Research article Special Issues

Optimal protection and vaccination against epidemics with reinfection risk

  • Received: 30 January 2025 Revised: 07 April 2025 Accepted: 15 April 2025 Published: 28 April 2025
  • MSC : 92D30, 93-10

  • We consider the problem of the optimal allocation of vaccination and protection measures for the Susceptible-Infected-Recovered-Infected (SIRI) epidemiological model, which generalizes the classical Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) epidemiological models by allowing for reinfection. First, we introduce the controlled SIRI dynamical model, and discuss the existence and stability of the equilibrium points. Then, we formulate a finite-horizon optimal control problem where the cost of vaccination and protection is proportional to the mass of the population that adopts it. Our main contribution in this work arises from a detailed investigation into the existence/non-existence of singular control inputs, and establishing optimality of bang-bang controls. The optimality of bang-bang control is established by solving an optimal control problem with a running cost that is linear with respect to the input variables. The input variables are associated with actions including the vaccination and imposition of protective measures (e.g., masking or isolation). In contrast to most prior works, we rigorously establish the non-existence of singular controls (i.e., the optimality of bang-bang control for our SIRI model). Under the assumption that the reinfection rate exceeds the first-time infection rate, we characterize the structure of both the optimal control inputs, and establish that the vaccination control input admits a bang-bang structure. The numerical results provide valuable insights into the evolution of the disease spread under optimal control.

    Citation: Urmee Maitra, Ashish R. Hota, Rohit Gupta, Alfred O. Hero. Optimal protection and vaccination against epidemics with reinfection risk[J]. AIMS Mathematics, 2025, 10(4): 10140-10162. doi: 10.3934/math.2025462

    Related Papers:

    [1] Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140
    [2] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [3] Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839
    [4] J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092
    [5] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [6] Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288
    [7] Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour . Analysis study on multi-order ϱ-Hilfer fractional pantograph implicit differential equation on unbounded domains. AIMS Mathematics, 2023, 8(8): 18455-18473. doi: 10.3934/math.2023938
    [8] Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632
    [9] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
    [10] Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175
  • We consider the problem of the optimal allocation of vaccination and protection measures for the Susceptible-Infected-Recovered-Infected (SIRI) epidemiological model, which generalizes the classical Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) epidemiological models by allowing for reinfection. First, we introduce the controlled SIRI dynamical model, and discuss the existence and stability of the equilibrium points. Then, we formulate a finite-horizon optimal control problem where the cost of vaccination and protection is proportional to the mass of the population that adopts it. Our main contribution in this work arises from a detailed investigation into the existence/non-existence of singular control inputs, and establishing optimality of bang-bang controls. The optimality of bang-bang control is established by solving an optimal control problem with a running cost that is linear with respect to the input variables. The input variables are associated with actions including the vaccination and imposition of protective measures (e.g., masking or isolation). In contrast to most prior works, we rigorously establish the non-existence of singular controls (i.e., the optimality of bang-bang control for our SIRI model). Under the assumption that the reinfection rate exceeds the first-time infection rate, we characterize the structure of both the optimal control inputs, and establish that the vaccination control input admits a bang-bang structure. The numerical results provide valuable insights into the evolution of the disease spread under optimal control.



    Integral equations represent a significant area of applied mathematics because they are effective tools for modeling a wide range of issues that arise in various branches of science [1,2,3,4,5,6,7]. In several references, the authors have discussed the existence, stability, or other qualitative characteristics of solutions to different kinds of integral equations [7,8,9,10,11,12,13]. For instance, in [7], Gripenberg described an integral equation that arises in the study of the spread of an infectious disease that does not induce permanent immunity and is of the following form:

    ω(ϰ)=k(p(ϰ)ϰ0A(ϰ)ω()d)(f(ϰ)+ϰ0˜a(ϰ)ω()d),ϰ[0,). (1.1)

    In establishing Eq (1.1), the main consideration was that the rate at which susceptibles become infected is proportional to the number of susceptibles and the total infectivity. For this purpose, the author made the assumption that the population is of constant size P and that the average infectivity of an individual infected at time is proportional to ˜a(ϰ) at time ϰ. If the rate at which individuals susceptible to the disease have become infected up to time ϰ is ω(), <ϰ, then ϰ˜a(ϰ)ω()d will be approximately proportional to the total infectivity. If at time , the cumulative probability function for the loss of immunity of an individual infected is 1A(ϰ), ϰ, then PϰA(ϰ)ω()d will approximate the number of susceptibles. In Eq (1.1), k>0 is a constant and the effects of the infection before ϰ=0 are considered by the functions p and f.

    Later, in [8], Brestovanská studied some existence and convergence results to the following generalized Gripenberg-type integral equation:

    ω(ϰ)=(V1(ϰ)+ϰ0A1(ϰ)ω()d)(Vn(ϰ)+ϰ0An(ϰ)ω()d),ϰ0.

    In [9], Olaru studied some results on solvability for the following integral equation:

    ω(ϰ)=ni=1(Vi(ϰ)+ϰaKi(ϰ,,ω())d),ϰ[a,b].

    Recently, in [10], Metwali and Cichoń studied the existence results for the following integral equation of n-product type:

    ω(ϰ)=ni=1(Vi(ϰ)+λihi(ϰ,ω(ϰ))baKi(ϰ,)Fi(,ω())d),ϰ[a,b].

    The theory of fractional integrals, which deals with integrals of arbitrary order by using the gamma function, is one of the most significant tools for physical investigation, including in fields such as computer networking, image processing, signals, biology, viscoelastic theory, and several others [14,15,16,17,18,19,20,21,22,23,24]. In [24], Jleli and Samet studied the solvability of the following q-fractional integral equation of product type:

    ω(ϰ)=ni=1(Vi(ϰ)+gi(ϰ,ω(ϰ))Γq(σi)ϰ0(ϰq)(σi1)ui(,ω())dq),ϰ[0,1],

    where q(0,1) and σi>1.

    Motivated by the above literature on this significant and interesting topic, we consider here a nonlinear fractional integral equation of n-product type that contains the Riemann-Liouville fractional integral operators as follows:

    ω(ϰ)=ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d),ϰ[0,a], (1.2)

    where 0<a<, 0<σi1, Vi,Gi:[0,a]R, Fi:[0,a]×RR, and Ki:[0,a]×[0,a]R (R is the set of all real numbers and i=1,2,,n).

    Remark 1. In some special cases, when n=2, G1(ϰ)=G2(ϰ)=1 and σ1=σ2=1; then, Eq (1.2) is related to Eq (1.1).

