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Abstract:  We consider the problem of the optimal allocation of vaccination and protection
measures for the Susceptible-Infected-Recovered-Infected (SIRI) epidemiological model, which
generalizes the classical Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible
(SIS) epidemiological models by allowing for reinfection. First, we introduce the controlled SIRI
dynamical model, and discuss the existence and stability of the equilibrium points. Then, we formulate
a finite-horizon optimal control problem where the cost of vaccination and protection is proportional
to the mass of the population that adopts it. Our main contribution in this work arises from a detailed
investigation into the existence/non-existence of singular control inputs, and establishing optimality of
bang-bang controls. The optimality of bang-bang control is established by solving an optimal control
problem with a running cost that is linear with respect to the input variables. The input variables
are associated with actions including the vaccination and imposition of protective measures (e.g.,
masking or isolation). In contrast to most prior works, we rigorously establish the non-existence of
singular controls (i.e., the optimality of bang-bang control for our SIRI model). Under the assumption
that the reinfection rate exceeds the first-time infection rate, we characterize the structure of both the
optimal control inputs, and establish that the vaccination control input admits a bang-bang structure.
The numerical results provide valuable insights into the evolution of the disease spread under optimal
control.
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1. Introduction

As observed during the COVID-19 pandemic, if left unchecked, infectious diseases potentially
spread across the entire planet in the span of a few weeks and cause significant damage in terms
of mortality and life-long impairments. In addition, the emergence of different variants may lead to
reinfection, once the initial immunity weakens over time. In such situations, policy makers impose
restrictions on individuals in the form of social distancing and mandatory mask usage. Additionally,
they administer vaccines which offer partial immunity against the disease. However, such interventions
have a significant social and economic cost, and it is important to strike the right balance among
the different options that are available. In this regard, dynamical systems and the optimal control
theory have emerged as promising tools that provide policy-makers with appropriate guidelines and
insights into mitigating epidemics (see, e.g., [1,2]). Additionally, the optimal control of fractional-
order systems has been used for spreading processes [3].

Starting from seminal works such as [4, 5], there have been numerous investigations on optimal
control of epidemiological processes, which largely consider compartmental dynamical models of
epidemic evolution [1]; see [2] for a recent review. A majority of the past efforts have been directed
towards optimal protection in the context of Susceptible-Infected-Recovered (SIR) epidemics and its
variants (see, e.g., [6-9]). More recent papers [10-13] have considered vaccinations as additional
control input (in addition to protection or social distancing measures). These works assume that
the running cost is quadratic in the control input. However, it is natural to assume that the cost
(of vaccination or protection) is proportional to the magnitude of the control input or the fraction
of the population on which the input is administered. A few additional papers (see, e.g., [14, 15]) have
investigated the use of optimal control techniques, when the population size is dynamically changing.
Other related approaches are also explored in [16-18]. The methodology for containing COVID-19
Delta strain spread was explored in [19]. The authors included asymptomatic agents and captured the
notion of an imperfect vaccination in their model. It is well established that fractional order optimal
controls have advantages in the form of greater flexibility and higher accuracy over the classical integer
order controls. The fractional order models of COVID-19 and other diseases were thoroughly explored
in [20-22].

There have been limited investigations into epidemiological models where recovery does not give
permanent immunity, and hence, reinfection is also possible as a result. In addition, even past works
that assumed a cost functional that was linear in the control input which led to a bang-bang optimal
control structure, the possibility of the existence of singular arcs and singular control inputs is not often
examined in a rigorous manner (the work [23] is a notable exception in this regard). Nevertheless, in
practice, it is important to characterize the possibility of singular control inputs in order to provide
insights into policy-making decisions, thus informing the authorities of the expected impact of either
imposing or relaxing interventions.

The motivation for this work is to establish the existence of non-singular optimal policies to control
the spread of epidemics via limited vaccination and protective measures by solving an optimal control
problem considering a running cost that is linear with respect to the input variables in an epidemic
model with reinfection risk. Our setting differs from most prior studies on the optimal control of
epidemics that assume the objective function to be superlinear in the control inputs, which leads to a
simpler analysis, and the issue of singular inputs can be avoided. For example, in [24], the authors used
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the SIR model where the objective function was quadratic in the control inputs. However, it is more
reasonable to consider the running cost to be linear with respect to the input variables; indeed, the cost
of vaccination (and other protection measures) is directly proportional to the fraction of the population
being vaccinated (or adopting protective measures). While some studies, such as [25], assumed running
costs that were linear in the control inputs, they focused on bang-bang controls without ruling out
the possibility of singular controls. In this work, we consider a generalized epidemiological model
that incorporates both recovery and reinfection (similar to observations made during COVID-19),
specifically the susceptible-infected-recovered-infected (SIRI) epidemic model (see e.g., [26]). Our
model includes both non-pharmaceutical and medical resources as inputs, and the running cost is
assumed to be linear in these control variables. Additionally, during COVID-19, we observed higher
reinfection rates due to variants such as Delta and Omicron, which supports the focus on compromised
immunity in this work. Under appropriate assumptions, we specifically exclude the possibility of
simultaneous singularities and analytically prove that vaccination control does not exhibit singularities.

In the SIRI model, the rate of reinfection is different from the rate of initial infection, with higher
values indicating compromised immunity and a smaller rate of reinfection indicating a partial immunity
imparted by the disease and/or vaccinations. As analyzed in [27], it was assumed that vaccinations
were only available for the susceptible sub-population who transit to the recovered compartment, thus
reflecting the fact that vaccinations impart a certain degree of protection for the short term, but not
complete immunity (a similar phenomenon was also observed during the COVID-19 pandemic).

The main contributions of the paper are as follows. We analyze the optimality conditions for the
associated optimal control problem and rule out the existence of a simultaneous singularity of both
control inputs on the SIRI epidemiological model in the scenario of compromised immunity. Then,
we carry out a detailed investigation regarding the singularity of the vaccination control input, and
under sufficient conditions, we show that it does not admit a singular arc (i.e., the vaccination-optimal
control is always at one of two possible extreme admissible values). A theoretical analysis that provides
valuable insight on the vaccination-control input being non-singular (also known as bang-bang or, on-
off control) is essential, since bang-bang control is often considered a more appropriate intervention
in practical epidemiological and clinical settings (see, e.g., [28,29]). Additionally, we demonstrate
epidemic evolution under optimal control inputs for a numerical case study and show the relative
impact of vaccination and protection in an epidemic containment.

