Our goal of this work is to study the well-posedness and the asymptotic behavior of solutions of a nonlinear triple beam system commonly known as the Rao-Nakra beam model. We investigated the effects of non-linear frictional and external forces to the beam model. The Garlekin approximation and the multiplier methods were techniques applied to achieve our goals. Numerical approximations were also performed with the finite difference method to validate our theoritical findings.
Citation: Soh Edwin Mukiawa, Cyril Dennis Enyi, Johnson D. Audu, Hasan A. Almutairi. Nonlinear three layer beam system: Well-posedness, asymptotic stability and numerical analysis[J]. AIMS Mathematics, 2025, 10(10): 24389-24430. doi: 10.3934/math.20251082
Our goal of this work is to study the well-posedness and the asymptotic behavior of solutions of a nonlinear triple beam system commonly known as the Rao-Nakra beam model. We investigated the effects of non-linear frictional and external forces to the beam model. The Garlekin approximation and the multiplier methods were techniques applied to achieve our goals. Numerical approximations were also performed with the finite difference method to validate our theoritical findings.
| [1] |
Y. V. K. S. Rao, B. C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores, J. Sound Vib., 34 (1974), 309–326. https://doi.org/10.1016/S0022-460X(74)80315-9 doi: 10.1016/S0022-460X(74)80315-9
|
| [2] |
D. J. Mead, S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound Vib., 10 (1969), 163–175. https://doi.org/10.1016/0022-460X(69)90193-X doi: 10.1016/0022-460X(69)90193-X
|
| [3] |
M. J. Yan, E. H. Dowell, Governing equations for vibratory constrained-layer damping sandwich plates and beams, J. Appl. Mech., 39 (1972), 1041–1046. https://doi.org/10.1115/1.3422825 doi: 10.1115/1.3422825
|
| [4] |
S. W. Hansen, Several related models for multilayer sandwich plates, Math. Mod. Meth. Appl. S., 14 (2004), 1103–1132. https://doi.org/10.1142/S0218202504003568 doi: 10.1142/S0218202504003568
|
| [5] |
A.Ö. Özer, S. Hansen, Uniform stabilization of a multilayer Rao-Nakra sandwich beam, Evol. Equ. Control The., 2 (2013), 695–710. https://doi.org/10.3934/eect.2013.2.695 doi: 10.3934/eect.2013.2.695
|
| [6] |
T. A. Apalara, C. D. Enyi, Y. Khan, A. O. Ige, On the existence and exponential decay rate of swelling porous thermoelastic system of Lord-Shulman type, J. Therm. Stresses, 47 (2024), 937–958. https://doi.org/10.1080/01495739.2024.2345364 doi: 10.1080/01495739.2024.2345364
|
| [7] |
Z. Liu, S. Trogdon, Y. Jiongmin, Modeling and analysis of a laminated beam, Math. Comput. Model., 30 (1999), 149–167. https://doi.org/10.1016/S0895-7177(99)00122-3 doi: 10.1016/S0895-7177(99)00122-3
|
| [8] | Z. M. Ali, A. Wehbe, A. Guesmia, Energy decay rate of the generalized Rao-Nakra beam with singular local Kelvin-Voigt damping, Evol. Equ. Control The., 13 (2024), 1548–1583. Available from: https://www.aimsciences.org/article/doi/10.3934/eect.2024039. |
| [9] |
C. A. Raposo, O. P. V. Villagran, J. Ferreira, E. Pişkin, Rao–Nakra sandwich beam with second sound, Part. Differ. Equ. Appl. Math., 4 (2021), 100053. https://doi.org/10.1016/j.padiff.2021.100053 doi: 10.1016/j.padiff.2021.100053
|
| [10] | S. E. Mukiawa, C. D. Enyi, J. D. Audu Well-posedness and stability result for a thermoelastic Rao-Nakra beam model, J. Therm. Stresses, 45 (2022), 720–739. https://doi.org/10.1080/01495739.2022.2074931 |
| [11] |
S. E. Mukiawa, Well-posedness and stabilization of a type three layer beam system with Gurtin-Pipkin's thermal law, AIMS Math., 8 (2023), 28188–28209. https://doi.org/10.3934/math.20231443 doi: 10.3934/math.20231443
|
| [12] |
M. Akil, Z. Liu, Stabilization of the generalized Rao-Nakra beam by partial viscous damping, Math. Method. Appl. Sci., 46 (2022), 1479–1510. https://doi.org/10.1002/mma.8591 doi: 10.1002/mma.8591
|
| [13] |
C. Enyi, General stability of a triple layer beam with time-varying delay and weak internal damping, Part. Differ. Equ. Appl. Math., 10 (2024), 100714. https://doi.org/10.1016/j.padiff.2024.100714 doi: 10.1016/j.padiff.2024.100714