    In this paper, we discuss some results on the stability of solutions to Eq (1.2). In order to achieve these aims, we use the concepts of the fixed-point theorem to establish the uniqueness of solutions and analyze some stabilities, namely, Hyers-Ulam (H-U), λ-semi-Hyers-Ulam, and Hyers‐Ulam‐Rassias (H-U-R) stabilities through the use of the Bielecki metric. Two examples are discussed to illustrate the established results.

    This paper is structured as follows: Notations and supporting information are included in Section 2. Some results on H-U-R stability are discussed in Section 3. In Section 4, we discuss some results on λ-semi-Hyers-Ulam and H-U stabilities. Section 5 includes two examples to illustrate the established results. Conclusions and suggestions for further research are given in Section 6.

    This section includes some notations, definitions and supporting information which are useful to establish the main results.

    Let δ>0 be a constant, and Cδ([0,a]) denotes the space of real-valued continuous functions on [0,a], equipped with the Bielecki metric as follows:

    dδ(ω,φ)=supϰ[0,a]|ω(ϰ)φ(ϰ)|eδϰ.

    In general, we consider the space Cg([0,a]) of real-valued continuous functions on [0,a], equipped with the Bielecki metric as follows:

    dg(ω,φ)=supϰ[0,a]|ω(ϰ)φ(ϰ)|λ(ϰ),

    where λ:[0,a](0,) is a nondecreasing continuous function. Then, the metric spaces (Cδ([0,a]),dδ) and (Cg([0,a]),dg) are complete [25,26,27,28].

    The following definitions of stability are stated in the sense of the paper given in reference [25].

    Definition 1. Let λ(ϰ) be a non-negative function on [0,a]. If for each function ω(ϰ) satisfying

    |ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|λ(ϰ),ϰ[0,a],

    there is a solution ω0(ϰ) of Eq (1.2) and a constant >0 such that

    |ω(ϰ)ω0(ϰ)|λ(ϰ),ϰ[0,a],

    then we say that Eq (1.2) possesses H-U-R stability, where is independent of ω(ϰ) and ω0(ϰ).

    Definition 2. Let ε be a non-negative number. If for each function ω(ϰ) satisfying

    |ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|ε,ϰ[0,a],

    there is a solution ω0(ϰ) of Eq (1.2) and a constant >0 such that

    |ω(ϰ)ω0(ϰ)|ε,ϰ[0,a],

    then we say that Eq (1.2) possesses H-U stability, where is independent of ω(ϰ) and ω0(ϰ).

    Definition 3. Let λ(ϰ) be a nondecreasing function on [0,a] and ε0. Then, Eq (1.2) possesses λ-semi-Hyers-Ulam stability if for each function ω(ϰ) satisfying

    |ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|ε,ϰ[0,a],

    there is a solution ω0(ϰ) of Eq (1.2) with

    |ω(ϰ)ω0(ϰ)|λ(ϰ),ϰ[0,a],

    where >0 is a constant that is independent of ω(ϰ) and ω0(ϰ).

    Definition 4. [29,30] The Riemann-Liouville fractional integral of order σ>0 of a function f(ϰ) is described as follows:

    σJϰ0f(ϰ)=1Γ(σ)ϰ0(ϰ)σ1f()d,

    where Γ(σ)=0ettσ1dt, provided that the right-hand side is point-wise defined on [0,).

    Theorem 1. [31,32] Let (X,d) be a complete metric space and let Y:XX. If there exists a nonnegative constant η[0,1) such that d(Yy,Yz)ηd(y,z), for all y,zX, then Y has a unique fixed point.

    To establish the main results, we define an operator Y as

    (Yω)(ϰ)=ni=1(Yiω)(ϰ), (2.1)

    where

    (Yiω)(ϰ)=Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d,ϰ[0,a],i=1,2,3,,n. (2.2)

    Lemma 1. Let us take ωCg([0,a]). Assume that, for every i{1,2,,n}, the functions Vi:[0,a]R, Gi:[0,a]R, Fi:[0,a]×RR, and Ki:[0,a]×[0,a]R are all continuous, and that there exist constants ˆVi>0, ˆGi>0, ˆKi>0, and that F0i0, such that

    |Vi(ϰ)|ˆVi,|Gi(ϰ)|ˆGi,|Ki(ϰ,)|ˆKi,|Fi(,ω1)|F0i,ϰ,[0,a],ω1R.

    Then, YωCg([0,a]).

    Proof. To prove this, it is enough to show that if ωCg([0,a]), then the operators denoted by Tiω are continuous on [0,a], where

    (Tiω)(ϰ)=1Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d,i=1,2,,n.

    When σi=1, the result is obvious. So, we prove this for 0<σi<1. To do this, fix i{1,2,,n}, suppose that ωCg([0,a]), ϰ1,ϰ2[0,a] with ϰ2>ϰ1 and fix ϵ>0 such that |ϰ2ϰ1|ϵ; then, we get

    |(Tiω)(ϰ2)(Tiω)(ϰ1)|=|1Γ(σi)ϰ20(ϰ2)σi1Ki(ϰ2,)Fi(,ω())d1Γ(σi)ϰ10(ϰ1)σi1Ki(ϰ1,)Fi(,ω())d|1Γ(σi)|ϰ20(ϰ2)σi1Ki(ϰ2,)Fi(,ω())dϰ20(ϰ2)σi1Ki(ϰ1,)Fi(,ω())d|+1Γ(σi)|ϰ20(ϰ2)σi1Ki(ϰ1,)Fi(,ω())dϰ10(ϰ2)σi1Ki(ϰ1,)Fi(,ω())d|+1Γ(σi)|ϰ10(ϰ2)σi1Ki(ϰ1,)Fi(,ω())dϰ10(ϰ1)σi1Ki(ϰ1,)Fi(,ω())d|1Γ(σi)ϰ20(ϰ2)σi1|Ki(ϰ2,)Ki(ϰ1,)||Fi(,ω())|d+1Γ(σi)ϰ2ϰ1(ϰ2)σi1|Ki(ϰ1,)Fi(,ω())|d+1Γ(σi)ϰ10|(ϰ2)σi1(ϰ1)σi1||Ki(ϰ1,)Fi(,ω())|d.

    Let U(Ki,ϵ)=sup{|Ki(ϰ2,)Ki(ϰ1,)|:ϰ1,ϰ2,[0,a],|ϰ2ϰ1|ϵ}. Then,

    |(Tiω)(ϰ2)(Tiω)(ϰ1)|U(Ki,ϵ)F0iΓ(σi)ϰ20(ϰ2)σi1d+ˆKiF0iΓ(σi)ϰ2ϰ1(ϰ2)σi1d+ˆKiF0iΓ(σi)ϰ10|(ϰ2)σi1(ϰ1)σi1|dU(Ki,ϵ)F0iaσiΓ(σi+1)+ˆKiF0iΓ(σi+1)(ϰ2ϰ1)σi+ˆKiF0iΓ(σi)ϰ10((ϰ1)σi1(ϰ2)σi1)dU(Ki,ϵ)F0iaσiΓ(σi+1)+ˆKiF0iΓ(σi+1)(ϰ2ϰ1)σi+ˆKiF0iΓ(σi+1)[(ϰ2ϰ1)σi+ϰσi1ϰσi2].