The remainder of the paper is organized as follows: the controlled SIRI epidemiological model
is introduced in Section 2, where we also prove the existence and local asymptotic stability of its
equilibrium points; the optimal control problem is presented in Section 3 and the structural properties
of the optimal control inputs are established; the non-existence of singular arcs in the structure of the
candidate optimal control corresponding to vaccination is established in Section 4; numerical results
depicting the evolution of the epidemic under the optimal control inputs are presented in Section 5; and
we conclude in Section 6 with a discussion on possible directions for future research.

2. Controlled SIRI epidemiological model

Motivated by the COVID-19 pandemic, we consider the SIRI epidemiological model, which
was introduced in [26]. In this setting, an individual remains in one of three possible states:
susceptible (S), infected (I), or recovered (R). However, recovery is not permanent, and recovered
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individuals also become potentially infected again upon contact with infected individuals. The rate at
which a susceptible (respectively, recovered) individual becomes infected upon contact with infected
individuals is denoted by B > 0 (respectively, § > 0). In general, B is assumed to be different from
[3 When /3 < B, the reinfection rate is smaller than the rate of new infection, which indicates that
recovery imparts a partial immunity against future infection. Similarly, [3 > f3 indicates a compromised
immunity following the initial infection. Finally, ¥ > O represents the rate at which an infected
individual recovers, which is referred to as recovery rate. The various state transitions are depicted
in Figure 1.

( ) B ( ) Y
Figure 1. Evolution of the states in the SIRI epidemic model (self-loops are omitted for
better clarity).

We consider two types of control inputs (which are assumed to be essentially bounded Lebesgue
measurable functions): uy, which captures the rate at which susceptible individuals are vaccinated, and
up, where 1 — up captures the effective rate of social distancing or protection adoption by individuals in
the disease states S and R. As a consequence of the above control inputs, the resulting controlled SIRI
epidemic dynamical equations are given by the following:

Xs(t) = —Baxs(t)xx(t)up(t) — xs(t)uy(t),
s (1) = Bas(t)xz(t)up(r) + Bxr ()1 (¢)up (1) — (1), (2.1)
iR (1) = —Bar(t)xz (1)up(r) +xs(t)uy (1) + yxe(t),

where the state variables xs(r) € [0,1],x1(r) € [0,1] and xg(z) € [0,1] denote the instantaneous
proportion of individuals in each of the three epidemic states S, I, and R. Henceforth, unless required,
we suppress the dependency of the states and control inputs on time ¢ for an improved readability.

Remark 2.1. The biological significance to controlling the epidemic spread is that our
analysis accounts for reinfection in individuals, which aligns with the characteristics of several
infectious diseases, such as COVID-19, that only confers a short-term immunity. In addition, during
the COVID-19 pandemic, it was demonstrated that the reinfection rates, particularly due to variants
such as Delta and Omicron, exceed the initial infection rates [30]. Motivated by this observation,
we later assume that B > B, which implies that getting infected compromised the immunity. These
characteristics are not captured by the classical epidemic models, such as the SIR model.

Remark 2.2. Note that the term Bxsxiup represents the fraction of the susceptible population who do
not adopt any protection and get infected, while the term xsuy represents the fraction of the susceptible
population who opt for vaccination and move to the recovered state. Note that such individuals may
become infected again in future (i.e., vaccination does not impart a permanent immunity against future
infection). Similarly, the term 3xRqup captures the fraction of the recovered population who do not
adopt any protection and get reinfected, and the term yxz is the fraction of the infected population who
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naturally recover. The above dynamics satisfies Xs(t) +%1(t) +xr(t) = 0 for almost every instant of time
t, and since the states represent fractions of the population, they also satisfy xs(t) +x1(t) +xg(t) = 1
for every instant of time t, when the initial state vector also satisfies this condition (for details, see
Lemma 2.1).

In our model, the control inputs include behavioral measures (represented by 1 — up), such as
protective behaviors or social distancing, and medical interventions (represented by uy), such as
vaccination. Thus, our model accounts for both medical and non-medical interventions available during
an epidemic. We impose limitations on both types of inputs to prevent trivial solutions that might arise
from an unlimited supply of protection and vaccination. In the above setting, up = 0 implies that the
susceptible or recovered individuals adopt complete a protection and they do not bear the risk of getting
infected. In order to rule out this impractical corner case, we assume that up is always bounded from
below by a lower bound uppin > 0. Additionally, we assume that up < 1 with the upper bound chosen
to signify that B and B denote the infection rates in the absence of any protective action. In addition,
we assume that the vaccination rate satisfies 0 < uy < uypax < 1, where we have limited the upper
threshold by excluding 1, as uy = uypax = 1 would imply vaccinating the entire susceptible fraction of
population in one go, which is not practical.

Remark 2.3. When 3 = 0 (i.e., recovered individuals do not get reinfected), then the model reduces
to the SIR epidemiological model (see [31]). Similarly, as mentioned in [31], when B = [§ (i.e., the
infection rate of susceptible and recovered individuals coincide), then we recover the Susceptible-
Infected-Susceptible (SIS) epidemiological model. Thus, the SIRI epidemiological model studied in
this paper is a strict generalization of both the SIS and SIR epidemiological models (see, e.g., [26]).

Before stating the optimal control problem studied in this paper, we first establish certain theoretical
properties of the controlled SIRI epidemiological model when the control inputs are exogenous
constants. First, we investigate the equilibria of its dynamics and their associated stability properties.
When uy = 0, the dynamics in (2.1) is an instance of the SIRI model without any explicit control
input, with the infection rates effectively being Bup and 3up, respectively. The equilibria and their
stability properties follow from analogous results established for the classical SIRI epidemiological
model in [19]. Therefore, we focus on the case where the constant steady-state inputs are defined by
uy = uy?, where 0 < uy? < uymax, and up = up", where uppin < up’ < 1.

By equating the right hand side of (2.1) to zero, we observe the existence of two equilibrium points:

(i) The disease free equilibrium point Epgg for (xs? = 0,x7" = 0,x3* = 1), which always exists;
(ii) The endemic equilibrium point Egg for (xg? = 0,x70 =1 — ﬁTygq,xEq = ﬁTyﬁq
v < Bup.

The following result establishes their local stability properties.