|
| [14] |
Y. Li, Z. Liu, Y. Wang, Weak stability of a laminated beam, Math. Control Relat. F., 8 (2018), 789–808. https://doi.org/10.3934/mcrf.2018035 doi: 10.3934/mcrf.2018035
|
| [15] |
Z. Liu, B. Rao, Q. Zheng, Polynomial stability of the Rao-Nakra beam with a single internal viscous damping, J. Differ. Equations, 269 (2020), 6125–6162. https://doi.org/10.1016/j.jde.2020.04.030 doi: 10.1016/j.jde.2020.04.030
|
| [16] |
S. W. Hansen, O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions, Math. Control Relat. F., 1 (2011), 189–230. https://doi.org/10.3934/mcrf.2011.1.189 doi: 10.3934/mcrf.2011.1.189
|
| [17] |
S. W. Hansen, O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra Plate with clamped boundary conditions, ESAIM Contr. Optim. Ca., 17 (2011), 1101–1132. https://doi.org/10.1051/cocv/2010040 doi: 10.1051/cocv/2010040
|
| [18] |
S. W. Hansen, R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam, Discrete Cont. Dyn., 2005 (2005), 365–375. https://doi.org/10.3934/proc.2005.2005.365 doi: 10.3934/proc.2005.2005.365
|
| [19] |
R. Rajaram, Exact boundary controllability result for a Rao-Nakra sandwich beam, Syst. Control Lett., 56 (2007), 558–567. https://doi.org/10.1016/j.sysconle.2007.03.007 doi: 10.1016/j.sysconle.2007.03.007
|
| [20] | M. M. Cavalcanti, B. Feng, V. H. G. Martinez, S. Mansouri, Asymptotic behavior of Rao-Nakra sandwich beam with nonlinear localized damping and source terms, Appl. Math. Opt., 91 (2025), 18. Available from: https://link.springer.com/article/10.1007/s00245-024-10218-2. |
| [21] |
T. Quispe Méndez, V. R. Cabanillas, B. Feng, Asymptotic behavior of the Rao-Nakra sandwich beam model with Kelvin-Voigt damping, Math. Mech. Solids, 29 (2024), 22–38. https://doi.org/10.1177/10812865231180535 doi: 10.1177/10812865231180535
|
| [22] |
B. Feng, A. O. Ozer, Long-time behavior of a nonlinearly-damped three-layer Rao-Nakra sandwich beam, Appl. Math. Opt., 87 (2023), 19. https://doi.org/10.1007/s00245-022-09931-7 doi: 10.1007/s00245-022-09931-7
|
| [23] |
C. R. Raposo, Rao-Nakra model with internal damping and time delay, Mathematica Moravica, 25 (2021), 53–67. https://doi.org/10.5937/MatMor2102053R doi: 10.5937/MatMor2102053R
|
| [24] |
S. A. Messaoudi, S. E. Mukiawa, Existence and stability of fourth-order nonlinear plate problem, Nonauton. Dyn. Syst., 6 (2019), 81–98. https://doi.org/10.1515/msds-2019-0006 doi: 10.1515/msds-2019-0006
|
| [25] | S. E. Mukiawa, M. Leblouba, S. A. Messaoudi, On the well-posedness and stability for a coupled nonlinear suspension bridge problem, Commun. Pur. Appl. Anal., 22 (2023), 2716–2743. Available from: https://www.aimsciences.org/article/doi/10.3934/cpaa.2023084. |
| [26] | J. L. Lions, Quelques méthodes de résolution des problémes aux limites nonlinéaires, Dunod, 1969. |
| [27] | V. Komornik, E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pure. Appl., 69 (1990), 33–54. Available from: https://api.semanticscholar.org/CorpusID: 115307775. |
| [28] |
V. Komornik, Decay estimates for the wave equation with internal damping, Int. Ser. Numer. Math., 118 (1994), 253–266. https://doi.org/10.1007/978-3-0348-8530-0-14 doi: 10.1007/978-3-0348-8530-0-14
|
| [29] | A. Ferrero, F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Cont. Dyn., 35 (2015), 5879–5908. Available from: https://www.aimsciences.org/article/doi/10.3934/dcds.2015.35.5879. |
| [30] | S. A. Messaoudi, S. E. Mukiawa, A suspension bridge problem: Existence and stability, In: Mathematics across contemporary sciences, Springer, Cham. 190 (2017), 151–165. https://doi.org/10.1007/978-3-319-46310-0_9 |
| [31] |
T. M. Quispe, V. Z. Cabanillas, B. Feng, Asymptotic behavior of the Rao–Nakra sandwich beam model with Kelvin–Voigt damping, Math. Mech. Solids, 29 (2024), 22–38. https://doi.org/10.1177/10812865231180535 doi: 10.1177/10812865231180535
|
| [32] | M. M. A. Gharabli, S. A. Omari, A. M. A. Mahdi, Stabilization of a Rao–Nakra sandwich beam system by Coleman–Gurtin's thermal law and nonlinear damping of variable-exponent type, J. Math., 2024, 1615178. https://doi.org/10.1155/2024/1615178 |