    By utilizing the uniform continuity of the function Ki on [0,a]×[0,a], we have that U(Ki,ϵ)0 as ϵ0; thus, it follows that the right side of the above inequality tends to zero as ϰ2ϰ1. Hence, the operators denoted by Yiω are continuous on [0,a] for i{1,2,,n}, and consequently, YωCg([0,a]).

    Remark 2. By the above conditions of Lemma 1, one can easily conclude that if ωCδ([0,a]), then YωCδ([0,a]).

    Lemma 2. Assume that, for every i{1,2,,n}, the functions Vi:[0,a]R, Gi:[0,a]R, Fi:[0,a]×RR, and Ki:[0,a]×[0,a]R are all continuous, and that there exist constants ˆVi>0, ˆGi>0, ˆKi>0, and F0i0 such that

    |Vi(ϰ)|ˆVi,|Gi(ϰ)|ˆGi,|Ki(ϰ,)|ˆKi,|Fi(,ω1)|F0i,ϰ,[0,a],ω1R.

    Then for ω,φCg([0,a]), we get

    |(Yω)(ϰ)(Yφ)(ϰ)|Mn1ni=1|(Yiω)(ϰ)(Yiφ)(ϰ)|,

    where M=max{ˆVi+ˆGiˆKiF0iaσiΓ(σi+1):i=1,2,,n}.

    Proof. For any ωCg([0,a]), we obtain

    |(Yiω)(ϰ)|=|Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d||Vi(ϰ)|+|Gi(ϰ)|Γ(σi)ϰ0(ϰ)σi1|Ki(ϰ,)Fi(,ω())|dˆVi+ˆGiˆKiF0iaσiΓ(σi+1),i=1,2,,n.

    Let M=max{ˆVi+ˆGiˆKiF0iaσiΓ(σi+1):i=1,2,,n}.

    This gives

    |(Yiω)(ϰ)|M,for anyωCg([0,a]),i=1,2,,n. (2.3)

    Now, let ω,φCg([0,a]); then, by using the inequality (2.3), we obtain

    |(Yω)(ϰ)(Yφ)(ϰ)|=|ni=1(Yiω)(ϰ)ni=1(Yiφ)(ϰ)|=|(Y1ω)(ϰ)(Y2ω)(ϰ)(Ynω)(ϰ)(Y1φ)(ϰ)(Y2φ)(ϰ)(Ynφ)(ϰ)|=|[(Y1ω)(ϰ)(Y2ω)(ϰ)(Ynω)(ϰ)(Y1φ)(ϰ)(Y2ω)(ϰ)(Ynω)(ϰ)]+[(Y1φ)(ϰ)(Y2ω)(ϰ)(Ynω)(ϰ)(Y1φ)(ϰ)(Y2φ)(ϰ)(Ynω)(ϰ)]++[(Y1φ)(ϰ)(Yn1φ)(ϰ)(Ynω)(ϰ)(Y1φ)(ϰ)(Y2φ)(ϰ)(Ynφ)(ϰ)]|Mn1ni=1|(Yiω)(ϰ)(Yiφ)(ϰ)|.

    Some results on H-U-R stability are discussed in this section through the application of the Bielecki metric on the interval [0,a]. All of the theorems are as follows:

    Theorem 2. Let 0<p<σi1 for i{1,2,,n}. Let β>0 and λ:[0,a](0,) be a nondecreasing function such that

    (ϰ0(λ())1pd)pβ,ϰ[0,a].

    Moreover, let, for every i{1,2,,n}, the functions Vi:[0,a]R, Gi:[0,a]R, Fi:[0,a]×RR, and Ki:[0,a]×[0,a]R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i0 such that

    |Vi(ϰ)|ˆVi,|Gi(ϰ)|ˆGi,|Ki(ϰ,)|ˆKi,|Fi(,ω1)|F0i,
    and|Fi(,ω2)Fi(,ω1)|ˆFi|ω2ω1|,ω2,ω1R,,ϰ[0,a].

    If ωCg([0,a]) is such that

    |ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|λ(ϰ),ϰ[0,a],

    and (Mn1βλ(0)ni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)<1, then there is a unique solution ω0(ϰ)Cg([0,a]) of Eq (1.2) such that

    |ω(ϰ)ω0(ϰ)|11(Mn1βλ(0)ni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)λ(ϰ),ϰ[0,a]. (3.1)

    This means that Eq (1.2) possesses H-U-R stability.

    Proof. Let us define an operator Y:Cg([0,a])Cg([0,a]) by

    (Yω)(ϰ)=ni=1(Yiω)(ϰ), (3.2)

    where

    (Yiω)(ϰ)=Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d,ϰ[0,a],i=1,2,3,,n. (3.3)

    Now, to fulfill the criteria of Theorem 1, we take ω,φCg([0,a]); then,

    |(Yiω)(ϰ)(Yiφ)(ϰ)|=|Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())dVi(ϰ)Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,φ())d||Gi(ϰ)|Γ(σi)ϰ0(ϰ)σi1|Ki(ϰ,)||Fi(,ω())Fi(,φ())|dˆGiˆKiˆFiΓ(σi)ϰ0(ϰ)σi1|ω()φ()|d=ˆGiˆKiˆFiΓ(σi)ϰ0(ϰ)σi1λ()|ω()φ()|λ()dˆGiˆKiˆFidg(ω,φ)Γ(σi)ϰ0(ϰ)σi1λ()dˆGiˆKiˆFidg(ω,φ)Γ(σi)(ϰ0(ϰ)σi11pd)1p(ϰ0(λ())1pd)pˆGiˆKiˆFidg(ω,φ)βΓ(σi)(1pσip)1paσip,i=1,2,,n. (3.4)

    Then by using Lemma 2 and inequality (3.4), we get

    |(Yω)(ϰ)(Yφ)(ϰ)|Mn1ni=1|(Yiω)(ϰ)(Yiφ)(ϰ)|Mn1ni=1ˆGiˆKiˆFidg(ω,φ)βΓ(σi)(1pσip)1paσip. (3.5)

    Now,

    dg(Yω,Yφ)=supϰ[0,a]|(Yω)(ϰ)(Yφ)(ϰ)|λ(ϰ)supϰ[0,a]1λ(ϰ){Mn1ni=1ˆGiˆKiˆFidg(ω,φ)βΓ(σi)(1pσip)1paσip}(Mn1βλ(0)ni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)dg(ω,φ).