), which exists when

Proposition 2.1 (Local asymptotic stability of the equilibrium points). For the controlled SIRI
epidemiological model (2.1) with uy® > 0, we have the following:

(i) The disease free equilibrium point is locally asymptotically stable when y > Bugq;

(ii) The endemic equilibrium point is locally asymptotically stable when y < [%ugq.
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Proof. Since xs(t) +x1(t) +xr(t) = 1 for every instant of time 7 (see Lemma 2.1), we equivalently
consider the dynamics involving only the two state variables xs and x1, by expressing xg = 1 — xs — x7.
Thus, the dynamics (2.1) reduces to the following:

xs(1) = —Boxs (£)xr (t)up (1) — xs(t)uy(7),
i (t) = Poxs (6)xr (O)up(t) + B (1 — x5 (t) — xr (6) xx (6 )up () — yx1(t),
the Jacobian matrix of which is given by the following:

J(xs,x1,up,uy) = —ﬁx;up—uv 5 “Pasue
S, XT, Up, UV) = (B — B)xtup Bxsup + B (1 —xs —2x1)up — 7|

First, we investigate the local asymptotic stability of the disease-free equilibrium point. In this case,
the Jacobian matrix is given by the following:

—ud 0

Since u2? > 0, both the eigenvalues of the above matrix, are strictly negative when y > Buf®.* Next,
we investigate the local asymptotic stability of the endemic equilibrium point. The Jacobian matrix in
this case, is given by

_ﬁ(l - B,Ze)q)ulgq_usq 0

J(EEE) - (B _ﬁ>(1 - [;;/]e)q)ulgq —ﬁu;q—l—’}/ .

It is easy to see that both the eigenvalues of the above matrix, are strictly negative when y < Bugq. This
concludes the proof. O

The following lemma supports the consideration of the SIRI epidemiological model.

Lemma 2.1 (Positive invariant set of the controlled SIRI epidemiological model). The set S :=
{(xs,x1,xR) : (xs,x1,%R) € [0,1] % [0,1] % [0,1]} is positively invariant, with respect to any unique
global solution for the SIRI epidemic dynamics (2.1).

Proof. First, we show that local solutions exist and are also unique on a sufficiently small time-interval
for the SIRI epidemic dynamics (2.1). To this end, fix a sufficiently small real number € > 0, and
for any given Lebesgue measurable control inputs u = (up,uy) : [0,€] — [uppin, 1] X [0, tymax], let us
rewrite (2.1) as follows:

x =F(x,u(r)) := G(,x), x(0) = xo,

where X = (xs,X1,Xg) € R3 is the state vector and the function G : R x R3 — R3 is given by the

*Intuitively, when y < ﬁuf,q, the recovery rate of the infected fraction of population is less than the rate of reinfection of the recovered
fraction of population times the fraction of recovered people not adopting protection, leading to the disease free equilibrium being
unstable.
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following:
0 —ﬁxsﬁfl —Xs
G(t,x) == | —yxr| + | Bxsxz + Bxgxr | up(t)+ | O | uy(z).
YXI —ﬁxIxR Xs
\_V_/ - ~ 7 \_\,_/
f(x) g,(x) 2(x)

Now, let K := {(£,x) : 0 <t < &,|x —Xq| < £} be a cylinder in R x R>. It is now easy to verify that the
function G, satisfies the following conditions:

(i) For almost every ¢ € [0, €], the mapping x — G(z,x) is continuous, and for every x € B¢(X), the
mapping ¢ — G(r,X) is Lebesgue measurable;’

(i) There exists a constant Cx > 0 such that:
G(t,x)| < Ck,

holds for almost every ¢ € [0, €] and for every X € B¢(xp). Moreover, there also exists a constant
Lk > 0 such that the following inequality:

’G(I,X) —G(I7Y)| SLK’X_yL

holds for almost every 7 € [0, €] and for every X,y € Bg(Xo).

Indeed, to verify the first claim in item (ii) stated above, one can obtain the following:

G(t,x)[ < sup [f(x)|+ sup |g;(x)[+ sup |g(X)|uymax,
x€B¢(x0) x€B¢(x0) x€B¢(x0)

which holds for almost every ¢ € [0, €] and for every x € B¢(xg). Keeping in mind, the fact that
the functions f,g,,g, are of class C!, one can now obtain the desired result by invoking Weierstrass’
theorem. To verify the second claim in item (ii) stated above, one can obtain the following inequality:

G(2,%) = G(2,y)] < [f(x) —£(y)| + |&1 (x) — &1 (¥)] + 82(x) — &2(¥) |4vmax,

which holds for almost every ¢ € [0, €] and for every x,y € B¢(xg). Keeping in mind, the facts that
the functions f,g,, g, are of class C! and also that the set B¢(xX) is compact and convex, one can now
obtain the desired result. By appropriately modifying some of the steps given in the proof of [32,
Theorem 2.2.1], one can now deduce that local solutions exist for (2.1) on the time-interval [0, €]. In
addition, from [32, Theorem 2.1.3], one can also deduce the uniqueness of such local solutions of (2.1)
on the time-interval [0, ], where 0 < € < €.

Next, we verify the positive invariance of the set S with respect to the unique local solution x =

TThe norm of a vector x € R, is denoted by |x|.
The closed ball of radius » > 0 in R?, centered at x € R?, is denoted by B,(x).
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(xs,x1,xR) : [0,8] — R3 of the SIRI epidemic dynamics (2.1). To this end, from (2.1), we have that

\

xs(t) = exp (— /0 t (Brr(z)ue (1) +un(x)) dr) x5(0),
x1(1) = exp (/Ot <(ﬁxs(r) + Bxr (7)) up(7) — }/) dr) x1(0),
(1) = exp ( [ (@) dr) [xR<o>

+/Otexp (/OT (3x1(s)up(S)> dS> <Xs(7)uv(7) +YXI(T)) d"'} ']

for all r € [0,€]. Now, observe that the initial conditions xs(0),x1(0), and xg(0) represent the
initial fractions of the population who are susceptible, infected, and recovered, respectively, and
therefore satisfy the following constraints: xs(0),x1(0),xz(0) > 0 and xs(0) 4+ x1(0) + xz(0) = 1.
Since, x5(0),x1(0) > 0, it follows from the first two equations in (2.2) that xs(7),xz(¢) > 0 for all
t € [0,€], and since xg(0) > 0, uy(¢t) > 0 for all r € [0,€] and y > 0, it now follows from the third
equation in (2.2) that xg(¢) > 0 for all 7 € [0,€]. Now, from the dynamics (2.1), it follows that
the relation xs(¢) + x1(z) 4+ %r(¢) = 0 is satisfied for almost every ¢ € [0,£&], which in turn implies
that the relation xs(¢) + x1(z) + xr(¢) = 1 is satisfied for all ¢+ € [0,€]. Overall, the unique local
solution x = (xs,x1,xg) : [0,&] — R3 of the SIRI epidemic dynamics (2.1), satisfies the following
constraints: xs(#),x1(¢),xg(t) > 0 and xs(¢) +x1(¢) +xr(¢) = 1 for all 7 € [0, €], from which it follows
that (xs(7),x1(¢),xr(7)) € [0,1] x [0,1] x [0, 1] for all ¢ € [0, ].

