\}\circ b_2c_2 = z. |
Subcase 13.2. r\ = \ 3
H_{p}\left(w,z\right):w = c_1d_1\circ \{e_s:1\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ c_2b_2 \circ \{a_s:2\le s\le \varepsilon \}\circ a_1b_1\circ |
\ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -4\}\circ b_3c_3 = z. |
Subcase 13.3. r\equiv 0(\mod 2), and 3\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = c_1d_1\circ \{e_s:1\le s\le \varepsilon \} \circ d_ \varepsilon c_ \varepsilon b_ \varepsilon \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ b_1 \circ \{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}: |
1\le s\le \frac{r-2}{2}\} \circ b_r \circ \{b_jc_s:r+1\le s\le \varepsilon -1\}\circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -r\}\circ c_r = z. |
Subcase 13.4. r\equiv 1(\mod 2), and 3\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = c_1d_1e_1\circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ d_2c_2b_2 \circ \{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}: |
2\le k\le \frac{r-1}{2}\} \circ b_r \circ \{b_jc_s:r+1\le s\le \varepsilon -1\}\circ b_ \varepsilon \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ b_1c_ \varepsilon \circ |
\{d_{ \varepsilon -s}:0\le s\le \varepsilon -r\} \circ c_r = z. |
Subcase 13.5. r\ = \ \varepsilon -1
H_{p}\left(w,z\right):w = c_1b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{b_jc_s:2\le s\le \varepsilon -2\} \circ b_{ \varepsilon -1}b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ |
\{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ \{d_s:1\le s\le \varepsilon -1\}\circ c_{ \varepsilon -1} = z. |
Subcase 13.6. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = c_1d_1\circ \{e_s:1\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ c_2b_2\circ \{b_jc_s:3\le s\le \varepsilon -1\}\circ b_ \varepsilon \circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ b_1c_ \varepsilon = z. |
Case 14. w = c_1 and z = d_r, 1\le r\le \varepsilon
Subcase 14.1. r\ = \ 1
H_{p}\left(w,z\right):w = c_1b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_jc_s:2\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ |
\{e_s:2\le s\le \varepsilon \} \circ e_1d_1 = z. |
Subcase 14.2. r\ = \ 2
H_{p}\left(w,z\right):w = c_1d_1\circ \{e_s:1\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -3\}\circ c_3b_3 \circ \{b_jc_s:4\le s\le \varepsilon \}\circ b_1a_1\circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ b_2c_2d_2 = z. |
Subcase 14.3. r\ = \ 3
H_{p}\left(w,z\right):w = c_1d_1e_1\circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ d_2c_2b_2 \circ \{b_jc_s:3\le s\le \varepsilon -1\}\circ b_ \varepsilon \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ |
b_1c_ \varepsilon \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -3\} = z. |
Subcase 14.4. r\equiv 0(\mod 2), \ 3\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = c_1d_1\circ \{e_s:1\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\}\circ c_{r+1}b_{r+1} \circ \{b_jc_s:r+2\le s\le \varepsilon \}\circ |
b_1a_1 \circ \{a_{ \varepsilon -s}: 0\le s\le \varepsilon -2\}\circ \{b_{2s}c_{2s}d_{2s}d_{2s-1}c_{2s-1}b_{2s-1}: \max (1,\frac{r-2}{2})\le k\le \min (1,\frac{r-2}{2})\} \circ |
b_ic_id_r = z. |
Subcase 14.5. r\equiv 1(\mod 2), \ 3\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = c_1d_1e_1\circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ d_2c_2b_2 \circ \{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}: 2\le k\le \frac{r-1}{2}\} \circ |
\{b_jc_s:r\le s\le \varepsilon -1\}\circ b_ \varepsilon \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ b_1c_ \varepsilon \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r\} = z. |
Subcase 14.6. r\ = \ \varepsilon -1
H_{p}\left(w,z\right):w = c_1b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_jc_s:2\le s\le \varepsilon \}\circ d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ |
\{d_s:1\le s\le \varepsilon -1\} = z. |
Subcase 14.7. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = c_1d_1e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{d_s:2\le s\le \varepsilon -1\}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -2\}\circ |
b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon = z. |
Case 15. w = c_1 and z = e_r, 1\le r\le \varepsilon
Subcase 15.1. r\ = \ 1
H_{p}\left(w,z\right):w = c_1\circ \{d_s:1\le s\le \varepsilon -1\}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -2\}\circ b_1 \circ \{a_s:1\le s\le \varepsilon \} \circ b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ |
\{e_{ \varepsilon -s}:0\le s\le \varepsilon -1\} = z. |
Subcase 15.2. r\equiv 0(\mod 2)
H_{p}\left(w,z\right):w = c_1b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{b_jc_s:2\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\}\circ |
\{e_s: r+1\le s\le \varepsilon \}\circ \{e_{2s-1}d_{2s-1}d_{2s}e_{2s}: 1\le s\le \frac{r}{2}\} = z. |
Subcase 15.3. r\equiv 1(\mod 2), \ 2\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = c_1 \circ \{d_{2s-1}e_{2s-1}e_{2s}d_{2s}: 1\le s\le \frac{r-1}{2}\} \circ \{d_s:r\le s\le \varepsilon -1\} \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -2\} \circ |
b_1 \circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -r\} = z. |