    From the condition (Mn1βλ(0)ni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)<1 and Theorem 2.1, it follows that Y has a unique fixed point and hence, Eq (1.2) has a unique solution.

    Let ω0(ϰ)Cg([0,a]) be a unique solution of Eq (1.2) and let ωCg([0,a]) be such that

    |ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|λ(ϰ),ϰ[0,a].

    Then,

    dg(ω,ω0)=supϰ[0,a]|ω(ϰ)ω0(ϰ)|λ(ϰ)=supϰ[0,a]1λ(ϰ)|ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω0())d)|supϰ[0,a]1λ(ϰ){|ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|+|ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω0())d)|}supϰ[0,a]1λ(ϰ){λ(ϰ)+|ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω0())d)|}=supϰ[0,a]1λ(ϰ){λ(ϰ)+|(Yω)(ϰ)(Yω0)(ϰ)|}.

    By using the inequality (3.5), we get

    dg(ω,ω0)supϰ[0,a]1λ(ϰ){λ(ϰ)+Mn1ni=1ˆGiˆKiˆFidg(ω,ω0)βΓ(σi)(1pσip)1paσip}1+Mn1λ(0)ni=1ˆGiˆKiˆFidg(ω,ω0)βΓ(σi)(1pσip)1paσip,

    i.e.,

    dg(ω,ω0)11(Mn1βλ(0)ni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip), (3.6)

    which implies that

    supϰ[0,a]|ω(ϰ)ω0(ϰ)|λ(ϰ)11(Mn1βλ(0)ni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip), (3.7)

    and consequently the inequality (3.1) holds. This ensures the H-U-R stability for Eq (1.2).

    Corollary 1. Let 0<p<σi1, for i{1,2,,n} and δ>0. Moreover, let, for every i{1,2,,n}, the functions Vi:[0,a]R, Gi:[0,a]R, Fi:[0,a]×RR, and Ki:[0,a]×[0,a]R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i0 such that

    |Vi(ϰ)|ˆVi,|Gi(ϰ)|ˆGi,|Ki(ϰ,)|ˆKi,|Fi(,ω1)|F0i,
    and|Fi(,ω2)Fi(,ω1)|ˆFi|ω2ω1|,ω2,ω1R,,ϰ[0,a].

    If ωCδ([0,a]) is such that

    |ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|eδϰ,ϰ[0,a],

    and (Mn1(pδ)p(eδap1)pni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)<1, then there is a unique solution ω0(ϰ)Cδ([0,a]) of Eq (1.2) such that

    |ω(ϰ)ω0(ϰ)|eδϰ1(Mn1(pδ)p(eδap1)pni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip),ϰ[0,a]. (3.8)

    This means that Eq (1.2) possesses H-U-R stability.

    Theorem 3. Let 0<σi1 and βi>0 for i{1,2,,n} and λ:[0,a](0,) be a nondecreasing function, such that

    1Γ(σi)ϰ0(ϰ)σi1λ()dβiλ(ϰ),ϰ[0,a],i=1,2,,n.

    Moreover, let, for every i{1,2,,n}, the functions Vi:[0,a]R, Gi:[0,a]R, Fi:[0,a]×RR, and Ki:[0,a]×[0,a]R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i0 such that

    |Vi(ϰ)|ˆVi,|Gi(ϰ)|ˆGi,|Ki(ϰ,)|ˆKi,|Fi(,ω1)|F0i,
    and|Fi(,ω2)Fi(,ω1)|ˆFi|ω2ω1|,ω2,ω1R,,ϰ[0,a].

    If ωCg([0,a]) is such that

    |ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|λ(ϰ),ϰ[0,a],

    and (Mn1ni=1ˆGiˆKiˆFiβi)<1, then there is a unique solution ω0(ϰ)Cg([0,a]) of Eq (1.2) such that

    |ω(ϰ)ω0(ϰ)|11(Mn1ni=1ˆGiˆKiˆFiβi)λ(ϰ),ϰ[0,a]. (3.9)

    This means that Eq (1.2) possesses H-U-R stability.

    Proof. Let us define an operator Y:Cg([0,a])Cg([0,a]) by

    (Yω)(ϰ)=ni=1(Yiω)(ϰ), (3.10)

    where

    (Yiω)(ϰ)=Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d,ϰ[0,a],i=1,2,3,,n. (3.11)

    Now, to fulfill the criteria of Theorem 1, we take ω,φCg([0,a]); then,

    |(Yiω)(ϰ)(Yiφ)(ϰ)|=|Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())dVi(ϰ)Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,φ())d||Gi(ϰ)|Γ(σi)ϰ0(ϰ)σi1|Ki(ϰ,)||Fi(,ω())Fi(,φ())|dˆGiˆKiˆFiΓ(σi)ϰ0(ϰ)σi1|ω()φ()|d=ˆGiˆKiˆFiΓ(σi)ϰ0(ϰ)σi1λ()|ω()φ()|λ()dˆGiˆKiˆFidg(ω,φ)Γ(σi)ϰ0(ϰ)σi1λ()dˆGiˆKiˆFidg(ω,φ)βiλ(ϰ),i=1,2,,n. (3.12)

    Then, by using Lemma 2 and inequality (3.12), we obtain

    |(Yω)(ϰ)(Yφ)(ϰ)|Mn1ni=1|(Yiω)(ϰ)(Yiφ)(ϰ)|Mn1ni=1ˆGiˆKiˆFidg(ω,φ)βiλ(ϰ). (3.13)

    Now,

    dg(Yω,Yφ)=supϰ[0,a]|(Yω)(ϰ)(Yφ)(ϰ)|λ(ϰ)supϰ[0,a]1λ(ϰ){Mn1ni=1ˆGiˆKiˆFidg(ω,φ)βiλ(ϰ)},

    i.e.,

    dg(Yω,Yφ)(Mn1ni=1ˆGiˆKiˆFiβi)dg(ω,φ).

    From the condition (Mn1ni=1ˆGiˆKiˆFiβi)<1 and Theorem 1, it follows that Y has a unique fixed point and hence, Eq (1.2) has a unique solution.

    Let ω0(ϰ)Cg([0,a]) be a unique solution of Eq (1.2), and let ωCg([0,a]) be such that

    |ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|λ(ϰ),ϰ[0,a].

    Then,

    dg(ω,ω0)=supϰ[0,a]|ω(ϰ)ω0(ϰ)|λ(ϰ)=supϰ[0,a]1λ(ϰ)|ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω0())d)|supϰ[0,a]1λ(ϰ){|ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|+|ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω0())d)|}supϰ[0,a]1λ(ϰ){λ(ϰ)+|ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω0())d)|}.