Finally, we show that any unique right-maximal solution x = (xs,x1,xg) : [0,7) — R? of the SIRI
epidemic dynamics (2.1), where the time 7 > 0, can be globally extended (i.e., it is possible to show
that this holds for 7 = o). To this end, let us assume that 7" < oo; then, by appropriately modifying
some of the steps given in the proof of [32, Theorem 2.1.4], one can deduce the following relation:

. 1
o ('X(t I+ =0, am) =% 2-3)

where the set Q := [0,T) x R? is an open set in [0,00] x R} C R x R?, the notation dQ denotes its
boundary (in the set [0,0] x R?), and the distance of a pair of points (¢,y) € [0,0] x R? to a set K C
[0,00] x R3 is given by d((t,y),K) := inf7g)ex [(£,y) — (7,§)]. Using the facts that S is a compact
set in R? and is positively invariant with respect to the unique right-maximal solution X = (xs, X1, Xg) :
[0,T) — R of the SIRI epidemic dynamics (2.1), together with the fact that the boundary 9Q = ({T'} x
R3) U ([0,T] x 0), we now arrive at a contradiction in view of (2.3). This completes the proof. o

(2.2)

Remark 2.4. Note that the positive invariance of the set S in the proof of Lemma 2.1 can also be shown
using Nagumo’s theorem adapted to control systems (see, e.g., [33, Theorem 4.11]).

3. Optimal control problem

Now, we consider the following optimal control problem:
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T )
up(-)e[,l"l‘:l(f[‘O,T];R)/() [Cp(l — up(l))()cs(l) +XR(l)) + Cvl/tv(l)xS (l) “+c1X1 (l)] dl,
uy(-)eL™([0,T];R)

s.t. xs(t) = —Bxs(t)x1(t)up(t) — xs(t)uy(1),
sir(1) = Baes (1) xx (1)up (1) + Bocw (£)x1 (1) up (1) — yxr (1), 3.1
ar(t) = _BXR(t xx(t)up(t) +xs(t)uy(t) + yxz(t),

uppin < up(r) < 1forae.r € [0,T],
0 < uy(t) < uypax for a.e. r € [0,T],

/

where uppin > 0 represents the minimum fraction of the susceptible or recovered sub-populations who
remain unprotected, and uymax < 1 denotes an upper bound on the fraction of the total population that
can be vaccinated for a given time period. The individual weighing terms in the running cost (3.1) are
as follows: cp captures the cost incurred due to the protection adopted by the susceptible and recovered
individuals, cy captures the cost incurred due to vaccination by the susceptible individuals, and cs is
the disease cost or the cost incurred on being infected.

3.1. Equivalent formulation in Mayer form

In order to exploit the results from the optimal control theory in our subsequent analysis, we
convert the optimal control problem defined by (3.1) into the Mayer form. In the Mayer form, the
cost functional solely consists of the terminal cost. This requires appending an additional state xc
to our dynamics which captures the running cost, and whose time-evolution satisfies the following
dynamics:

Xc(t) = Cp(l —Ltp(l))(Xs(t) —|—XR(1)) +Cvuv(l))€s(t) +CIXI(I), Xc(O) =0, (3.2)

for almost every time instant ¢. In addition, we note that any one of the three epidemic states can
be expressed in terms of the other two states since the SIRI dynamics (2.1) satisfies xs(f) +x1(¢) +
xr(t) = 1 for every instant of time ¢ and xs(r) + x1(¢) +xr(¢#) = O for almost every instant of time 7.
As a result, the epidemic dynamics can be expressed in terms of only two state variables. We express
x1 = 1 — x5 — xg and omit the variable x1 from the epidemic dynamics. By introducing the state vector
z = (xc,xs,xg) € R?, the optimal control problem defined by (3.1) can now be written in the Mayer
form as follows:
inf xc(T) )
up(-)€L™([0,T];R)
uy(-)EL™([0,T];R)
s.t. z=1(z) +gp(z)up + gy(z)uy,
z(0) € {0} x [0,1] x [0,1],
upmin < up <1 forae.t€[0,T],
0 < uy < uypax forae.z€[0,7T],)

(3.3)

where the drift and control vector fields are given by the following:
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cp(xs +xr) +c1(1 —xs —xR) —cp(xs +xgr) CyXs
f(Z) = O 9 gP(Z) = _@xs(l —Xs —XR) ) gV(z> = —Xs
Y(1 —xs —xr) —Bxr(1 —xs —xgr) XS

3.2. Existence of an optimal control input

Now, we establish the existence of a solution for the optimal control problem defined by (3.3). To
this end, we leverage Filippov’s theorem, which is stated below for the reader’s convenience.

Theorem 3.1. (Filippov’s theorem, [35, Section 4.5]) Consider a controlled dynamical system:

x(l) :f(t,x(t),u(t)),x(O):xo, (3.4)

where x(t) € R" and u(t) € U C R™. Assume that the solutions of (3.4) exist on a given time-interval
[0,T] for all control inputs u(-). In addition, assume that for every pair (t,x) € [0,T] x R", the set
{f(t,x,u) :u € U} is compact and convex. Then, the reachable set R'(xy) is compact for each t €
[0,7].5

Now, we state the following theorem.

Theorem 3.2 (Existence of an optimal control). There exists a solution for the optimal control problem
defined by (3.3).

Proof. In view of Lemma 2.1, it is clear that there exists a unique solution (with respect to any given
initial condition and admissible control inputs) defined over the time-interval [0, 7] for the dynamics
given in the optimal control problem defined by (3.3). Moreover, it is easy to verify that for every
z € R, the set {f(z) + gp(z)up + gy(2)uy : (up,uy) € [tpnin, 1] X [0, tynax]} is a compact and convex
set in R3. Now, it follows from Theorem 3.1 that the reachable set at time T, starting from any given
initial condition, is a compact set in R>. Now, the proof can be concluded by invoking Weierstrass’
extreme value theorem. O

3.3. Structure of optimal control inputs

Now, we establish the structure of the candidate optimal control inputs. To this end, we first use
Pontryagin’s maximum principle to single out the optimal control inputs. The Hamiltonian function
which corresponds to the optimal control problem defined by (3.3) is given by the following:

H(z,u,A) = (A,£(z) + gp(2)up + gy (2)uv)
= Ac(ep(xs +xr) +c1(1 —xs —xg) — cp(xs + xR ) up + cyxsuy)
+ As(—Bxs(1 —xs — xr)up — xsuy) + Ar(Y(1 — xs — xgr)
- BxR(l — Xs — XR)Up + Xslty ), (3.5)

8The reachable set at time ¢ > 0, starting from xy € R”, is defined as follows:

