Consider a graph $ G $ having edge set $ E $, and denote by $ d_x $ the degree of a vertex $ x $ in $ G $. A unicyclic graph is defined as a connected graph containing exactly one cycle. This work focuses on unicyclic graphs of a fixed order and examines the graph invariants of such graphs of the form $ BID_{\phi}(G) = \sum_{yz \in E} \phi(d_y, d_z) $, where $ \phi $ is a symmetric and real-valued function. Such graph invariants are known as BID (bond incident degree) indices. The main objective is to determine the graphs that either minimize or maximize the quantity $ BID_\phi $ among fixed-order unicyclic graphs with prescribed maximum degree, under specific assumptions on the function $ \phi $. These assumptions are satisfied by several classical and modern degree-based graph invariants. Generally, the results obtained are applicable to a wide range of such invariants. In particular, one of the obtained results covers the harmonic and sum-connectivity indices, while another applies to the recently proposed Sombor and Euler–Sombor indices as well as their reduced versions.
Citation: Akbar Ali, Fehaid Salem Alshammari, Abdulaziz M. Alanazi, Taher S. Hassan. On degree-based graph invariants of fixed-order unicyclic graphs with prescribed maximum degree[J]. AIMS Mathematics, 2025, 10(10): 24500-24513. doi: 10.3934/math.20251086
Consider a graph $ G $ having edge set $ E $, and denote by $ d_x $ the degree of a vertex $ x $ in $ G $. A unicyclic graph is defined as a connected graph containing exactly one cycle. This work focuses on unicyclic graphs of a fixed order and examines the graph invariants of such graphs of the form $ BID_{\phi}(G) = \sum_{yz \in E} \phi(d_y, d_z) $, where $ \phi $ is a symmetric and real-valued function. Such graph invariants are known as BID (bond incident degree) indices. The main objective is to determine the graphs that either minimize or maximize the quantity $ BID_\phi $ among fixed-order unicyclic graphs with prescribed maximum degree, under specific assumptions on the function $ \phi $. These assumptions are satisfied by several classical and modern degree-based graph invariants. Generally, the results obtained are applicable to a wide range of such invariants. In particular, one of the obtained results covers the harmonic and sum-connectivity indices, while another applies to the recently proposed Sombor and Euler–Sombor indices as well as their reduced versions.
| [1] | A. Ali, A. A. Bhatti, Z. Raza, The augmented Zagreb index, vertex connectivity and matching number of graphs, Bull. Iran. Math. Soc., 42 (2016), 417–425. |
| [2] |
A. Ali, D. Dimitrov, T. Réti, A. M. Alotaibi, A. M. Alanazi, T. S. Hassan, Degree-based graphical indices of $k$-cyclic graphs, AIMS Math., 10 (2025), 13540–13554. https://doi.org/10.3934/math.2025609 doi: 10.3934/math.2025609
|
| [3] | A. Ali, I. Gutman, B. Furtula, Extremal results on bond incident degree indices of graphs: A survey, Aequationes Math., submitted. |
| [4] |
A. Ali, I. Gutman, B. Furtula, A. M. Albalahi, A. E. Hamza, On chemical and mathematical characteristics of generalized degree-based molecular descriptors, AIMS Math., 10 (2025), 6788–6804. https://doi.org/10.3934/math.2025311 doi: 10.3934/math.2025311
|
| [5] | A. Ali, I. Gutman, E. Milovanović, I. Milovanović, Sum of powers of the degrees of graphs: Extremal results and bounds, MATCH Commun. Math. Comput. Chem., 80 (2018), 5–84. |
| [6] |
A. Ali, M. Javaid, M. Matejić, I. Milovanović, E. Milovanović, Some new bounds on the general sum-connectivity index, Commun. Comb. Optim., 5 (2020), 97–109. https://doi.org/10.22049/cco.2019.26618.1125 doi: 10.22049/cco.2019.26618.1125
|
| [7] |
A. Ali, Z. Raza, A. A. Bhatti, Extremal pentagonal chains with respect to bond incident degree indices, Canad. J. Chem., 94 (2016), 870–876. https://doi.org/10.1139/cjc-2016-0308 doi: 10.1139/cjc-2016-0308
|
| [8] | A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalization: Extremal results and bounds, MATCH Commun. Math. Comput. Chem., 81 (2019), 249–311. |
| [9] | J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, London, 2008. |
| [10] | B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem., 78 (2017), 17–100. |
| [11] | G. Chartrand, L. Lesniak, P. Zhang, Graphs & Digraphs, CRC Press, Boca Raton, 2016. |