    By using the inequality (3.13), we get

    dg(ω,ω0)supϰ[0,a]1λ(ϰ){λ(ϰ)+Mn1ni=1ˆGiˆKiˆFidg(ω,ω0)βiλ(ϰ)},

    i.e.,

    dg(ω,ω0)1+Mn1ni=1ˆGiˆKiˆFidg(ω,ω0)βi,

    or,

    dg(ω,ω0)11(Mn1ni=1ˆGiˆKiˆFiβi),

    which implies that

    supϰ[0,a]|ω(ϰ)ω0(ϰ)|λ(ϰ)11(Mn1ni=1ˆGiˆKiˆFiβi), (3.14)

    consequently, the inequality (3.9) holds. This ensures the H-U-R stability for Eq (1.2).

    Theorem 4. Let 0<p<σi1, for i{1,2,,n}. Let β>0 and λ:[0,a](0,) be a nondecreasing function, such that

    (ϰ0(λ())1pd)pβ,ϰ[0,a].

    Moreover, let, for every i{1,2,,n}, the functions Vi:[0,a]R, Gi:[0,a]R, Fi:[0,a]×RR, and Ki:[0,a]×[0,a]R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i0 such that

    |Vi(ϰ)|ˆVi,|Gi(ϰ)|ˆGi,|Ki(ϰ,)|ˆKi,|Fi(,ω1)|F0i,
    and|Fi(,ω2)Fi(,ω1)|ˆFi|ω2ω1|,ω2,ω1R,,ϰ[0,a].

    If ωCg([0,a]) is such that

    |ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|ε,ϰ[0,a],

    where ε>0 and (Mn1βλ(0)ni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)<1, then there is a unique solution ω0(ϰ)Cg([0,a]) of Eq (1.2) such that

    |ω(ϰ)ω0(ϰ)|ελ(0)(Mn1βni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)λ(ϰ),ϰ[0,a]. (4.1)

    This means that Eq (1.2) possesses λ-semi-Hyers-Ulam stability.

    Proof. We define the operator Y:Cg([0,a])Cg([0,a]) by

    (Yω)(ϰ)=ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d),ϰ[0,a]. (4.2)

    Given that (Mn1βλ(0)ni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)<1, similar to Theorem 3.1, we have that Eq (1.2) has a unique solution. To establish the λ-semi-Hyers-Ulam stability, let ω0(ϰ)Cg([0,a]) be a unique solution of Eq (1.2) and let ωCg([0,a]) be such that

    |ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|ε,ϰ[0,a].

    Then,

    dg(ω,ω0)=supϰ[0,a]|ω(ϰ)ω0(ϰ)|λ(ϰ)=supϰ[0,a]1λ(ϰ)|ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω0())d)|supϰ[0,a]1λ(ϰ){|ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|+|ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω0())d)|}supϰ[0,a]1λ(ϰ){ε+|ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω0())d)|}.

    By using Lemma 2 and following a procedure similar to that for inequality (3.4), we get

    |ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω0())d)|=|(Yω)(ϰ)(Yω0)(ϰ)|Mn1ni=1|(Yiω)(ϰ)(Yiω0)(ϰ)|Mn1ni=1ˆGiˆKiˆFidg(ω,ω0)βΓ(σi)(1pσip)1paσip. (4.3)

    By using the inequality (4.3), we get

    dg(ω,ω0)supϰ[0,a]1λ(ϰ){ε+Mn1ni=1ˆGiˆKiˆFidg(ω,ω0)βΓ(σi)(1pσip)1paσip},ελ(0)+Mn1ni=1ˆGiˆKiˆFidg(ω,ω0)βλ(0)Γ(σi)(1pσip)1paσip,

    i.e.,

    dg(ω,ω0)ελ(0)(Mn1βni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip), (4.4)

    which implies that

    supϰ[0,a]|ω(ϰ)ω0(ϰ)|λ(ϰ)ελ(0)(Mn1βni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip), (4.5)

    consequently, the inequality (4.1) holds. This ensures the λ-semi-Hyers-Ulam stability for Eq (1.2).

    Corollary 2. Let 0<p<σi1, for i{1,2,,n} and δ>0. Moreover, let, for every i{1,2,,n}, the functions Vi:[0,a]R, Gi:[0,a]R, Fi:[0,a]×RR, and Ki:[0,a]×[0,a]R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i0 such that

    |Vi(ϰ)|ˆVi,|Gi(ϰ)|ˆGi,|Ki(ϰ,)|ˆKi,|Fi(,ω1)|F0i,
    and|Fi(,ω2)Fi(,ω1)|ˆFi|ω2ω1|,ω2,ω1R,,ϰ[0,a].

    If ωCδ([0,a]) is such that

    |ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|ε,ϰ[0,a],

    where ε>0 and (Mn1(pδ)p(eδap1)pni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)<1, then there is a unique solution ω0(ϰ)Cδ([0,a]) of Eq (1.2) such that

    |ω(ϰ)ω0(ϰ)|εeδϰ1(Mn1(pδ)p(eδap1)pni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip),ϰ[0,a]. (4.6)

    This means that Eq (1.2) possesses λ-semi-Hyers-Ulam stability.

    Corollary 3. Let 0<p<σi1 for i{1,2,,n}. Let β>0 and λ:[0,a](0,) be a nondecreasing function such that

    (ϰ0(λ())1pd)pβ,ϰ[0,a].

    Moreover, let, for every i{1,2,,n}, the functions Vi:[0,a]R, Gi:[0,a]R, Fi:[0,a]×RR, and Ki:[0,a]×[0,a]R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i0 such that

    |Vi(ϰ)|ˆVi,|Gi(ϰ)|ˆGi,|Ki(ϰ,)|ˆKi,|Fi(,ω1)|F0i,
    and|Fi(,ω2)Fi(,ω1)|ˆFi|ω2ω1|,ω2,ω1R,,ϰ[0,a].

    If ωCg([0,a]) is such that

    |ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|ε,ϰ[0,a],

    where ε>0 and (Mn1βλ(0)ni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)<1, then there is a unique solution ω0(ϰ)Cg([0,a]) of Eq (1.2) such that

    |ω(ϰ)ω0(ϰ)|λ(a)λ(0)(Mn1βni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)ε,ϰ[0,a]. (4.7)

    This means that Eq (1.2) possesses H-U stability.