R'(xo) := {x(¢) : x(-;Xo, u) is a solution of (3.4) defined over the time-interval [0,¢], corresponding to an admissible control input u(-)}.
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where (-,-) denotes the standard inner-product of two vectors in R? and, A = (Ac, As, Ag) € R? denotes
the co-state vector.Y For almost every time 7 € [0, T], the minimizing control inputs are given by the
following:

ut (1) = argmin  H(z"(t),u,A"(2)),

ue[“Pmim]] X [OMVmax]

where the superscript (-)* denotes the optimal trajectories, and the co-state dynamics are given by

oxc T 0xs ’ OXR

A'(r) = (- HEOEOM) _HEOS L) ML OL0)), (3.6)

which satisfies the following terminal boundary condition:
A*(T)=(1,0,0). (3.7)

From (3.6), we obtain the following co-state dynamics:

A5 (1) = =2 (1) (cp — c1 — cpup(t) + ey (1)) — A8 (1) (=B (1 —2x5(t) —xg (1) )up (1) —uy (1))
— AR (t)(—7+3xf§(t>u*(t)+uv(t))> (3.8)
DR (1) = =& () (cp — cx — cpup(t)) = A5 (1) Bxs (0)up (1) — A3 (1) (=¥ = B(1 = x5(1) — 22 (1))up (1))
Since the Hamiltonian function is affine with respect to the control inputs, the structure of the optimal

control inputs will be governed by the so-called switching functions given by the following (see,
e.g., [35, Section 4.4.3]):

Op(1) = (A7(1),8p (2" (1))

= — A& (1)ep(x5(1) +xi (1)) — (A5 ()Bx& (1) + 2% (1) B (1)) (1 = x5(1) +2x()),  (3.9)
(1) = (A7(1), gu(2" (1))

= (A (t)ev = As (1) + Ag (1)) x5 (0)- (3.10)

The structure of the optimal control inputs uf and uy are given as follows:

(Upnin, if  @p(r) >0,
up(t) = 1 1, if  ¢p() <O,
L%, if ¢p(r) =0,

(uVma}h if (PV(t) <0,
uy(t) =<0, if ¢y(r) >0, (3.11)
L, if ¢y(r) =0,

YThe absence of the case of the abnormal multiplier being equal to zero for the optimal control problem defined by (3.3) directly
follows as a consequence of [34, Corollary 22.3].
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where x denotes the unknown candidate optimal control input, which is also referred to as a singular
control input.

When ¢q # O (i.e., @q is not identically zero on an open time-interval of [0,7] C R) for Q € {P,V},
then the optimal control inputs uy and up switch between their respective minimum and maximum
admissible values, depending upon the sign of ¢q. The control inputs with this property are called
bang-bang control inputs. However, we may also encounter a situation in which ¢q = 0 is accompanied
by the higher derivatives of ¢ also vanishing on an open time-interval of [0, 7] C R, i.e., §q =0, ¢q =
0, ¢>Q = 0, and so on. The control inputs which exhibit such a phenomenon are called singular control
inputs (see, e.g., [36]).

4. Non-existence of singular control inputs

An important mathematical tool required for the analysis of a singularity of an optimal control input
is the Lie bracket. Let f and g be two continuously differentiable vector fields defined in R". Then, for
any given x € R”, their Lie bracket is defined as follows:

[f,g](x) = Dg(x)f(x) — Df(x)g(x), (4.1)

where Df(x) and Dg(x) denote the Jacobian matrices of the vector fields f and g, respectively, evaluated
at the point x € R".

4.1. Simultaneous non-singularity of the optimal control inputs up and uy

The existence of bang-bang control inputs (or equivalently non-existence of singular control inputs)
is determined by the switching functions and their higher time-derivatives. As previously discussed, a
singularity of an optimal control input arises when the switching function, @q for Q € {P,V} vanishes
identically over some time-interval, which is open in [0, T].

First, we examine the possibility of both candidate optimal control inputs being simultaneously
singular. It can be shown (see, e.g., [35, Section 4.4.3]) that the switching functions @p and ¢y given
by (3.9) and (3.10), respectively, have higher order time-derivatives given by the following:

do(t) = (A7(1), go(2" (1)), (4.2)
da(r) = (A" (1), [£,80) (2" (1))) + (A" (1) [gp. &) (2" (1)))up (t) + (A" (1), [8v, 8ol (2" (1) uy (1), (4.3)
) *
(

Po(t) = (A7 (1), [f, [+ gpup + gyuy, 8o)1 (2 (1)) + (A7 (1), [gp, [f -+ gpup + gyusy, 8oJ] (2" (1)) yup (1)
+(A"(t), [gy, [f+ gpup + gyuy, 8ol] (2 (1)) ) uy (1), 4.4)

for Q € {P,V}. Before we state our result, we introduce the following assumption.

Assumption 4.1. We proceed with the analysis on the class of diseases in which the reinfection rate
exceeds the first time infection rate (i.e., B > ).

The generalized SIRI epidemiological model discussed in this work takes reinfection into account.
The finite-horizon optimal control problem presented in Eq (3.3) involves several model parameters
(B, ﬁ, Y), costs (cp,c1,cy), and two control inputs (up,uy) with defined lower and upper thresholds.
Due to the large number of variables and parameters, it is quite challenging to derive a complete
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characterization for such a model. As a result, we focus on characterizing the control input behaviors
for the case that the reinfection rate exceeds the initial infection rate satisfying ﬁ > B. As mentioned
above, during the recent COVID-19 pandemic, it was observed that the reinfection rates, particularly
those associated with variants such as Delta and Omicron, were higher than the initial infection rates.
The results of this paper are applicable to such immuno-compromising infectious diseases.

Now, we state the following proposition.

Proposition 4.1. Suppose Assumption 4.1 holds; then, the candidate optimal control inputs wy and up
cannot be simultaneously singular on any open time-interval I C [0,T].