| [12] | J. Devillers, A. T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPAR, CRC Press, Boca Raton, 1999. |
| [13] | S. Fajtlowicz, On conjectures of graffiti II, Congr. Numer., 60 (1987), 189–197. |
| [14] | J. Du, X. Sun, On bond incident degree index of chemical trees with a fixed order and a fixed number of leaves, Appl. Math. Comput., 464 (2024), #128390. https://doi.org/10.1016/j.amc.2023.128390 |
| [15] |
B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., 53 (2015), 1184–1190. https://doi.org/10.1007/s10910-015-0480-z doi: 10.1007/s10910-015-0480-z
|
| [16] | J. L. Gross, J. Yellen, Graph Theory and Its Applications, CRC Press, Boca Raton, 2005. |
| [17] | I. Gutman, Sombor index – one year later, Bull. Acad. Serb. Sci. Arts, 153 (2020), 43–55. |
| [18] | I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16. |
| [19] |
I. Gutman, Relating Sombor and Euler indices, Military Tech. Courier, 71 (2024), 1–12. http://doi.org/10.5937/vojtehg72-48818 doi: 10.5937/vojtehg72-48818
|
| [20] |
I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 62 (1975), 3399–3405. https://doi.org/10.1063/1.430994 doi: 10.1063/1.430994
|
| [21] |
I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydroncarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1
|
| [22] | B. Hollas, The covariance of topological indices that depend on the degree of a vertex, MATCH Commun. Math. Comput. Chem., 54 (2005), 177–187. |
| [23] |
Y. Hu, J. Fang, Y. Liu, Z. Lin, Bounds on the Euler Sombor index of maximal outerplanar graphs, Electron. J. Math., 8 (2024), 39–47. http://doi.org/10.47443/ejm.2024.053 doi: 10.47443/ejm.2024.053
|
| [24] |
Y. Huang, H. Liu, On the modified Sombor indices of some aromatic compounds, J. South China Normal Univ. (Natural Sci. Ed.), 53 (2021), 91–99. https://dx.doi.org/10.6054/j.jscnun.2021063 doi: 10.6054/j.jscnun.2021063
|
| [25] | H. Liu, H. Chen, Q. Xiao, X. Fang, Z. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, Int. J. Quantum Chem., 121 (2021), #e26689. https://doi.org/10.1002/qua.26689 |
| [26] |
H. Liu, I. Gutman, L. You, Y. Huang, Sombor index: Review of extremal results and bounds, J. Math. Chem., 60 (2022), 771–798. https://doi.org/10.1007/s10910-022-01333-y doi: 10.1007/s10910-022-01333-y
|
| [27] |
I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., 86 (2021), 445–457. https://doi.org/10.2298/JSC201215006R doi: 10.2298/JSC201215006R
|
| [28] |
S. Sigarreta, S. Sigarreta, H. Cruz-Suárez, On bond incident degree indices of random spiro chains, Polycycl. Aromat. Comp., 43 (2023), 6306–6318. https://doi.org/10.1080/10406638.2022.2118795 doi: 10.1080/10406638.2022.2118795
|
| [29] |
A. P. Tache, R. M. Tache, I. Stroe, Extremal unicyclic graphs for the Euler Sombor index, MATCH Commun. Math. Comput. Chem., 94 (2025), 561–578. http://doi.org/10.46793/match.94-2.561T doi: 10.46793/match.94-2.561T
|
| [30] | Z. Tang, Y. Li, H. Deng, The Euler Sombor index of a graph, Int. J. Quantum Chem., 124 (2024), #e27387. http://doi.org/10.1002/qua.27387 |
| [31] |
I. Tomescu, Maximum bond incident degree indices of trees with given independence number, MATCH Commun. Math. Comput. Chem., 93 (2025), 567–574. https://doi.org/10.46793/match.93-2.567T doi: 10.46793/match.93-2.567T
|
| [32] | N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, Florida, 1992. |
| [33] |
D. Vukičević, J. Ɖurđević, Bond additive modeling 10. Upper and lower bounds of bond incident degree indices of catacondensed fluoranthenes, Chem. Phys. Lett., 515 (2011), 186–189. https://doi.org/10.1016/j.cplett.2011.08.095 doi: 10.1016/j.cplett.2011.08.095
|
| [34] | D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta, 83 (2010), 243–260. |
| [35] | S. Wagner, H. Wang, Introduction to Chemical Graph Theory, CRC Press, Boca Raton, 2018. |
| [36] |
P. Wei, M. Liu, I. Gutman, On (exponential) bond incident degree indices of graphs, Discrete Appl. Math., 336 (2023), 141–147. http://doi.org/10.1016/j.dam.2023.04.011 doi: 10.1016/j.dam.2023.04.011
|
| [37] |
W. Zhou, S. Pang, M. Liu, A. Ali, On bond incident degree indices of connected graphs with fixed order and number of pendent vertices, MATCH Commun. Math. Comput. Chem., 88 (2022), 625–642. https://doi.org/10.46793/match.88-3.625Z doi: 10.46793/match.88-3.625Z
|
| [38] |
B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252–1270. https://doi.org/10.1007/s10910-008-9515-z doi: 10.1007/s10910-008-9515-z
|