    Corollary 4. Let 0<p<σi1 for i{1,2,,n} and δ>0. Moreover, let, for every i{1,2,,n}, the functions Vi:[0,a]R, Gi:[0,a]R, Fi:[0,a]×RR, and Ki:[0,a]×[0,a]R be continuous and there exist constants ˆVi>0, ˆGi>0, ˆKi>0, ˆFi>0, and F0i0 such that

    |Vi(ϰ)|ˆVi,|Gi(ϰ)|ˆGi,|Ki(ϰ,)|ˆKi,|Fi(,ω1)|F0i,
    and|Fi(,ω2)Fi(,ω1)|ˆFi|ω2ω1|,ω2,ω1R,,ϰ[0,a].

    If ωCδ([0,a]) is such that

    |ω(ϰ)ni=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|ε,ϰ[0,a],

    where ε>0 and (Mn1(pδ)p(eδap1)pni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)<1, then there is a unique solution ω0(ϰ)Cδ([0,a]) of Eq (1.2) such that

    |ω(ϰ)ω0(ϰ)|eδa1(Mn1(pδ)p(eδap1)pni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)ε,ϰ[0,a]. (4.8)

    This means that Eq (1.2) possesses H-U stability.

    We will discuss two examples in this section to illustrate the established results.

    Example 1. Consider the following integral equation:

    ω(ϰ)=(V1(ϰ)+G1(ϰ)Γ(12)ϰ0(ϰ)12(ϰ+)sin(ω())d)(V2(ϰ)+G2(ϰ)Γ(12)ϰ0(ϰ)12(+cos(ω()))d),ϰ[0,1], (5.1)

    where V1(ϰ)=2π, V2(ϰ)=1(16ϰ52+20ϰ32)sin(ϰ)1800Γ(12), G1(ϰ)=ϰ264, and G2(ϰ)=sin(ϰ)120. Comparing Eq (5.1) with Eq (1.2), we have that n=2, a=1, K1(ϰ,)=ϰ+, F1(,ω())=sin(ω()), K2(ϰ,)=, F2(,ω())=+cos(ω()), and σ1=σ2=12.

    It can be observed that the functions V1, G1, K1, F1, V2, G2, K2, and F2 are all continuous and satisfy the following conditions:

    |Vi(ϰ)|ˆVi,|Gi(ϰ)|ˆGi,|Ki(ϰ,)|ˆKi,|Fi(,ω1)|F0i,
    and|Fi(,ω2)Fi(,ω1)|ˆFi|ω2ω1|,ω2,ω1R,,ϰ[0,1],fori=1,2;

    where ˆV1=2π, ˆG1=1264, ˆK1=2, F01=1, ˆF1=1, ˆV2=1, ˆG2=1120, ˆK2=1, F02=2, and ˆF2=1.

    Thus, all conditions of Lemmas 1 and 2 are satisfied and we get

    M=max{ˆVi+ˆGiˆKiF0iaσiΓ(σi+1):i=1,2}6.292.

    We choose p=13 such that 0<p<σi1 holds for i=1,2, and we consider the nondecreasing function λ:[0,1](0,) given by λ(ϰ)=ϰ+2π. Then, the following condition

    (ϰ0(λ())1pd)pβ,ϰ[0,1],

    is satisfied by β=(313.8010)13.

    Now, (Mn1βλ(0)ni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)0.1539<1.

    If we take ω(ϰ)=0, then

    |ω(ϰ)2i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|=|02π|ϰ+2π=λ(ϰ),ϰ[0,1].

    Thus, by Theorem 3.1, there exists a unique solution ω0(ϰ)Cg([0,a]) of Eq (5.1) such that

    |ω(ϰ)ω0(ϰ)|11(Mn1βλ(0)ni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)λ(ϰ),ϰ[0,1].

    This ensures the H-U-R stability for Eq (5.1).

    Again, since (Mn1βλ(0)ni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)0.1539<1, and if we take ω(ϰ)=0, then, for ε2π, we get

    |ω(ϰ)2i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|=|02π|ε,ϰ[0,1].

    Hence, by Theorem 4.1, there exists a unique solution ω0(ϰ)Cg([0,a]) of Eq (5.1) such that

    |ω(ϰ)ω0(ϰ)|ελ(0)(Mn1βni=1ˆGiˆKiˆFiΓ(σi)(1pσip)1paσip)λ(ϰ),ϰ[0,a],

    which ensures the λ-semi-Hyers-Ulam stability for Eq (5.1); also, by Corollary 3, we can conclude the H-U stability for Eq (5.1).

    Example 2. Consider the following integral equation:

    ω(ϰ)=(V1(ϰ)+G1(ϰ)Γ(13)ϰ0(ϰ)23(1+)1+|ω()|ed)(V2(ϰ)+G2(ϰ)Γ(13)ϰ0(ϰ)23cos(π2ω()e)d),ϰ[0,1], (5.2)

    where V1(ϰ)=1eϰ(9ϰ43+12ϰ13)2592Γ(13), V2(ϰ)=eϰ, G1(ϰ)=eϰ324, and G2(ϰ)=eϰ224. Comparing Eq (5.2) with Eq (1.2), we have that n=2, a=1, K1(ϰ,)=1+, F1(,ω())=11+|ω()|e, K2(ϰ,)=1, F2(,ω())=cos(π2ω()e), and σ1=σ2=13.

    It can be observed that the functions V1, G1, K1, F1, V2, G2, K2, and F2 are all continuous and satisfy the following conditions:

    |Vi(ϰ)|ˆVi,|Gi(ϰ)|ˆGi,|Ki(ϰ,)|ˆKi,|Fi(,ω1)|F0i,
    and|Fi(,ω2)Fi(,ω1)|ˆFi|ω2ω1|,ω2,ω1R,,ϰ[0,1],fori=1,2;

    where ˆV1=1, ˆG1=0.0084, ˆK1=2, F01=1, ˆF1=1, ˆV2=2.7183, ˆG2=0.0121, ˆK2=1, F02=1, and ˆF2=π2.

    Thus, all conditions of Lemmas 1 and 2 are satisfied and we get the following:

    M=max{ˆVi+ˆGiˆKiF0iaσiΓ(σi+1):i=1,2}2.732.

    We consider the nondecreasing function λ:[0,1](0,) given by λ(ϰ)=4ϰ+2. Then, the condition

    1Γ(σi)ϰ0(ϰ)σi1λ()dβiλ(ϰ),ϰ[0,1],i=1,2,

    is satisfied by β1=β2=2.7996.

    Now, (Mn1ni=1ˆGiˆKiˆFiβi)0.274<1.

    If we take ω(ϰ)=3eϰ, then

    |ω(ϰ)2i=1(Vi(ϰ)+Gi(ϰ)Γ(σi)ϰ0(ϰ)σi1Ki(ϰ,)Fi(,ω())d)|=|3eϰ(1eϰ(9ϰ43+12ϰ13)5184Γ(13))eϰ|4ϰ+2=λ(ϰ),ϰ[0,1].