Proof. As discussed in Section 3.3, a control input exhibits a singularity when the switching function
associated with it and its higher derivatives are all identically zero over an open time-interval. In
our setting which is comprised of two control inputs, the necessary condition for the existence of a
simultaneous singularity of the inputs uy and uf on I requires the following:

9p(t) = ¢v(t) = du(r) =0,

P
>
*
—~~
~
S—
)]
av]
—
N
*
—~
~
S~—
SN—
Nt
)
>
*
~
O]
<
—~
N
*
~~
-~
SN—
Nyt

=0, 4.5)
where we obtain (4.5) from (4.2) and (4.3), with

0 —Beyxs(1)(1 —x5(1) — (1))
[f,gul(z"(t)) = | 0|, lgp,8vl(z"(1)) = 0 : (4.6)
0 —x5(0)(B = B)(1 = x5(1) —xz (1))

It follows that (4.5) holds if either of the two conditions is true: the co-state vector identically vanishes
(i.e., A*(t) = 0) or the vectors gy (z*(7)), gp(2*(¢)) and [f+ gpuj, gy](z*(¢)) are linearly dependent over
I. Now, from (3.7) and (3.8), we conclude that A7 (¢) = 1 is satisfied for every ¢ € I, which implies
that the co-state vector A*(¢) # 0. Thus, the vectors gy(z*(7)), gp(z*(7)), and [f+ gpup, gy](z* (7)) must
be linearly dependent over / for a simultaneous singularity of the inputs to exist. By computing the
determinant of the matrix formed by these three vectors, we obtain the following (we have suppressed
the explicit dependency of the states and control inputs on time for the sake of brevity):

cyxg —cp(x§ +x3) —Bevxd (1 —x§ —xg)up
M) =| ¢ —B(-xi-x) 0
xg —Pag(l—xg—ag) (B —P)xs(l—x5—xg)up
Cy —Cp(Xg—i-XE) —ﬁCV 5
=|-1 —[}xg(l — X5 —X}) 0 fxg (1 —xg —xg)up. 4.7)
1 —Bxg(l—xs—xz) B-B

Suppose the three vectors are linearly dependent. Observe from (2.2) that x5 is strictly positive for
a given bounded time-interval. Similarly, x; = 1 — x5 —xg is also non-zero in the endemic case. In
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addition, 0 < upmin < up < 1 implies that the input uj is strictly positive. Thus, x§ (1 —x% —xg)up is
clearly non-zero on /. Now, setting the determinant in (4.7) equal to 0 and using the relation xZ(z) +
xx(t) # 0 results in the following:

x* _ CP(ﬁ _Aﬁ) )
)

Observe from (2.2) that x§(¢) is an exponentially decreasing function, which remains strictly positive
for a given bounded time-interval. Similarly, Lemma 2.1 ensures that x%(¢) > 0 holds. The left-hand
side of (4.8) corresponds to the state-variable x}(¢), which resides in the set [0,1] by Lemma 2.1.
Whereas, the right-hand side is a negative constant under a compromised immunity (i.e., 3 > B),
thus implying that the equality (4.8) can never hold. Hence, the three vectors gy(z*(r)), gp(z* (1)),
and [f+ gpuj.gy](z*(r)) are linearly independent. Thus, the control inputs u3(¢) and uj(¢) can not be
simultaneously singular on /. This concludes our proof. O

1—xt— (4.8)

4.2. Non-singularity of the optimal control input uy
First, we redefine (4.4) in terms of uj(¢). By using the relation [f+ gpup + gyus, gyl(z"(¢)) =
[gp,gy|(z*(7))up(2) (since [f,gy](z"(¢)) = 0 and [gy, gy](z"(¢)) = 0), we obtain the following:
2

dv(t) = (A7 (1), [£. [gp, 8]l (2" (1)) up(t) + (A7 (1) [gp: [gp. &0]] (2" (1)) )uip ()
+ A7), [gv, [ge, gul)(2" (1)) up (1) uy (1), (4.9)

where

x5(6)(1—x5(t) —x5(£)) (B — B)(c1 — cp) + Bevy)
£, [gp, gv]](z" () = 0
0

x5(1=x§(t) = x3(1) (B = Bep + Bev(1 = x3(t) = 2x3(1)) — BBevr (1))
l2p. [gp. 2v]1(z" (1)) = By ()(B—B)(1—x3(1) —xx() :
(1) —x5()) (B — B)(1 —x5(t)) + (B —2B)x5(1))

(g, [gp, 8&y]](z° (1)) = 0

= —[gp, &l (z"(1)).

Before we state our main result, we state the following assumptions that will be essential for what
follows. It is important to note that the weights cp, cy, and thresholds uppin, Uymax are parameters that
policy makers are free to decide at the onset of a pandemic. We enforce the effective cost of protection
cp(1 — uppin) to be lower than the infection cost ¢z to incentivize the protection adoption. In addition,
recall that we restrict our analysis to the class of immunocompromised diseases such that [3 > f3 holds.
These assumptions motivate the following mathematical conditions in the form of Assumptions 4.2. A
further discussion on the choice of parameters is included in Section 5.

Assumption 4.2. We assume that the weighing and model parameters satisfy the following
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inequalities:
(i) (B—PB)(e1—cp) # —Bevy:
(ii) (B —B)er+ BBev— Bevy <0;

(iii) (B — B)(c1 — cp(1 — upnin)) + BBcyitpmin < O.

Assumptions 4.1 and 4.2 are sufficient conditions under which Theorem 4.1 holds.

Theorem 4.1. Suppose Assumptions 4.1 and 4.2 hold; then, the candidate optimal control input uy
cannot be singular on any open time-interval I C [0,T].

Proof. The proof is by contradiction. Assume that the control input uy is singular on /. A singularity
in uj is obtained when the the switching function ¢y vanishes over /, which, in turn, implies ¢y(r) =
dy(t) = Py(t) = O for every/almost every ¢ € I. Equating ¢y(¢) in (4.5) to zero and leveraging the fact
that [f, gy|(z*(z)) = 0, implies the following:

(A7(1), gp, gyl (27(1))) = 0. (4.10)

As a result of (4.10), the second time-derivative of the switching function in (4.9) is given by the
following:

u(t) = (A" (1), [£, [ge, 8ull (2" (1)) up (1) + (A" (1), [gp, [gp. &v]] (2" (1)))up ().

As the control input uj(¢) # 0 (since up(¢) lies in the interval up(¢) € [upmin, 1], With upyin > 0), on
equating ¢y(¢) = 0, we obtain the following:

A*(1),[f. [gp, 8v]](z" (1))
(A*(t), [gp: [gp, 8v]] (2" (1)) (4.11)

Now, we express the vector [gp, [gp,8y]](2*(7)) as follows:

(2 [gp, 8ul](2 (1)) = &(2(1))gu (2" (1)) + (2" (1)) [, 8ol (2" (1)) + k(2" (2)) F, [gp, &¥] (2" (1)), (4.12)

where €, i, k : R> — R are given by (dependency on time has been dropped for clarity)

e =Pxs(B—B)(1—x5 —xp),
=(B—B)(1 —x5 —x3),
_ (B—B)eo+BBev(1—2xg —24)
(B—B)(c1—cp)+Bevy
It can be shown that the above obtained functions €, i, and k are indeed unique, since the three vectors

gv(z"(1)), [gp.gv](2" (1)), and [f, [gp, gy]](z*(t)) form a basis of R3 for each ¢t € I. Note that under
Assumption 4.2(i), when (8 — )(c1 —cp) # —Bcyy holds, x is well-defined.

up(1) = -
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Rewriting the denominator of uj () in (4.11) (i.e., (A*(), [gp, [8p,8v]] (z"(¢)))) in terms of the right-
hand side of (4.12), we obtain the following:

(A7(0), 2o, [gp 8u]](2°(1))) = €(2" (1)) (A7 (1), 8u (2" (1)) +1u(2") (A" (1), [gp, 8v) (2 (1)))
—0as gu(1) =0 = 0as Gu(t) = 0
+ & (2 (1)) (A7 (1), [£, [8p, 8v]] (27 (2)))- (4.13)
Substituting (4.13) in (4.11) under the conditions ¢y (t) = @y (t) = Py(t) = O results in uj(t) = —W.