Subcase 15.4. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = c_1b_1a_1 \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{b_jc_s:2\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ |
\{e_s:1\le s\le \varepsilon \} = z. |
Case 16. w = d_1 and z = a_r, 1\le r\le \varepsilon
Subcase 16.1. r\ = \ 1
H_{p}\left(w,z\right):w = d_1\circ \{e_s:1\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ c_2\circ \{b_jc_s:3\le s\le \varepsilon \}\circ b_1c_1b_2\circ |
\{a_s: 2\le s\le \varepsilon \} \circ a_1 = z. |
Subcase 16.2. r\equiv 0(\mod 2), \ 1\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = \{d_{2s-1}c_{2s-1}b_{2s-1}b_{2s}c_{2s}d_{2s}:1\le s\le \frac{r}{2}\}\circ \{e_{ \varepsilon -s}: \varepsilon -r\le s\le \varepsilon -1\} \circ |
\{e_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\} \circ \{d_s:r+1\le s\le \varepsilon \}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\}\circ |
\{a_s:r+1\le s\le \varepsilon \}\circ \{a_s:1\le s\le r\} = z. |
Subcase 16.3. r\equiv 1(\mod 2), \ 1\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = d_1d_ \varepsilon e_ \varepsilon \circ \{e_s:1\le s\le \varepsilon -1\}\circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -r-1\}\circ c_{r+1}\circ \{b_jc_s:r+2\le s\le \varepsilon \}\circ |
b_1c_1\circ \{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}:1 \le s\le \frac{r-1}{2}\}\circ b_{r+1} \circ \{a_s:r+1\le s\le \varepsilon \} \circ \{a_s:1\le s\le r\} = z. |
Subcase 16.4. r\ = \ \varepsilon -1
H_{p}\left(w,z\right):w = d_1e_1\circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{d_s:2\le s\le \varepsilon \}\circ c_ \varepsilon \circ \{b_jc_s:1\le s\le \varepsilon -1\}\circ b_ \varepsilon a_ \varepsilon \circ |
\{a_s: 1\le s\le \varepsilon -1\} = z. |
Subcase 16.5. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = d_1e_1\circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{d_s:2\le s\le \varepsilon \}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ |
\{a_s: 1\le s\le \varepsilon \} = z. |
Case 17. w = d_1 and z = b_r, 1\le r\le \varepsilon
Subcase 17.1. r\ = \ 1, \ \varepsilon \equiv 0(\mod 2)
H_{p}\left(w,z\right):w = d_1 \circ \{e_s:1\le s\le \varepsilon \} \circ d_ \varepsilon c_ \varepsilon b_ \varepsilon a_ \varepsilon \circ \{a_s:1\le s\le \varepsilon -1\}\circ \{b_{2s+1}c_{2s+1}d_{2s+1}d_{2s}c_{2s}b_{2s}: |
\max (1,\frac{ \varepsilon -2}{2})\le k\le \min (1,\frac{ \varepsilon -2}{2})\}\circ\ c_1b_1 = z. |
Subcase 17.2. r\ = \ 1, \ \varepsilon \equiv 1(\mod 2)
H_{p}\left(w,z\right):w = d_1c_1b_2a_2a_1 \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -3\} \circ b_3c_2d_2e_2e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -3\} \circ d_3c_3 \circ |
\{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}:2\le k\le \frac{ \varepsilon -1}{2}\}\circ b_1 = z. |
Subcase 17.3. r\ = \ 2, \ \varepsilon \equiv 0(\mod 2)
H_{p}\left(w,z\right):w = d_1e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ d_2c_2b_3a_3a_2a_1 \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -4\} \circ b_4c_3d_3d_4c_4 \circ |
\{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}:3\le s\le \frac{ \varepsilon }{2}\}\circ b_1c_1b_2 = z. |
Subcase 17.4. r\ = \ 2, \ \varepsilon \equiv 1(\mod 2)
H_{p}\left(w,z\right):w = d_1c_1b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon e_ \varepsilon \circ \{e_s:1\le s\le \varepsilon -1\} \circ \{d_{2s}c_{2s}b_{2s}b_{2s-1}c_{2s-1}d_{2s-1}: |
\max (2,\frac{ \varepsilon -1}{2})\le s\le \min (2,\frac{ \varepsilon -1}{2})\} \circ d_2c_2b_2 = z. |
Subcase 17.5. r\equiv 0(\mod 2), \ 2\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = d_1 \circ \{e_s:1\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r\} \circ c_r \circ \{b_jc_s:r+1\le s\le \varepsilon \} \circ b_1c_1 \circ |
\{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}:1\le s\le \frac{r-2}{2}\}\circ \{a_{ \varepsilon -s}: \varepsilon -r+1\le s\le \varepsilon -1\}\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -r\} \circ |
b_r = z. |
Subcase 17.6. r\equiv 1(\mod 2), \ 2\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = d_1c_1b_1a_1 \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ b_2c_2d_2 \circ \{d_{2s-1}c_{2s-1}b_{2s-1}b_{2s}c_{2s}d_{2s}: |
r > 3, 2\le s\le \frac{r-1}{2}\} \circ \{e_{ \varepsilon -s}: \varepsilon -r+1\le s\le \varepsilon -1\} \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -r\} \circ |
\{d_s:r\le s\le \varepsilon \}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -r\} = z. |
Subcase 17.7. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = d_1e_1\circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ d_2c_2b_3 \circ \{a_s:3\le s\le \varepsilon \}\circ a_1a_2b_2c_1b_1c_ \varepsilon \circ |
\{d_{ \varepsilon -s}:0\le s\le \varepsilon -3\}\circ c_3\circ \{b_jc_s:4\le s\le \varepsilon -1\}\circ\ b_ \varepsilon = z. |
Case 18. w = d_1 and z = c_r, 1\le r\le \varepsilon
Subcase 18.1. r\ = \ 1
H_{p}\left(w,z\right):w = d_1 \circ \{e_s:1\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ c_2\circ \{b_jc_s:3\le s\le \varepsilon \} \circ b_1a_1 \circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ b_2c_1 = z. |
Subcase 18.2. r\ = \ 2