    Thus, by Theorem 3.2, there exists a unique solution ω0(ϰ)Cg([0,1]) of Eq (5.2) such that

    |ω(ϰ)ω0(ϰ)|11(Mn1ni=1ˆGiˆKiˆFiβi)λ(ϰ),ϰ[0,1].

    This ensures the H-U-R stability for Eq (5.2).

    Three types of stabilities, namely, H-U, λ-semi-Hyers-Ulam, and H-U-R stabilities, have been analyzed in this paper for Eq (1.2) through the application of the Bielecki metric in the space of continuous real-valued functions defined on the finite interval [0,a]. In Theorem 3.1, conditions for H-U-R stability have been established in the space Cg([0,a]) through the application of the metric dg. In Corollary 1, we stated the conditions for H-U-R stability in the space Cδ([0,a]) through the application of the metric dδ. Some easily checked conditions for H-U-R stability have been provided in Theorem 3.2. In Theorem 4.1, conditions for λ-semi-Hyers-Ulam stability have been discussed in the space Cg([0,a]) through the application of the metric dg. In Corollary 2, we stated the conditions for λ-semi-Hyers-Ulam stability in the space Cδ([0,a]) through the application of the metric dδ. In Corollary 3, conditions for H-U stability have been discussed in the space Cg([0,a]) through the application of the metric dg, and in Corollary 4, we stated the conditions for H-U stability in the space Cδ([0,a]) through the application of the metric dδ. These results indicate that there is a close analytic solution of Eq (1.2) that is stable in the sense of the above stabilities. Two examples have been discussed on the interval [0,1] to illustrate the established results. In the future, one can extend the concept presented here to the system of fractional integral equations of n-product type. Also, new results can be obtained by considering more generalized kernels. Subsequently, interested researchers can extend this concept to two-dimensional integral equations of fractional order.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare no conflict of interest.