Since, we assumed uy to be singular on /, as a consequence of Proposition 4.1, it follows that uj must
exhibit a non-singularity on /. In other words, for a singularity of the optimal control input uy to exist,
it is necessary that uj is a bang-bang control (i.e., either uj(t) = 1, or uf(t) = upin for every/almost

every t € I). When the control input uj(¢) = —ﬁ = 1, the following holds:
B=Plex=Bewt _y _pz)- 23300
BBev
— (B —B)c1 — Bevy = BPev(2x3(t) — 1)
= (B —B)cx —Bevy+ BBy = 2x1(t). (4.14)

Note that the right-hand side of (4.14) lies in the range of [0,2], whereas the left-hand side is strictly
negative by Assumption 4.2(ii). Thus, (4.14) can not be true. Now, we consider the case when uj (1) =
—W = Uppin, Where the following holds:

(B—B)(e1—er(l —temin)) g () 21(0)

A BBCVquin A
= (B—PB)(c1 —cp(1 — upnin)) = BPcvutpnin (247 (1) — 1)
— (B —B)(ct — cp(1 — upnin)) + BBcyttpnin = 245 (7). (4.15)

Again, the right-hand side of (4.15) lies in the range of [0,2], whereas the left-hand side is
strictly negative by Assumption 4.2(iii). Thus, the structure of the singular control input uj(t) =

<W(())[Lpg%g"fgi]”((zf())))>> does not hold, which implies that ¢ (¢) = 0 is not possible on I. By integrating

¢y (t) twice, it is deduced that ¢y(z) = 0 on I is also not possible. Thus, under Assumptions 4.1 and 4.2,
the optimal control input uy is non-singular. This concludes our proof on the non-singular behavior of
uy. ]

Note that the above result which characterizes the behavior of uy as a non-singular input is based on
Assumptions 4.1 and 4.2. The impact of relaxing these assumptions presents an interesting research
avenue, which we plan to explore in the future.

4.3. Practical implication of theory

Our theory demonstrated that there is no simultaneous singularity, nor is there any possibility of the
vaccination input exhibiting a singularity under the stated Assumptions 4.1 and 4.2. This has important
implications on the public health policy. Specifically, the non-singularity results guarantee that the
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optimal vaccination policy is the simplest possible bang-bang control, which is often considered a more
practical and appropriate intervention in epidemiological settings (see e.g., [28,29]). The mathematical
proof of Theorem 4.1 rules out the existence of singularities in the vaccination input, which align with
this broader understanding.

Further work needs to be done to fully characterize the optimal bang-bang control policy
(i.e., determination of treatment level and transition times between treatment and no-treatment).
Implementing our proposed strategies in real-world scenarios may be challenging, as implementation
often requires adherence by individuals to the prescribed policies, and it is often difficult to ensure
full compliance from people. It is to be noted that the optimality of a non-singular control has only
been proven for the class of diseases leading to a compromised immunity (i.e., the reinfection rate is
higher than the initial infection rate). As part of future work, we plan to expand our analysis to include
diseases that confer a partial immunity, for which 3 is less than f3.

5. Numerical results

Now, we illustrate the trajectories of the optimal control inputs uy and up, and the evolution of the
SIRI dynamics through numerical simulations. We demonstrate different phenomena, through three
different cases obtained by changing the parameters and costs. In the first two cases, we select the
parameters and costs such that Assumptions 4.1 and 4.2 are satisfied. In the third case, we violate the
assumptions and illustrate the presence of singularities. We choose uppin = 0.2 and uypax = 0.9. In
addition, for the endemic equilibrium to exist, the chosen parameters also satisfy the inequality y <
ﬁupmin. Accordingly, for the first two cases, we choose the following weighing and model parameters
which satisfy the above mentioned assumptions, whereas for the third case, we choose ﬁ < B, with
xs(0) = 0.8, x1(0) = 0.2, and xg(0) = 0, where x;(0) for j € {S,I,R} denotes the initial state for the
susceptible, infected, and recovered fractions of the population, respectively. The different costs and
disease parameters are included in Table 1. Note that a different set of parameters and costs will not
violate the theoretical results proposed in Proposition 4.1 and Theorem 4.1, as long as Assumptions 4.1
and 4.2 hold. Thus, the main results remain robust to the choice of parameters, which are also illustrated
in the numerical simulations. The choice of the reinfection and recovery rates are governed by the
basic reproduction number, the commonly used as a metric in epidemiological studies, to determine
the strength of an infectious disease. The disease spreads as long as the basic reproduction ratio is
greater than one. Since we focus on the case of a compromised immunity, we choose an infection rate
B < 3 Several studies emphasized the variability in the reproduction numbers of different COVID-19
viral strains. For example, the authors of [37] predicted the reproduction number to be around 2.2 in
the early phase of COVID-19 spread, whereas the authors in [38] estimated the Omicron reproduction
number in certain parts of the world to be around 8. Such a large variation is potentially due to the
behavioral and environmental circumstances alongside viral mutations. We have chosen our infection
and recovery rates which varies within a range of Ry € [1.32,20]. In the first case, we set the costs such
that the protection cost, cp, dominates the other two costs, even though the effective cost of protection
cp(1 — uppin) is lower than the infection cost. In the second and third cases, the protection cost is the
lowest. The infection cost c1 being highest ensures that individuals are incentivized to choose either
protection or vaccination, thus reducing the infection spread. The initial conditions of the model reflect
that, a large proportion of the population is susceptible to the disease at the start of the epidemic, while
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only a small fraction is initially infected. We set the initial conditions such that there are no recovered
individuals at the beginning of the epidemic, which corresponds to a first wave epidemic.

Table 1. Costs and disease parameters under various cases.

cp cy c1 B 5 Y
Case 1 7.1 2 7 1 2.5 0.38
Case 2 0.3 2 5 1 2 0.1
Case 3 0.3 3 5 3 2 0.1

Certain numerical methods exist to analyze the existence of singularities. Most of the existing
methods are efficient on linear systems. Our system under study is non-linear, and such numerical
methods require linearization of the system around the operating point. We numerically validate
our analytical results using the numerical solver Quasi-Interpolation based Trajectory Optimization
(QulITO), which is famous for solving constrained nonlinear optimal control problems (see [39]).
QuITO uses a direct multiple shooting (DMS) technique to discretize the control trajectory into several
segments, and then obtains the optimal solution by solving for the control inputs at the boundaries of
these segments. The trajectories which correspond to the states and control inputs for the three cases
of weighing and model parameters are illustrated in Figure 2.

The plots in the top row represent the control inputs, whereas the bottom panel illustrates the
corresponding state trajectories. In the first two cases, when all assumptions are satisfied, we observe
that the simultaneous singularity of control inputs, as well as the singularity in uy, are completely
absent, thus validating Proposition 4.1 and Theorem 4.1.

In the first case (i.e., Figure 2a), when the protection cost is high, and when the infection prevalence
becomes very low, we observe that the complete removal of protection is the optimal policy. This
is illustrated by the switching in up from up = uppin to up = 1 after 42 days. In the second case,
when the protection cost is the cheapest, we observe a complete adoption of protection throughout the
time-horizon, irrespective of the infection level. In the first two cases, an interesting observation is
the behavior of the trajectory of the optimal control input uy. At first, the behavior seems counter-
intuitive; even though a sufficient fraction of the population is susceptible, vaccination is not applied
as an input. This is explained based on the infection and reinfection rates 3 and ﬁ, respectively. Recall
that the parameters are such that the rate at which the susceptible agents get infected (i.e., B) is lower
than the rate at which the recovered agents get reinfected (i.e., 3). The susceptible agents have two
options available to them: either (incurring a cost cy) they transit to the recovered state (R) by getting
vaccinated where they are likely to get infected at a (comparatively higher) rate 3 or they remain in the
susceptible state (S) and get infected at a (comparatively lower) rate of 8. Quite intuitively, the latter
option seems optimal for the susceptible agents. In other words, the choice of applying vaccinations
(and thereby incurring a vaccination weighing parameter), then transiting to the recovered state, and
finally getting reinfected at a higher rate ﬁ is not optimal (note that the infection weighing parameter
c1 = 5 dominates in the current scenario). Instead, agents prefer to remain in the susceptible state by
not getting vaccinated. Therefore, we observe the optimal vaccination control uy = 0 being satisfied
throughout the given time duration. This leads to the important observation that when the reinfection
rate is higher than the initial infection rate in a SIRI model with a high infection cost, the susceptible
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individuals prefer to remain unvaccinated and get infected at a lower rate.

Simulations in Figure 2a and 2b confirm the absence of simultaneous singularities for both the inputs
up and uy, and the non- singularity of uj. These findings confirm the theoretical results outlined in the
paper. It is important to note that a constant input represents a special case of non-singular control.
Our analytical results focus on the special case of compromised immunity, where the reinfection rate
([§) exceeds the initial infection rate (8). As previously discussed, due to the high reinfection rate,
individuals find it optimal not to get vaccinated, thus resulting in uy = 0, which is the lowest possible
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Figure 2. Control inputs and state trajectories under different parameters.

Now we focus on the simulations obtained under the third set of parameters. We violate
Assumptions 4.1 and 4.2 by selecting cy = 3, B = 3, and > f3, which implies partial immunity.
Figure 2c illustrates the smooth behavior of the optimal control, which implies a singular vaccination
input uy, whereas the input up remains constant at its lower limit. Additionally, this implies that
Assumptions 4.1 and 4.2 may be close to necessary for the existence of non-singular optimal control
laws. A full analysis of the case in which § > ,3 is an interesting area of research that remains to be
explored in future work. The possible singularities in uj motivate us to investigate the behavior of
diseases with a partial immunity.

Before concluding this section, we summarize the main advantages of our analysis and techniques in
a broader context. We have demonstrated the non-existence of singular control inputs by analyzing the
values of the time-varying switching functions ¢p(¢) and ¢y(¢). Necessary conditions for a singularity
require these switching functions, along with their higher derivatives, to vanish identically. Our
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methodology is robust and can be applied to any compartmental model where the dynamics include
control inputs and the running cost is linear in these inputs. Although our results focus on the relatively
less-explored SIRI reinfection model, the technique for determining whether the control inputs are
singular or non-singular could be useful for other epidemic models with different forms of control
inputs. Thus, our technique is not model-sensitive and remains effective across various systems. This
wide applicability of our analysis is due to the fundamental concepts of vanishing switching functions
and their higher derivatives, which do not depend on the specific details of the underlying model.

6. Conclusions and future work

In this paper, we considered the problem of optimal vaccination and protection for the class of SIRI
epidemiological models. The biological significance of our results lies in the establishment of sufficient
conditions on the susceptibility to infection and reinfection, and the cost of prevention and vaccination.
Specifically, the proposed SIRI model takes reinfection into account, which is a key characteristic
of diseases that result in short-term immunity. During the COVID-19 pandemic, we observed that
the reinfection rates, particularly due to variants such as Delta and Omicron, were higher than the
initial infection rates. Similarly, other diseases also exist which impart a compromised immunity. The
existence of such real-world infectious diseases justifies the focus of this work on a compromised
immunity. We proved that it is impossible for both the optimal control inputs to be simultaneously
singular, when the immunity is compromised. Then, we performed a detailed analysis on the existence
of a singularity of the optimal vaccination control input, and obtained sufficient conditions under which
singular arcs (for optimal vaccination control input) are suboptimal and a non-singular vaccination
control is optimal. Additionally, it is important to note that bang-bang control is often considered a
more appropriate intervention in practical epidemiological settings. The numerical results provided
valuable insights into the optimal control structure and evolution of the epidemic under such control
inputs. Additionally, we illustrated that higher reinfection rates render vaccinations ineffective as the
control input.

Since our bang-bang control optimality results are only guaranteed in the regime of compromised
immunity, an extension of the analysis for which the infection rate is higher than the reinfection
rate (as also seen in Figure 2c) would be worthwhile. It will be worthwhile to extend our analysis
to include diseases that impart a partial immunity to individuals. Establishing the existence of
singularities, and deriving expressions of the singular controls remains as a future work. Furthermore,
an empirical validation using real data (e.g., involving a controlled interventional challenge study)
would be valuable. Another worthwhile extension of our work would be to include infection testing
and contact tracing as additional control inputs when all states of the compartmental epidemiological
model (e.g., the SAIRU model in [40]) are not directly observable.
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