H_{p}\left(w,z\right):w = d_1c_1b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ b_2\circ \{b_jc_s:3\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -3\}\circ |
\{e_s:3\le s\le \varepsilon \} \circ e_1e_2d_2c_2 = z. |
Subcase 18.3. r\equiv 0(\mod 2), \ 2\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = d_1c_1b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}: 1\le k\le \frac{r-2}{2}\} |
\circ b_r\circ \{b_jc_s:r+1\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\} \circ \{e_s:r+1\le s\le \varepsilon \} \circ |
\{e_s:1\le s\le r\} \circ d_ic_r = z. |
Subcase 18.4. r\equiv 1(\mod 2), \ 2\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = d_1c_1b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_jc_s:2\le s\le r-1\}\circ \{d_{2s}e_{2s}e_{2s-1}d_{2s-1}: |
r > 3, \max (2,\frac{r-1}{2}) \le s\le \min (2,\frac{r-1}{2})\}\circ d_2e_2e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -r\} \circ \{d_s:r\le s\le \varepsilon \} \circ |
\{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\}\circ b_ic_r = z. |
Subcase 18.5. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = d_1c_1b_1\circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -3\}\circ b_2c_2\circ |
\{d_s:2\le s\le \varepsilon -1\} \circ \{e_{ \varepsilon -s}:1\le s\le \varepsilon -1\} \circ e_ \varepsilon d_ \varepsilon c_ \varepsilon = z. |
Case 19. w = d_1 and z = d_r, 2\le r\le \varepsilon
Subcase 19.1. r\ = \ 2
H_{p}\left(w,z\right):w = d_1\circ \{e_s:1\le s\le \varepsilon \} \circ d_ \varepsilon c_ \varepsilon b_ \varepsilon \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ \{b_jc_s:1\le s\le \varepsilon -1\} \circ |
\{d_{ \varepsilon -s}:1\le s\le \varepsilon -2\} = z. |
Subcase 19.2. r\equiv 0(\mod 2), \ 2\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = d_1c_1b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_jc_s:2\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\}\circ |
\{e_s:r+1\le s\le \varepsilon \} \circ e_1 \circ\ \{e_{2s}d_{2s}d_{2s+1}e_{2s+1}: 1 \le s\le \frac{r-2}{2}\} \circ e_id_r = z. |
Subcase 19.3. r\equiv 1(\mod 2), \ \varepsilon \equiv 0(\mod 2), 2\ < \ r\ < \ \ \varepsilon -1
H_{p}\left(w,z\right):w = d_1 \circ \{e_s:1\le s\le \varepsilon \}\circ d_ \varepsilon c_ \varepsilon b_ \varepsilon a_ \varepsilon a_1b_1c_1b_2 \circ \{a_s:2\le s\le \varepsilon -1\} \circ |
\{b_{2s+1}c_{2s+1}d_{2s+1}d_{2s}c_{2s}b_{2s}: \max (\frac{r+1}{2},\frac{ \varepsilon -2}{2})\le s\le \min (\frac{r+1}{2},\frac{ \varepsilon -2}{2})\} \circ |
\{c_{ \varepsilon -s}b_{ \varepsilon -s}: \varepsilon -r\le s\le \varepsilon -3\}\circ c_2 \circ \{d_s:2\le s\le r\} = z. |
Subcase 19.4. r\equiv 1(\mod 2), \ \varepsilon \equiv 1 (\mod 2), 2\ < \ r\ < \ \ \varepsilon -1
H_{p}\left(w,z\right):w = d_1c_1b_1 \circ \{a_s:1\le s\le \varepsilon \}\circ \{b_{2s+1}c_{2s+1}d_{2s+1}d_{2s}c_{2s}b_{2s}: \frac{r+1}{2} \le s\le \frac{ \varepsilon -1}{2}\} \circ |
\{c_{ \varepsilon -s}b_{ \varepsilon -s}: \varepsilon -r\le s\le \varepsilon -3\}\circ c_2 \circ \{d_s:2\le s\le r-1\}\circ \{e_{ \varepsilon -s}: \varepsilon -r+1\le s\le \varepsilon -1\} \circ |
\{e_{ \varepsilon -s}:0\le s\le \varepsilon -r\} \circ d_r = z. |
Subcase 19.5. r\ = \ \varepsilon -1, \ \varepsilon \equiv 0 (\mod 2)
H_{p}\left(w,z\right):w = d_1 \circ \{e_s:1\le s\le \varepsilon \}\circ d_ \varepsilon c_ \varepsilon b_ \varepsilon \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -4\}\circ b_4c_3b_3a_3a_2a_1b_1c_1b_2c_2d_2d_3d_4c_4 \circ |
\{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}: \varepsilon > 6, 3 \le s\le \frac{ \varepsilon -2}{2}\} \circ b_{ \varepsilon -1}c_{ \varepsilon -1}d_{ \varepsilon -1} = z. |
Subcase 19.6. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = d_1e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{d_s:2\le s\le \varepsilon -1\} \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ |
\{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon = z. |
Case 20. w = d_1 and z = e_r, 1\le r\le \varepsilon
Subcase 20.1. r\ = \ 1
H_{p}\left(w,z\right):w = d_1c_1b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{b_jc_s:2\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ |
\{e_s:2\le s\le \varepsilon \} \circ e_1 = z. |
Subcase 20.2. r\ = \ 2
H_{p}\left(w,z\right):w = d_1e_1e_ \varepsilon d_ \varepsilon c_ \varepsilon b_ \varepsilon a_ \varepsilon a_1b_1c_1b_2 \circ \{a_s:2\le s\le \varepsilon -1\} \circ b_{ \varepsilon -1}c_{ \varepsilon -1}d_{ \varepsilon -1} \circ \{e_{ \varepsilon -s}:1\le s\le \varepsilon -3\}\circ |
\{d_s:3\le s\le \varepsilon -2\} \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:2\le s\le \varepsilon -3\} \circ c_2d_2e_2 = z. |
Subcase 20.3. r\equiv 0(\mod 2), \ 2\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = d_1d_ \varepsilon c_ \varepsilon b_ \varepsilon a_ \varepsilon a_1b_1c_1b_2\circ \{a_s:2\le s\le \varepsilon -1\}\circ b_{ \varepsilon -1}c_{ \varepsilon -1}d_{ \varepsilon -1}e_{ \varepsilon -1}e_ \varepsilon \circ \{e_s:1\le s\le r-1\}\circ |
\{d_{ \varepsilon -s}: \varepsilon -r+1\le s\le \varepsilon -2\}\circ c_2 \circ \{b_jc_s:3\le s\le r-1\} \circ \{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}: \varepsilon > 6, \frac{r}{2} \le s\le \frac{ \varepsilon -r}{2}\} \circ |
b_{ \varepsilon -2}c_{ \varepsilon -2}d_{ \varepsilon -2} \circ \{e_{ \varepsilon -s}: 2 \le s\le \varepsilon -r\} = z. |
Subcase 20.4. r\equiv 1(\mod 2), 2\ < \ r\ < \ \ \varepsilon -1
H_{p}\left(w,z\right):w = d_1c_1b_1 \circ \{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}: 1 \le s\le \frac{r-1}{2}\} \circ \{a_{ \varepsilon -s}: \varepsilon -r\le s\le \varepsilon -1\}\circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\} \circ \{b_jc_s:r+1\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\}\circ \{e_s:r+1\le s\le \varepsilon \} \circ |
\{e_s:1\le s\le r\} = z. |
Subcase 20.5. r\ = \ \varepsilon -1
H_{p}\left(w,z\right):w = d_1 \circ \{d_s:2\le s\le \varepsilon -1\}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -1\} \circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon e_ \varepsilon \circ |
\{e_s:1\le s\le \varepsilon -1\} = z. |
Subcase 20.6. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = d_1d_ \varepsilon c_ \varepsilon b_ \varepsilon a_ \varepsilon a_1b_1c_1b_2\circ \{a_s:2\le s\le \varepsilon -1\} \circ b_{ \varepsilon -1}c_{ \varepsilon -1}d_{ \varepsilon -1} \circ \{e_{ \varepsilon -s}:1\le s\le \varepsilon -3\}\circ |
\{d_s:3\le s\le \varepsilon -2\} \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:2\le s\le \varepsilon -3\}\circ c_2d_2e_2e_1e_ \varepsilon = z. |
Case 21. w = e_1 and z = a_r, 1\le r\le \varepsilon
Subcase 21.1. r\ = \ 1
H_{p}\left(w,z\right):w = e_1\circ \{e_s:2\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ c_1b_1 \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ |
\{a_s: 2\le s\le \varepsilon \} \circ a_1 = z. |
Subcase 21.2. r\equiv 0(\mod 2), \ 1\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = e_1 \circ \{e_s:2\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\}\circ c_{r+1} \circ \{b_jc_s:r+2\le s\le \varepsilon \}\circ |
\{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}:1\le s\le \frac{r}{2}\}\circ b_{r+1} \circ \{a_s:r+1\le s\le \varepsilon \} \circ \{a_s:1\le s\le r\} = z. |
Subcase 21.3. r\equiv 1(\mod 2), \ 1\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = e_1 \circ \{e_s:2\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r\}\circ c_ib_r \circ \{b_jc_s:r+1\le s\le \varepsilon \}\circ |
\{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}:1\le s\le \frac{r-1}{2}\}\circ \{a_{ \varepsilon -s}: \varepsilon -r+1\le s\le \varepsilon -1\} \circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -r\} = z. |
Subcase 21.4. r\ = \ \varepsilon -1
H_{p}\left(w,z\right):w = e_1d_1d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{d_s:2\le s\le \varepsilon -1\}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ |
c_ \varepsilon b_ \varepsilon a_ \varepsilon \circ \{a_s: 1\le s\le \varepsilon -1\} = z. |
Subcase 21.5. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = e_1\circ \{e_s:2\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ c_1 \circ \{b_jc_s:2\le s\le \varepsilon \}\circ b_1 \circ |
\{a_s: 1\le s\le \varepsilon \} = z. |
Case 22. w = e_1 and z = b_r, 1\le r\le \varepsilon
Subcase 22.1. r\ = \ 1
H_{p}\left(w,z\right):w = e_1d_1c_1b_2a_2a_1 \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -3\} \circ b_3c_2d_2\circ \{e_s:2\le s\le \varepsilon \}\circ |
\{d_{ \varepsilon -s}:0\le s\le \varepsilon -3\} \circ c_3 \circ \{b_jc_s:4\le s\le \varepsilon \} \circ b_1 = z. |
Subcase 22.2. r\equiv 0(\mod 2), \ 1\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = e_1 \circ \{e_s:2\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\} \circ c_{r+1}b_{r+1} \circ \{a_{ \varepsilon -s}: \varepsilon -r-1\le s\le \varepsilon -1\} \circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -r-2\} \circ \{b_jc_s:r+2\le s\le \varepsilon \} \circ \{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}:1\le s\le \frac{r}{2}\} = z. |
Subcase 22.3. r\equiv 1(\mod 2), \ 1\ < \ r\ < \ \varepsilon
H_{p}\left(w,z\right):w = e_1 \circ \{e_s:2\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -r\} \circ c_r \circ \{b_jc_s:r+1\le s\le \varepsilon \} \circ |
\{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}:1\le s\le \frac{r-1}{2}\} \circ \{a_{ \varepsilon -s}: \varepsilon -r+1\le s\le \varepsilon -1\} \circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -r\} \circ b_r = z. |
Subcase 22.4. r\ = \ \varepsilon -1
H_{p}\left(w,z\right):w = e_1\circ \{e_s:2\le s\le \varepsilon \} \circ d_ \varepsilon c_ \varepsilon b_ \varepsilon c_{ \varepsilon -1} \circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ c_1b_1a_1\circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_jc_s:2\le s\le \varepsilon -2\}\circ\ b_{ \varepsilon -1} = z. |
Subcase 22.5. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = e_1d_1c_1b_1a_1\circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ \{b_jc_s:2\le s\le \varepsilon -1\}\circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -2\} \circ |
\{e_s:2\le s\le \varepsilon \}\circ d_ \varepsilon c_ \varepsilon b_ \varepsilon = z. |
Case 23. w = e_1 and z = c_r, 1\le r\le \varepsilon
Subcase 23.1. r\ = \ 1
H_{p}\left(w,z\right):w = e_1 \circ \{e_s:2\le s\le \varepsilon \} \circ d_ \varepsilon c_ \varepsilon b_ \varepsilon \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ b_1\circ \{b_jc_s:2\le s\le \varepsilon -1\} \circ |
\{d_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ c_1 = z. |
Subcase 23.2. r\ = \ 2
H_{p}\left(w,z\right):w = e_1 \circ \{e_s:2\le s\le \varepsilon \} \circ d_ \varepsilon c_ \varepsilon b_ \varepsilon \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ b_1c_1\circ \{d_s:1\le s\le \varepsilon -1\} \circ |
\{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -3\}\circ b_2c_2 = z. |
Subcase 23.3. r\equiv 0(\mod 2), \ 2\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = e_1 \circ \{e_s:2\le s\le \varepsilon \} \circ d_ \varepsilon c_ \varepsilon b_ \varepsilon \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ b_1c_1d_1\circ |
\{d_{2s}c_{2s}b_{2s}b_{2s+1}c_{2s+1}d_{2s+1}: 1 \le s\le \frac{r-2}{2}\} \circ \{d_s:r\le s\le \varepsilon -1\} \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -r-1\}\circ |
b_ic_r = z. |
Subcase 23.4. r\equiv 1(\mod 2), \ 2\ < \ r\ < \ \varepsilon -1
H_{p}\left(w,z\right):w = e_1 \circ \{e_s:2\le s\le \varepsilon \} \circ d_ \varepsilon c_ \varepsilon b_ \varepsilon \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ \{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}: |
1 \le s\le \frac{r-1}{2}\} \circ b_r \circ \{b_jc_s:r+1\le s\le \varepsilon -1\} \circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -r\}\circ c_r = z. |
Subcase 23.5. r\ = \ \varepsilon -1
H_{p}\left(w,z\right):w = e_1\circ \{e_s:2\le s\le \varepsilon \}\circ d_ \varepsilon c_ \varepsilon b_ \varepsilon a_ \varepsilon \circ \{a_s:1\le s\le \varepsilon -1\}\circ b_{ \varepsilon -1}\circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:2\le s\le \varepsilon -2\} \circ |
b_1c_1 \circ \{d_s:1\le s\le \varepsilon -1\} \circ c_{ \varepsilon -1} = z. |
Subcase 23.6. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = e_1\circ \{e_s:2\le s\le \varepsilon \}\circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -1\}\circ c_1\circ \{b_jc_s:2\le s\le \varepsilon -1\} \circ b_ \varepsilon \circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ b_1 c_ \varepsilon = z. |
Case 24. w = e_1 and z = d_r, 1\le r\le \varepsilon
Subcase 24.1. r\ = \ 1
H_{p}\left(w,z\right):w = e_1\circ \{e_s:2\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ c_2 \circ \{b_jc_s:3\le s\le \varepsilon \} \circ b_1a_1 \circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ b_2c_1d_1 = z. |
Subcase 24.2. r\ = \ 2, \ \varepsilon \equiv 0(\mod 2)
H_{p}\left(w,z\right):w = e_1\circ \{e_s:2\le s\le \varepsilon \} \circ d_ \varepsilon c_ \varepsilon b_1 \circ \{a_s:1\le s\le \varepsilon -2\}\circ b_{ \varepsilon -2}c_{ \varepsilon -2}b_{ \varepsilon -1}a_{ \varepsilon -1}a_{ \varepsilon }b_{ \varepsilon }c_{ \varepsilon -1} |
d_{ \varepsilon -1}d_{ \varepsilon -2}d_{ \varepsilon -3}c_{ \varepsilon -3}b_{ \varepsilon -3} \circ \{b_{2s}c_{2s}d_{2s}d_{2s-1}c_{2s-1}b_{2s-1}: \varepsilon > 6, \max (2,\frac{ \varepsilon -4}{2}) \le s\le \min (2,\frac{ \varepsilon -4}{2})\} \circ |
c_2b_2c_1d_1d_2 = z. |
Subcase 24.3. r\ = \ 2, \ \varepsilon \equiv 1(\mod 2)
H_{p}\left(w,z\right):w = e_1\circ \{e_s:2\le s\le \varepsilon \} \circ d_ \varepsilon d_1c_1b_2 \circ \{a_s:2\le s\le \varepsilon \}\circ a_1b_1c_ \varepsilon b_ \varepsilon \circ |
\{b_{2s}c_{2s}d_{2s}d_{2s-1}c_{2s-1}b_{2s-1}: \max (2,\frac{ \varepsilon -1}{2}) \le s\le \min (2,\frac{ \varepsilon -1}{2})\} \circ c_2d_2 = z. |
Subcase 24.4. r\equiv 0(\mod 2), \ 2\ < \ r\ < \ \ \varepsilon
H_{p}\left(w,z\right):w = e_1 \circ \{e_s:2\le s\le \varepsilon \}\circ d_ \varepsilon c_ \varepsilon b_ \varepsilon \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -3\} \circ b_3c_2b_2a_2a_1b_1c_1d_1d_2d_3c_3 \circ |
\{b_{2s}c_{2s}d_{2s}d_{2s+1}c_{2s+1}b_{2s+1}: r > 4, \varepsilon > 6, 2 \le s\le \frac{r-2}{2}\} \circ \{b_jc_s:r\le s\le \varepsilon -1\}\circ |
\{d_{ \varepsilon -s}:1\le s\le \varepsilon -r\} = z. |
Subcase 24.5. r\equiv 1(\mod 2), \ 2\ < \ r\ < \ \ \varepsilon
H_{p}\left(w,z\right):w = e_1 \circ \{e_s:2\le s\le \varepsilon \}\circ d_ \varepsilon c_ \varepsilon b_ \varepsilon \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -1\} \circ \{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}: |
1 \le s\le \frac{r-1}{2}\} \circ \{b_jc_s:r\le s\le \varepsilon -1\}\circ \{d_{ \varepsilon -s}:1\le s\le \varepsilon -r\} = z. |
Subcase 24.6. r\ = \ \varepsilon, \ \varepsilon \equiv 0 (\mod 2)
H_{p}\left(w,z\right):w = e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ d_2d_1c_1b_2c_2 \circ \{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}: 2 \le s\le \frac{ \varepsilon -2}{2}\} \circ |
\{a_{ \varepsilon -s}:2\le s\le \varepsilon -1\}\circ b_1c_ \varepsilon b_ \varepsilon a_ \varepsilon a_{ \varepsilon -1}b_{ \varepsilon -1}c_{ \varepsilon -1}d_{ \varepsilon -1}d_ \varepsilon = z. |
Subcase 24.7. r\ = \ \varepsilon, \varepsilon \equiv 1 (\mod 2)
H_{p}\left(w,z\right):w = e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ d_2d_1c_1b_1a_1 \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ b_2c_2 \circ |
\{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}: 2 \le s\le \frac{ \varepsilon -1}{2}\}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon = z. |
Case 25. w = e_1 and z = e_r, 1\le r\le \varepsilon
Subcase 25.1. r\ = \ 2
H_{p}\left(w,z\right):w = e_1\circ \{d_s:1\le s\le \varepsilon -1\} \circ \{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -1\}\circ \{a_s:1\le s\le \varepsilon \} \circ b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ |
\{e_{ \varepsilon -s}:0\le s\le \varepsilon -2\} = z. |
Subcase 25.2. r\equiv 0(\mod 2), \ 2\ < \ r\ < \ \ \varepsilon -1
H_{p}\left(w,z\right):w = e_1d_1 \circ \{d_{2s}e_{2s}e_{2s+1}d_{2s+1}:1\le s\le \frac{r-2}{2}\}\circ \{d_s:r\le s\le \varepsilon -1\} \circ |
\{c_{ \varepsilon -s}b_{ \varepsilon -s}:1\le s\le \varepsilon -1\} \circ \{a_s:1\le s\le \varepsilon \}\circ b_ \varepsilon c_ \varepsilon d_ \varepsilon \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -r\} = z. |
Subcase 25.3. r\equiv 1(\mod 2), \ \varepsilon \equiv 0 (\mod 2), \ 2\ < \ r\ < \ \ \varepsilon -1
H_{p}\left(w,z\right):w = e_1 \circ \{e_{ \varepsilon -s}:0\le s\le \varepsilon -r-1\}\circ d_{r+1}c_{r+1}b_{r+1} \circ \{a_{ \varepsilon -s}: \varepsilon -r-1\le s\le \varepsilon -1\} \circ b_1c_ \varepsilon b_ \varepsilon \circ |
\{a_{ \varepsilon -s}:0\le s\le \varepsilon -r-2\} \circ \{b_{2s-1}c_{2s-1}d_{2s-1}d_{2s}c_{2s}b_{2s}: \varepsilon > 6, r < \varepsilon -4, \frac{r+3}{2} \le s\le \frac{ \varepsilon -r+1}{2}\} \circ |
b_{ \varepsilon -1}c_{ \varepsilon -1}d_{ \varepsilon -1}d_ \varepsilon d_1c_1 \circ \{b_jc_s:2\le s\le r\}\circ \{d_{ \varepsilon -s}: \varepsilon -r\le s\le \varepsilon -2\} \circ \{e_s:2\le s\le r\} = z. |
Subcase 25.4. r\equiv 1(\mod 2), \ \varepsilon \equiv 1 (\mod 2), \ 2\ < \ r\ < \ \ \varepsilon -1
H_{p}\left(w,z\right):w = e_1 \circ \{e_s:2\le s\le r-1\}\circ \{d_{ \varepsilon -s}: \varepsilon -r+1\le s\le \varepsilon -1\} \circ c_1b_1a_1 \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ |
\{b_jc_s:2\le s\le \varepsilon \} \circ \{d_{2s+1}e_{2s+1}e_{2s}d_{2s}:\max (\frac{r+1}{2},\frac{ \varepsilon -1}{2}) \le s\le \min (\frac{r+1}{2},\frac{ \varepsilon -1}{2})\} \circ d_ie_r = z. |
Subcase 25.5. r\ = \ \varepsilon -1
H_{p}\left(w,z\right):w = e_1d_1c_1b_2a_2a_1b_1c_ \varepsilon b_ \varepsilon \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -3\}\circ b_3c_2d_2 \circ \{e_s:2\le s\le \varepsilon -2\} \circ |
\{d_{ \varepsilon -s}:2\le s\le \varepsilon -3\} \circ c_3 \circ \{b_jc_s:4\le s\le \varepsilon -1\} \circ d_{ \varepsilon -1}d_ \varepsilon e_ \varepsilon e_{ \varepsilon -1} = z. |
Subcase 25.6. r\ = \ \varepsilon
H_{p}\left(w,z\right):w = e_1d_1c_1b_1a_1 \circ \{a_{ \varepsilon -s}:0\le s\le \varepsilon -2\}\circ \{b_jc_s:2\le s\le \varepsilon \} \circ \{d_{ \varepsilon -s}:0\le s\le \varepsilon -2\} \circ |
\{e_s:2\le s\le \varepsilon \} = z. |
Existence of Hamiltonian path between any two vertices of the B_ \varepsilon completes the proof.
Note that |V(B_ \varepsilon)| = 4 \varepsilon . Using it with Theorems 2.4 and 5.2 deliver the following immediate result:
Corollary 5.1. Assuming \varepsilon\geq6 , we have
\begin{equation*} \omega(B_ \varepsilon) = \frac{4 \varepsilon(4 \varepsilon-1)^2}{2}. \end{equation*} |
Proof. Since |V(B_ \varepsilon)| = 4 \varepsilon . Theorem 2.4 with n = 4 \varepsilon delivers the result.
Contributions
● Introduced two distinct methods for proving Hamilton-connectedness of convex polytopes.
● Constructed three infinite families of Hamilton-connected convex polytopes.
● Corrected a misconception regarding the Hamilton-connectivity of the convex polytope B_{\varepsilon} , proving it is Hamilton-connected.
● Provided explicit computation of the detour index for these polytopes, establishing their structural properties.
● Extended previous results on Hamilton-connected graphs to new classes of geometric graphs derived from polytopes.
Implications
● Enhances understanding of Hamilton-connected structures within convex polytopes, contributing to graph theory and computational geometry.
● Provides new techniques for proving Hamilton-connectedness that can be applied to other combinatorial structures.
● Supports applications in network topology, where Hamilton-connected properties ensure robust and efficient routing.
● Offers insights into the relationship between geometric polytopes and their corresponding graph-theoretic properties.
● Strengthens theoretical foundations for detour index computations, aiding applications in cheminformatics and molecular modeling.
Limitations
● We focus on specific families of convex polytopes, leaving open the question of Hamilton-connectedness for other polytope classes.
● Computational complexity of verifying Hamilton-connectedness for arbitrary convex polytopes remains a challenge.
● The results rely on combinatorial proof techniques, which may not be directly extendable to all polyhedral structures.
● No empirical validation or algorithmic implementation is provided for the practical computation of detour indices in large graphs.
Future study
● Extend the proposed techniques to analyze Hamilton-connectedness in other polyhedral graphs beyond the studied families.
● Investigate algorithmic methods for efficiently computing detour indices in large-scale applications.
● Explore potential connections between Hamilton-connected convex polytopes and spectral graph theory.
● Develop computational tools to automate the detection of Hamilton-connected properties in graph representations of polytopes.
● Study the implications of Hamilton-connectedness in higher-dimensional convex polytopes and their applications in optimization and network design.
Sakander Hayat and Bagus Imanda: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing–original draft preparation, Writing–review and editing, Visualization; Asad Khan: Formal analysis, Investigation, Writing–original draft preparation, Editing; Mohammed J. F. Alenazi: Methodology, Validation, Resources, Writing–original draft preparation. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
S. Hayat was supported by UBD Faculty Research Grants (No. UBD/RSCH/1.4/FICBF(b)/2022/053) and National Natural Science Foundation of China (Grant No. 12250410247). The APC was funded by A. Khan who was sponsored by the Key Laboratory of Philosophy and Social Sciences in Guangdong Province of Maritime Silk Road of Guangzhou University, grant No. GD22TWCXGC15, the National Natural Science Foundation of China grant No. 12250410247, and also by the Ministry of Science and Technology of China, grant No. WGXZ2023054L. M. J. F. Alenazi extends his appreciation to Researcher Supporting Project number (RSPD2025R582), King Saud University, Riyadh, Saudi Arabia.
The authors declare that they have no known competing financial interests.
[1] |
B. Alspach, J. P. Liu, On the Hamilton connectivity of generalized Petersen graphs, Discrete Math., 309 (2009), 5461–5473. https://doi.org/10.1016/j.disc.2008.12.016 doi: 10.1016/j.disc.2008.12.016
![]() |
[2] | M. Bača, Face anti-magic labelings of convex polytopes, Util. Math., 55 (1999), 221–226. |
[3] | M. Bača, Labelings of two classes of convex polytopes, Util. Math., 34 (1988), 24–31. |
[4] |
M. Bača, On magic labellings of convex polytopes, Ann. Discrete Math., 51 (1992), 13–16. https://doi.org/10.1016/S0167-5060(08)70599-5 doi: 10.1016/S0167-5060(08)70599-5
![]() |
[5] |
L. W. Beineke, Characterizations of derived graphs, J. Combin. Theory, 9 (1970), 129–135. https://doi.org/10.1016/s0021-9800(70)80019-9 doi: 10.1016/s0021-9800(70)80019-9
![]() |
[6] |
D. H. Cai, P. Z. Fan, Q. Y. Zou, Y. Q. Xu, Z. G. Ding, Z. Q. Liu, Active device detection and performance analysis of massive non-orthogonal transmissions in cellular Internet of Things, Sci. China Inform. Sci., 65 (2022), 182301. https://doi.org/10.1007/s11432-021-3328-y doi: 10.1007/s11432-021-3328-y
![]() |
[7] |
G. Chartrand, A. M. Hobbs, H. A. Jung, S. F. Kapoor, C. S. J. A. Nash-Williams, The square of a block is Hamiltonian connected, J. Combin. Theory Ser. B, 16 (1974), 290–292. https://doi.org/10.1016/0095-8956(74)90075-6 doi: 10.1016/0095-8956(74)90075-6
![]() |
[8] |
A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math., 66 (2001), 211–249. https://doi.org/10.1023/A:1010767517079 doi: 10.1023/A:1010767517079
![]() |
[9] |
R. Frucht, A canonical representation of trivalent Hamiltonian graphs, J. Graph Theory, 1 (1977), 45–60. https://doi.org/10.1002/jgt.3190010111 doi: 10.1002/jgt.3190010111
![]() |
[10] | F. V. Fomin, P. A. Golovach, W. Lochet, D. Sagunov, S. Saurabh, K. Simonov, Detours in directed graphs, J. Comput. Syst. Sci., 137 (2023), 66–86. https://doi.org/10.1016/j.jcss.2023.05.001 |
[11] | M. R. Garey, D. S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, San Francisco: W. H. Freeman and Company, 1983. |
[12] |
V. S. Gordon, Y. L. Orlovich, F. Werner, Hamiltonian properties of triangular grid graphs, Discrete Math., 308 (2008), 6166–6188. https://doi.org/10.1016/j.disc.2007.11.040 doi: 10.1016/j.disc.2007.11.040
![]() |
[13] |
Y. G. Guo, R. Zhao, S. W. Lai, L. S. Fan, X. F. Lei, G. K. Karagiannidis, Distributed machine learning for multiuser mobile edge computing systems, IEEE J. Sel. Top. Signal Process., 16 (2022), 460–473. https://doi.org/10.1109/jstsp.2022.3140660 doi: 10.1109/jstsp.2022.3140660
![]() |
[14] | F. Harary, Graph theory, Addison-Wesley, 1969. |
[15] |
S. Hayat, A. Khan, S. Khan, J. B. Liu, Hamilton connectivity of convex polytopes with applications to their detour index, Complexity, 2021 (2021), 6684784. https://doi.org/10.1155/2021/6684784 doi: 10.1155/2021/6684784
![]() |
[16] | R. W. Hung, F. Keshavarz-Kohjerdi, C. B. Lin, J. S. Chen, The Hamiltonian connectivity of alphabet supergrid graphs, IAENG Int. J. Appl. Math., 49 (2019), 1–17. |
[17] |
M. Imran, H. M. A. Siddiqui, Computing the metric dimension of convex polytopes generated by wheel related graphs, Acta Math. Hungar., 149 (2016), 10–30. https://doi.org/10.1007/s10474-016-0606-1 doi: 10.1007/s10474-016-0606-1
![]() |
[18] | Z. Kewen, H. J. Lai, J. Zhou, Hamiltonian-connected graphs, Comput. Math. Appl., 55 (2008), 2707–2714. https://doi.org/10.1016/j.camwa.2007.10.018 |
[19] | R. Kužel, L. Xiong, Every 4-connected line graph is Hamiltonian if and only if it is Hamiltonian connected, In: Hamiltonian properties of graphs, Ph.D. thesis, U.W.B. Pilsen, 2004. |
[20] |
I. Lukovits, Indicators for atoms included in cycles, J. Chem. Inf. Comput. Sci., 36 (1996), 65–68. https://doi.org/10.1021/ci950082o doi: 10.1021/ci950082o
![]() |
[21] | I. Lukovits, The detour index, Croat. Chem. Acta, 69 (1996), 873–882. |
[22] |
I. Lukovits, M. Razinger, On calculation of the detour index, J. Chem. Inf. Comput. Sci., 37 (1997), 283–286. https://doi.org/10.1021/ci960034j doi: 10.1021/ci960034j
![]() |
[23] |
J. B. Liu, X. Wang, J. D. Cao, The coherence and properties analysis of balanced 2^p-ary tree networks, IEEE Trans. Netw. Sci. Eng., 11 (2024), 4719–4728. https://doi.org/10.1109/TNSE.2024.3395710 doi: 10.1109/TNSE.2024.3395710
![]() |
[24] | O. Ore, Hamilton-connected graphs, J. Math. Pure Appl., 42 (1963), 21–27. |
[25] |
G. Rücker, C. Rücker, Symmetry-aided computation of the detour matrix and the detour index, J. Chem. Inf. Comput. Sci., 38 (1998), 710–714. https://doi.org/10.1021/ci980024d doi: 10.1021/ci980024d
![]() |
[26] |
H. Raza, S. Hayat, X. F. Pan, Binary locating-dominating sets in rotationally-symmetric convex polytopes, Symmetry, 10 (2018), 1–18. https://doi.org/10.3390/sym10120727 doi: 10.3390/sym10120727
![]() |
[27] |
H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172–185. https://doi.org/10.1016/j.amc.2018.07.010 doi: 10.1016/j.amc.2018.07.010
![]() |
[28] |
H. Raza, J. B. Liu, S. J. Qu, On mixed metric dimension of rotationally symmetric graphs, IEEE Access, 8 (2020), 11560–11569. https://doi.org/10.1109/ACCESS.2019.2961191 doi: 10.1109/ACCESS.2019.2961191
![]() |
[29] | A. Simić, M. Bogdanović, J. Milošević, The binary locating-dominating number of some convex polytopes, Ars Math. Contemp., 13 (2017), 367–377. |
[30] |
C. Thomassen, Hamiltonian-connected tournaments, J. Combin. Theory Ser. B, 28 (1980), 142–163. https://doi.org/10.1016/0095-8956(80)90061-1 doi: 10.1016/0095-8956(80)90061-1
![]() |
[31] |
C. Y. Tan, D. H. Cai, F. Fang, Z. G. Ding, P. Z. Fan, Federated unfolding learning for CSI feedback in distributed edge networks, IEEE Trans. Commun., 73 (2025), 410–424. https://doi.org/10.1109/tcomm.2024.3429170 doi: 10.1109/tcomm.2024.3429170
![]() |
[32] |
N. Trinajstić, S. Nikolić, Z. Mihalić, On computing the molecular detour matrix, Int. J. Quantum Chem., 65 (1997), 415–419. https://doi.org/10.1002/(SICI)1097-461X(1997)65:5<415::AID-QUA6>3.0.CO;2-Z doi: 10.1002/(SICI)1097-461X(1997)65:5<415::AID-QUA6>3.0.CO;2-Z
![]() |
[33] |
N. Trinajstić, S. Nikolić, B. Lučić, D. Amić, Z. Mihalić, The detour matrix in chemistry, J. Chem. Inf. Comput. Sci., 37 (1997), 631–638. https://doi.org/10.1021/ci960149n doi: 10.1021/ci960149n
![]() |
[34] |
B. Wei, Hamiltonian paths and Hamiltonian connectivity in graphs, Discrete Math., 121 (1993), 223–228. https://doi.org/10.1016/0012-365x(93)90555-8 doi: 10.1016/0012-365x(93)90555-8
![]() |
[35] | H. Whitney, Congruent graphs and the connectivity of graphs, In: Hassler Whitney collected papers, 1992, 61–79. |
[36] |
J. Wei, Z. F. You, H. J. Lai, Spectral analogues of Erdös' theorem on Hamilton-connected graphs, Appl. Math. Comput., 340 (2019), 242–250. https://doi.org/10.1016/j.amc.2018.08.005 doi: 10.1016/j.amc.2018.08.005
![]() |
[37] |
X. J. Yang, J. F. Du, L. M. Xiong, Forbidden subgraphs for supereulerian and Hamiltonian graphs, Discrete Appl. Math., 288 (2021), 192–200. https://doi.org/10.1016/j.dam.2020.08.034 doi: 10.1016/j.dam.2020.08.034
![]() |
[38] |
X. F. Yang, D. J. Evans, H. J. Lai, G. M. Megson, Generalized honeycomb torus is Hamiltonian, Inform. Process. Lett., 92 (2004), 31–37. https://doi.org/10.1016/j.ipl.2004.05.017 doi: 10.1016/j.ipl.2004.05.017
![]() |
[39] |
S. H. Zheng, C. Shen, X. Chen, Design and analysis of uplink and downlink communications for federated learning, IEEE J. Sel. Areas Commun., 39 (2021), 2150–2167. https://doi.org/10.1109/jsac.2020.3041388 doi: 10.1109/jsac.2020.3041388
![]() |
[40] |
Q. N. Zhou, L. G. Wang, Some sufficient spectral conditions on Hamilton-connected and traceable graphs, Linear Multilinear Algebra, 65 (2017), 224–234. https://doi.org/10.1080/03081087.2016.1182463 doi: 10.1080/03081087.2016.1182463
![]() |
[41] |
Q. N. Zhou, L. G. Wang, Y. Lu, Signless Laplacian spectral conditions for Hamilton-connected graphs with large minimum degree, Linear Algebra Appl., 592 (2020), 48–64. https://doi.org/10.1016/j.laa.2020.01.021 doi: 10.1016/j.laa.2020.01.021
![]() |
[42] |
Q. N. Zhou, L. G. Wang, Y. Lu, Wiener index and Harary index on Hamilton-connected graphs with large minimum degree, Discrete Appl. Math., 247 (2018), 180–185. https://doi.org/10.1016/j.dam.2018.03.063 doi: 10.1016/j.dam.2018.03.063
![]() |