    [1] C. Nowzari, V. M. Preciado, G. J. Pappas, Analysis and control of epidemics: A survey of spreading processes on complex networks, IEEE Control Syst. Mag., 36 (2016), 26–46. https://doi.org/10.1109/MCS.2015.2495000 doi: 10.1109/MCS.2015.2495000
    [2] A. Roy, C. Singh, Y. Narahari, Recent advances in modeling and control of epidemics using a mean field approach, Sādhanā, 48 (2023), 207. https://doi.org/10.1007/s12046-023-02268-z
    [3] Y. Guo, T. Li, Fractional-order modeling and optimal control of a new online game addiction model based on real data, Commun. Nonlinear Sci. Numer. Simul., 121 (2023), 107221. https://doi.org/10.1016/j.cnsns.2023.107221 doi: 10.1016/j.cnsns.2023.107221
    [4] K. H. Wickwire, Optimal isolation policies for deterministic and stochastic epidemics, Math. Biosci., 26 (1975), 325–346. https://doi.org/10.1016/0025-5564(75)90020-6 doi: 10.1016/0025-5564(75)90020-6
    [5] H. Behncke, Optimal control of deterministic epidemics, Optimal Control Appl. Methods, 21 (2000), 269–285. https://doi.org/10.1002/oca.678 doi: 10.1002/oca.678
    [6] A. Omame, N. Sene, I. Nometa, C. I. Nwakanma, E. U. Nwafor, N. O. Iheonu, et al., Analysis of COVID-19 and comorbidity co-infection model with optimal control, Optimal Control Appl. Methods, 42 (2021), 1568–1590. https://doi.org/10.1002/oca.2748 doi: 10.1002/oca.2748
    [7] D. I. Ketcheson, Optimal control of an SIR epidemic through finite-time non-pharmaceutical intervention, J. Math. Biol., 83 (2021), 7. https://doi.org/10.1007/s00285-021-01628-9 doi: 10.1007/s00285-021-01628-9
    [8] T. A. Perkins, G. España, Optimal control of the COVID-19 pandemic with non-pharmaceutical interventions, Bull. Math. Biol., 82 (2020), 118. https://doi.org/10.1007/s11538-020-00795-y doi: 10.1007/s11538-020-00795-y
    [9] T. Kruse, P. Strack, Optimal control of an epidemic through social distancing, 2020.
    [10] A. Khan, G. Zaman, Optimal control strategy of SEIR endemic model with continuous age-structure in the exposed and infectious classes, Optimal Control Appl. Methods, 39 (2018), 1716–1727. https://doi.org/10.1002/oca.2437 doi: 10.1002/oca.2437
    [11] L. Li, C. Sun, Ji. Jia, Optimal control of a delayed SIRC epidemic model with saturated incidence rate, Optimal Control Appl. Methods, 40 (2019), 367–374. https://doi.org/10.1002/oca.2482 doi: 10.1002/oca.2482
    [12] G. Gonzalez-Parra, M. Díaz-Rodríguez, A. J. Arenas, Mathematical modeling to design public health policies for Chikungunya epidemic using optimal control, Optimal Control Appl. Methods, 41 (2020), 1584–1603. https://doi.org/10.1002/oca.2621 doi: 10.1002/oca.2621
    [13] A. Omame, M. E. Isah, M. Abbas, An optimal control model for COVID-19, zika, dengue, and chikungunya co-dynamics with reinfection, Optimal Control Appl. Methods, 44 (2023), 170–204. https://doi.org/10.1002/oca.2936 doi: 10.1002/oca.2936
    [14] H. Gaff, E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Eng., 6 (2009), 469–492. https://doi.org/10.3934/mbe.2009.6.469 doi: 10.3934/mbe.2009.6.469
    [15] E. V. Grigorieva, E. N. Khailov, A. Korobeinikov, Optimal control for an epidemic in a population of varying size, Discret. Contin. Dyn. Syst. S, 2015 (2015), 549–561. https://doi.org/10.3934/proc.2015.0549 doi: 10.3934/proc.2015.0549
    [16] E. V. Grigorieva, E. N. Khailov, A. Korobeinikov, Optimal quarantine strategies for COVID-19 control models, Stud. Appl. Math., 147 (2021), 622–649. https://doi.org/10.1111/sapm.12393 doi: 10.1111/sapm.12393
    [17] A. Piunovskiy, A. Plakhov, M. Tumanov, Optimal impulse control of a SIR epidemic, Optimal Control Appl. Methods, 41 (2020), 448–468. https://doi.org/10.1002/oca.2552 doi: 10.1002/oca.2552
    [18] P. A. Bliman, M. Duprez, Y. Privat, N. Vauchelet, Optimal immunity control and final size minimization by social distancing for the SIR epidemic model, J. Optim. Theory Appl., 189 (2021), 408–436. https://doi.org/10.1007/s10957-021-01830-1 doi: 10.1007/s10957-021-01830-1
    [19] T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos Solitons Fract., 121 (2023), 111825. https://doi.org/10.1016/j.chaos.2022.111825 doi: 10.1016/j.chaos.2022.111825
    [20] W. Adel, H. Gunerhan, K. S. Nisar, P. Agarwal, A. El-Mesady, Designing a novel fractional order mathematical model for COVID-19 incorporating lockdown measures, Sci. Rep., 14 (2024), 2926. https://doi.org/10.1038/s41598-023-50889-5 doi: 10.1038/s41598-023-50889-5
    [21] A. El-Mesady, A. A. Elsadany, A. M. S. Mahdy, A. Elsonbaty, Nonlinear dynamics and optimal control strategies of a novel fractional-order lumpy skin disease model, J. Comput. Sci., 79 (2024), 102286. https://doi.org/10.1016/j.jocs.2024.102286 doi: 10.1016/j.jocs.2024.102286
    [22] A. El-Mesady, H. M. Ali, The influence of prevention and isolation measures to control the infections of the fractional Chickenpox disease model, Math. Comput. Simul., 226 (2024), 606–630. https://doi.org/10.1016/j.matcom.2024.07.028 doi: 10.1016/j.matcom.2024.07.028
    [23] U. Ledzewicz, H. Schättler, On optimal singular controls for a general SIR-model with vaccination and treatment, Discrete Contin. Dyn. Syst, 2011 (2011), 981–990. https://doi.org/10.3934/proc.2011.2011.981 doi: 10.3934/proc.2011.2011.981
    [24] O. Sharomi, T. Malik, Optimal control in epidemiology, Ann. Oper. Res., 251 (2017), 55–71. https://doi.org/10.1007/s10479-015-1834-4 doi: 10.1007/s10479-015-1834-4
    [25] D. Greenhalgh, Some results on optimal control applied to epidemics, Math. Biosci., 88 (1988), 125–158. https://doi.org/10.1016/0025-5564(88)90040-5 doi: 10.1016/0025-5564(88)90040-5
    [26] R. Pagliara, B. Dey, N. E. Leonard, Bistability and resurgent epidemics in reinfection models, IEEE Control Syst. Lett., 2 (2018), 290–295. https://doi.org/10.1109/LCSYS.2018.2832063 doi: 10.1109/LCSYS.2018.2832063
    [27] I. Abouelkheir, F. El Kihal, M. Rachik, I. Elmouki, Optimal impulse vaccination approach for an SIR control model with short-term immunity, Mathematics, 7 (2019), 420. https://doi.org/10.3390/math7050420 doi: 10.3390/math7050420
    [28] T. Mapder, S. Clifford, J. Aaskov, K. Burrage, A population of bang-bang switches of defective interfering particles makes within-host dynamics of dengue virus controllable, PLoS Comput. Biol., 15 (2019), e1006668. https://doi.org/10.1371/journal.pcbi.1006668 doi: 10.1371/journal.pcbi.1006668
    [29] S. Lenhart, J. T. Workman, Optimal control applied to biological models, 1 Eds., Chapman and Hall/CRC, 2007. https://doi.org/10.1201/9781420011418
    [30] S. Y. Ren, W. B. Wang, R. D. Gao, A. M. Zhou, Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance, World J. Clin. Cases., 10 (2022), 1–11. https://doi.org/10.12998/wjcc.v10.i1.1 doi: 10.12998/wjcc.v10.i1.1
    [31] A. Pinto, M. Aguiar, J. Martins, N. Stollenwerk, Dynamics of epidemiological models, Acta Biotheor., 58 (2010), 381–389. https://doi.org/10.1007/s10441-010-9116-7 doi: 10.1007/s10441-010-9116-7
    [32] A. Bressan, B. Piccoli, Introduction to the mathematical theory of control, 2007.
    [33] F. Blanchini, S. Miani, Set-theoretic methods in control, Birkhäuser Cham, 2015
    [34] F. Clarke, Functional analysis, calculus of variations and optimal control, London: Springer, 2013. https://doi.org/10.1007/978-1-4471-4820-3
    [35] D. Liberzon, Calculus of variations and optimal control theory: A concise introduction, Princeton University Press, 2011.
    [36] B. Bonnard, M. Chyba, Singular trajectories and their role in control theory, IEEE Trans. Automat. Control, 50 (2005), 278–279. https://doi.org/10.1109/TAC.2004.841883 doi: 10.1109/TAC.2004.841883
    [37] Q. Li, M. Med, X. Guan, P. Wu, X. Wang, Lei Zhou, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–1207. https://doi.org/10.1056/NEJMoa2001316 doi: 10.1056/NEJMoa2001316
    [38] Z. Du, H. Hong, S. Wang, L. Ma, C. Liu, Y. Bai, et al., Reproduction number of the Omicron variant triples that of the Delta variant, Viruses, 14 (2022), 821. https://doi.org/10.3390/v14040821 doi: 10.3390/v14040821
    [39] S. Ganguly, N. Randad, R. A. D'Silva, M. Raj, D. Chatterjee, QuITO: Numerical software for constrained nonlinear optimal control problems, SoftwareX, 24 (2023), 101557. https://doi.org/10.1016/j.softx.2023.101557 doi: 10.1016/j.softx.2023.101557
    [40] A. R. Hota, U. Maitra, E. Elokda, S. Bologonani, Learning to Mitigate epidemic risks: A dynamic population game approach, Dyn. Games Appl., 13 (2023), 1106–1129. https://doi.org/10.1007/s13235-023-00529-4 doi: 10.1007/s13235-023-00529-4
  • This article has been cited by:

    1. Ilhame Amirali, Muhammet Enes Durmaz, Gabil M. Amiraliyev, A Monotone Second-Order Numerical Method for Fredholm Integro-Differential Equation, 2024, 21, 1660-5446, 10.1007/s00009-024-02746-6
    2. Supriya Kumar Paul, Lakshmi Narayan Mishra, Asymptotic Stability and Approximate Solutions to Quadratic Functional Integral Equations Containing ψ-Riemann–Liouville Fractional Integral Operator, 2025, 65, 0965-5425, 320, 10.1134/S096554252470204X
    3. M. Sudha, M. Saravanakumar, Pradeep Jangir, Elangovan Muniyandy, An enhanced asymmetric quantization Boolean encryption for secure routing in wireless sensor networks, 2025, 16, 1793-9623, 10.1142/S179396232550028X
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(245) PDF downloads(32) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog