Research article Special Issues

A new reciprocity formula of Dedekind sums and its applications

  • Dedicated to Professor Taekyun Kim on the occasion of his sixtieth birthday
  • Our main purpose of this article was using the analytic methods and the properties of Dirichlet L-functions to study the properties of Dedekind sums and give a new reciprocity formula for it. As its applications, some exact calculating formula for one kind mean square value of Dirichlet L-fuctions with the weight of the character sums were obtained.

    Citation: Zhuoyu Chen, Wenpeng Zhang. A new reciprocity formula of Dedekind sums and its applications[J]. AIMS Mathematics, 2024, 9(5): 12814-12824. doi: 10.3934/math.2024626

    Related Papers:

    [1] Jiankang Wang, Zhefeng Xu, Minmin Jia . On the generalized Cochrane sum with Dirichlet characters. AIMS Mathematics, 2023, 8(12): 30182-30193. doi: 10.3934/math.20231542
    [2] Lei Liu, Zhefeng Xu . Mean value of the Hardy sums over short intervals. AIMS Mathematics, 2020, 5(6): 5551-5563. doi: 10.3934/math.2020356
    [3] Wenjia Guo, Yuankui Ma, Tianping Zhang . New identities involving Hardy sums $S_3(h, k)$ and general Kloosterman sums. AIMS Mathematics, 2021, 6(2): 1596-1606. doi: 10.3934/math.2021095
    [4] Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461
    [5] Jiankang Wang, Zhefeng Xu, Minmin Jia . Distribution of values of Hardy sums over Chebyshev polynomials. AIMS Mathematics, 2024, 9(2): 3788-3797. doi: 10.3934/math.2024186
    [6] Fan Yang, Yang Li . The infinite sums of reciprocals and the partial sums of Chebyshev polynomials. AIMS Mathematics, 2022, 7(1): 334-348. doi: 10.3934/math.2022023
    [7] Mohammed Z. Alqarni, Mohamed Abdalla . Analytic properties and numerical representations for constructing the extended beta function using logarithmic mean. AIMS Mathematics, 2024, 9(5): 12072-12089. doi: 10.3934/math.2024590
    [8] Zhen Guo . On mean square of the error term of a multivariable divisor function. AIMS Mathematics, 2024, 9(10): 29197-29219. doi: 10.3934/math.20241415
    [9] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [10] Huimin Wang, Liqun Hu . Sums of the higher divisor function of diagonal homogeneous forms in short intervals. AIMS Mathematics, 2023, 8(10): 22577-22592. doi: 10.3934/math.20231150
  • Our main purpose of this article was using the analytic methods and the properties of Dirichlet L-functions to study the properties of Dedekind sums and give a new reciprocity formula for it. As its applications, some exact calculating formula for one kind mean square value of Dirichlet L-fuctions with the weight of the character sums were obtained.



    In order to describe the results of this paper, we first introduce the definition of the Dedekind sums S(r,q). For any integers q2 and r, the classical Dedekind sums S(r,q) is defined as follows (see [1]):

    S(r,q)=qc=1((cq))((rcq)),

    where ((u)) is usually defined as

    ((u))={u[u]12, if  u   is not an integer;0, if   u  is an integer.

    Usually, we know that S(r,q) describes the behavior of the logarithm for the eta-function (see [2,3]) under modular transformations. Because of the importance of S(r,q) in analytic number theory, many authors have studied the various arithmetical properties of S(r,q) and obtained a series of meaningful results (some of them can be found in [4,5,6,7,8,9,10,11,12,13,14,15,16]). To avoid complexity, we do not want to list them one by one. However, it is worth mentioning that Girstmair acquired an interesting result in [17], and it should be noted that perhaps the most important property of S(r,q) is its reciprocity theorem (see[1,4,7]). That is, for any positive integers u and v with (u,v)=1, one has the following identity

    S(u,v)+S(v,u)=u2+v2+112uv14. (1.1)

    Obviously, this formula is not only looks very beautiful, but also reveals the profound properties between S(u,v) and S(v,u). Rademacher and Grosswald [3] also obtained a three-term formula similar to (1.1). Besides, there are many properties of Dedekind sums that are worth studying, and many scholars have achieved rich results. In particular, some of the new papers related to Dedekind sums can also be found in the references [18,19,20,21,22].

    Our main purpose of this paper is using the analytic methods and the properties of Dirichlet L-functions to study the properties of S(r,q) and give a new reciprocity formula for it, which is Lemma 3 in the paper. As its applications, we deduced several new calculating formula for the mean square value of Dirichlet L-functions with the weight of the character sums. In other words, we have the following three results:

    Theorem 1. For any positive integer q>1 and (q,6)=1, we have the following identities

    χ mod qχ(1)=1χ(3)¯χ(2)|L(1,χ)|2=π218ϕ2(q)q2[q4pq(1+1p)92+(q3)pqp(p3)p1],

    where χmodqχ(1)=1 denotes the summation over all odd characters modulo q and pq represents the product over all distinct prime divisors of q, L(s,χ) is the Dirichlet L-function corresponding to character χmodq, ϕ(q) is the Euler function and (3) is the Legendre symbol modulo 3.

    Theorem 2. For any positive integer q>1 with (q,6)=1, we also have the identity

    χ mod qχ(1)=1|L(1,χλ3)|2=π227ϕ2(q)q2[2qpq(1+1p)(q3)pqp(p3)p1],

    where χmodhχ(1)=1 denotes the summation over all even characters modulo q, and λ3=(3) denotes the Legendre symbol modulo 3.

    Theorem 3. For any positive integer q>1 with (q,6)=1, we can obtain the identity

    λ mod qλ(1)=1λ(2)|L(1,λψ3)|2=π227ϕ2(q)q2[qpq(1+1p)2(q3)pqp(p3)p1],

    where

    ψ3=(3)

    denotes the Legendre symbol modulo 3.

    To illustrate the interest of this article, here we provide several numerical examples to justify our obtained results. If we take q=5 in Theorems 1 and 2, we could obtain the following two corollaries:

    Corollary 1. Let ψ be any non-real character modulo 5. We obtain the identity

    |L(1,ψ)|=25π.

    Corollary 2. Let λ=(3)(5) modulo 15. We have the identity

    |L(1,λ)|=2π15.

    If we take q=7 in Theorem 2 and q=35, Theorems 2 and 3, we can also have the following corollaries:

    Corollary 3. Let χ be any non-real even character modulo 7. Then we have the identity

    |L(1,χ)|=2π21.

    Corollary 4. Let ψ3 denote the Legendre symbol modulo 3. Then we have

    λ mod 35λ(1)=1λ(2)|L(1,λψ3)|2=979211025π2.

    Corollary 5. Let ψ3 denote the Legendre symbol modulo 3. Then we have

    χ mod 35χ(1)=1|L(1,χψ3)|2=416245π2.

    Some notes: It is clear that by replacing χ(3) with χ(5) or χ(7) in Theorem 1 we can also get some similar results, but the situation is more complicated and we do not list them.

    In addition, Theorems 2 and 3 show two interesting results. In fact, for the mean square value of Dirichlet L-functions with the even characters at point s=1, there are so far only various asymptotic formulas, without any exact identities. For Theorems 2 and 3, we obtained two exact calculating formulae for them just by turning all characters χ with χ(1)=1 into χλ3 with χλ3(1)=1.

    In this section, we will give three simple lemmas that are necessary in the proofs of three theorems. Hereinafter, we shall combine some knowledge of analytic number theory and the properties of the Dirichlet L-functions and Dedekind sums, which can be found in references [1,23,24], so we will not repeat them here. First, we have the following:

    Lemma 1. Let q>2 be an integer. Then for any integer v with (v,q)=1, we have the following equation:

    S(v,q)=1π2qh|qh2ϕ(h)χmodhχ(1)=1χ(v)|L(1,χ)|2,

    where L(s,χ) denotes the Dirichlet L-function corresponding to χmodh.

    Proof. See [6,Lemma 2].

    Lemma 2. Let q be a positive odd number. For any positive odd number r with (r,q)=1, we can calculate the identity

    S(r,2q)=3S(r,q)S(2r,q)S(¯2r,q),

    where 2¯21modq.

    Proof. Let χ0 denote the principal character modulo 2. Note that 2q and for any hq, we know that

    ϕ(2h)=ϕ(h)

    and

    (r,2q)=1.

    According to the Lemma 1, we can obtain

    S(r,2q)=12π2qh|2qh2ϕ(h)χ mod hχ(1)=1χ(r)|L(1,χ)|2=12π2qh|qh2ϕ(h)χ mod hχ(1)=1χ(r)|L(1,χ)|2+12π2qh|q(2h)2ϕ(2h)χ mod 2hχ(1)=1χ(r)|L(1,χ)|2=12S(r,q)+2π2qh|qh2ϕ(h)χ mod hχ(1)=1χ(r)|L(1,χχ0)|2. (2.1)

    For any non-principal character χmodh with hq, using the properties of Dirichlet L-functions and the Euler product formula (see [23,Theorem 11.6]), we can calculate that

    |L(1,χχ0)|2=|p(1χ(p)χ0(p)p)1|2=|1χ(2)2|2|p(1χ(p)p)1|2=(54χ(2)2¯χ(2)2)|L(1,χ)|2. (2.2)

    Combining (2.1), (2.2) and Lemma 1, we have the identity

    S(r,2q)=12S(r,q)+2π2qh|qh2ϕ(h)χ mod hχ(1)=1χ(r)(54χ(2)2¯χ(2)2)|L(1,χ)|2=12S(r,q)+52S(r,q)1π2qh|qh2ϕ(h)χ mod hχ(1)=1χ(2r)|L(1,χ)|21π2qh|qh2ϕ(h)χ mod hχ(1)=1χ(¯2r)|L(1,χ)|2=3S(r,q)S(2r,q)S(¯2r,q).

    This completes the proof of Lemma 2.

    Lemma 3. Let h and q be two positive odd numbers with (h,q)=1. Then we have the reciprocity formula

    S(¯2q,h)+S(¯2h,q)=h2+q2+424hq14,

    where ¯2 in S(¯2h,q) and S(¯2q,h) are q+12 and h+12, respectively.

    Proof. For any positive odd numbers h and q with (h,q)=1, according to the Lemma 2, we can obtain

    S(h,2q)=3S(h,q)S(2h,q)S(¯2h,q) (2.3)

    and

    S(q,2h)=3S(q,h)S(2q,h)S(¯2q,h). (2.4)

    Applying (2.3), (2.4) and the reciprocity formula (1.1), we have the following identity:

    S(h,2q)+S(2q,h)+S(q,2h)+S(2h,q)=3S(h,q)+3S(q,h)S(¯2q,h)S(¯2h,q)

    or

    4q2+h2+124hq14+4h2+q2+124qh14=3(h2+q2+112hq14)S(¯2q,h)S(¯2h,q)

    or

    S(¯2q,h)+S(¯2h,q)=h2+q2+424hq14.

    This proves Lemma 3.

    It is clear that our Lemma 3 gave a new reciprocity formula for Dedekind sums.

    In this section, we use the three simple lemmas in Section 2 and the reciprocity formula (1.1) to prove our three results. We will first prove Theorem 1.

    Proof. Taking h=3 in Lemma 3 and because of 221mod3, if q=6k+1, from the definition of S(h,q), we can obtain

    S(¯2q,3)=S(2q,3)=S(2,3)=S(1,3)=118. (3.1)

    If q=6k1, from the definition of S(h,q), we can also obtain

    S(¯2q,3)=S(2q,3)=S(2,3)=S(1,3)=118. (3.2)

    Combining (3.1) and (3.2), for any odd positive integer q with (q,3)=1, we have

    S(¯2q,3)=S(2q,3)=(q3)18. (3.3)

    Note that S(r+hq,q)=S(r,q), from (3.3) and Lemma 3 we have

    S(¯23,q)=S(3q+32,q)=S(q+32,q)=q2+1372q14+(q3)18. (3.4)

    According to the formula (3.1)–(3.3) and the properties of the Möbius function, we calculate

    dqμ(d)qdS(qd,3)=dqμ(d)qd(q/d3)18=q18(q3)dqμ(d)(d3)d=ϕ(q)(q3)18pqp(p3)p1, (3.5)

    where μ(n) denotes the Möbius function.

    From the formula (3.4) and Lemma 1 we have

    q7214+1372q+(q3)18=1π2qk|qk2ϕ(k)χ mod kχ(1)=1χ(3)¯χ(2)|L(1,χ)|2. (3.6)

    Note that (3.5), applying Möbius inversion formula (see [23,Theorem 2.9]) for (3.6) we have

    χ mod qχ(1)=1χ(3)¯χ(2)|L(1,χ)|2=π2ϕ(q)q2dqμ(d)(q272d214qd+(q/d3)18+1372)=π2ϕ2(q)q2[172qpq(1+1p)14+(q3)18pqp(p3)p1].

    The proof of Theorem 1 is finished.

    Next we prove Theorem 2.

    Proof. For any odd number q>3 with (q,3)=1, we have

    S(1,q)=q1a=1(aq12)2=q1214+16q. (3.7)

    On the basis of (3.7), Lemma 1 and the Möbius inversion formula, we can obtain

    χ mod qχ(1)=1|L(1,χ)|2=π212ϕ2(q)q2[qpq(1+1p)3] (3.8)

    and

    χ mod 3qχ(1)=1|L(1,χ)|2=π227ϕ2(q)q2[4qpq(1+1p)3]. (3.9)

    According to the formulae (1.1), (3.3), (3.5) and the Möbius inversion formula, we also calculate the

    χ mod qχ(1)=1χ(3)|L(1,χ)|2=π236ϕ2(q)q2[qpq(1+1p)92(q3)pqp(p3)p1]. (3.10)

    On the other hand, let λ3=(3) denote the Legendre symbol modulo 3, and λ03 denote the principal character modulo 3. Then note that

    χ mod 3qχ(1)=1|L(1,χ)|2=χ mod qχ(1)=1|L(1,χλ03)|2+χ mod qχ(1)=1|L(1,χλ3)|2=χ mod qχ(1)=1|1χ(3)3|2|L(1,χ)|2+χ mod qχ(1)=1|L(1,χλ3)|2=109χ mod qχ(1)=1|L(1,χ)|223χ mod qχ(1)=1χ(3)|L(1,χ)|2+χ mod qχ(1)=1|L(1,χλ3)|2. (3.11)

    Then combining (3.8)–(3.11) we have

    χ mod qχ(1)=1|L(1,χλ3)|2=π227ϕ2(q)q2[2qpq(1+1p)(q3)pqp(p3)p1].

    The proof of Theorem 2 is finished.

    Last, we will prove Theorem 3.

    Proof. Combining with the formula (1.1), Lemma 1 and the Möbius inversion formula, we have

    χ mod qχ(1)=1χ(2)|L(1,χ)|2=π224ϕ2(q)q2[qpq(1+1p)6] (3.12)

    and

    χ mod 3qχ(1)=1χ(2)|L(1,χ)|2=π227ϕ2(q)q2[2qpq(1+1p)3]. (3.13)

    For any positive integer q with (q,6)=1, note that the identity

    S(q,6)=518(q3).

    We can calculate

    χ mod qχ(1)=1χ(6)|L(1,χ)|2=π272ϕ2(q)q2[qpq(1+1p)1820(q3)pqp(p3)p1]. (3.14)

    On the other hand, let χ0q denote the principal character modulo q and ψ3=(3). Then ψ3(2)=1, so we also obtain

    χ mod 3qχ(1)=1χ(2)|L(1,χ)|2=ψ mod 3ψ(1)=1λ mod qλ(1)=1λ(2)ψ(2)|L(1,λψ)|2+ψ mod 3ψ(1)=1λ mod qλ(1)=1χ(2)ψ(2)|L(1,λψ)|2=λ mod qλ(1)=1χ(2)|L(1,λχ03)|2λ mod qλ(1)=1λ(2)|L(1,λψ3)|2=λ mod qλ(1)=1λ(2)|1λ(3)3|2|L(1,λ)|2λ mod qλ(1)=1λ(2)|L(1,λψ3)|2=109λ mod qλ(1)=1λ(2)|L(1,λ)|213λ mod qλ(1)=1λ(6)|L(1,λ)|213λ mod qλ(1)=1λ(2)¯λ(3)|L(1,λ)|2λ mod qλ(1)=1λ(2)|L(1,λψ3)|2. (3.15)

    Now, combining Theorem 1 and (3.12)–(3.15), we have the identity

    λ mod qλ(1)=1λ(2)|L(1,λψ3)|2=π227ϕ2(q)q2[qpq(1+1p)2(q3)pqp(p3)p1].

    This completes the proof of Theorem 3.

    Our main purpose of this paper is to give a new reciprocity theorem for Dedekind sums (see Lemma 3). As an application of this result, we give a new calculating formula for one kind mean square value of Dirichlet L-fuctions with the weight of the character sums. That is, we proved that for any positive integer q>1 and (q,6)=1, one has the identity

    χ mod qχ(1)=1χ(3)¯χ(2)|L(1,χ)|2=π218ϕ2(q)q2[q4pq(1+1p)92+(q3)pqp(p3)p1],

    where (3) denote the Legendre symbol modulo 3.

    In addition, according to the reciprocity formula (1.1) and the Lemma 1, we may immediately deduce that for any two distinct odd primes p and q, one has the identity

    qq1χ mod qχ(1)=1χ(p)|L(1,χ)|2+pp1χ mod pχ(1)=1χ(q)|L(1,χ)|2=π212p2+q23pq+1pq. (4.1)

    Whether there exists a direct proof of (4.1) (using only the properties of Dirichlet L-function, the reciprocity formula (1.1) cannot be used) is an open problem. It is believed that the methods used in this paper will contribute to further research in relevant fields.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to thank the editor and referees for their very helpful and detailed comments.

    This work is supported by the Natural Science Basic Research Plan in Shaanxi Province of China (2023-JC-QN-0050), Natural Science Foundation of China (12126357) and Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 22JK0424).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] T. M. Apostol, Modular functions and Dirichlet series in number theory, Springer-Verlag, 1990. https://doi.org/10.1007/978-1-4612-0999-7
    [2] H. Rademacher, On the transformation of logη(τ), J. Indian Math. Soc., 19 (1955), 25–30. https://doi.org/10.1215/S0012-7094-74-04132-5 doi: 10.1215/S0012-7094-74-04132-5
    [3] H. Rademacher, E. Grosswald, Dedekind sums, Carus mathematical monographs, Math. Assoc. Amer., 1972.
    [4] L. Carlitz, The reciprocity theorem for Dedekind sums, Pacific J. Math., 3 (1953), 523–527. https://doi.org/10.2140/PJM.1953.3.523 doi: 10.2140/PJM.1953.3.523
    [5] J. B. Conrey, E. Fransen, R. Klein, C. Scott, Mean values of Dedekind sums, J. Number Theory, 56 (1996), 214–226. https://doi.org/10.1006/jnth.1996.0014
    [6] W. P. Zhang, On the mean values of Dedekind sums, J. Theor. Nombres Bordeaux, 8 (1996), 429–442. https://doi.org/10.5802/JTNB.179 doi: 10.5802/JTNB.179
    [7] L. J. Mordell, The reciprocity formula for Dedekind sums, Amer. J. Math., 73 (1951), 593–598. https://doi.org/10.2307/2372310 doi: 10.2307/2372310
    [8] Y. N. Liu, W. P. Zhang, A hybrid mean value related to the Dedekind sums and Kloosterman sums, Acta Math. Sin. Engl. Ser., 27 (2011), 435–440. https://doi.org/10.1007/s10114-010-9192-2 doi: 10.1007/s10114-010-9192-2
    [9] W. P. Zhang, On a note of one class mean square value of L-functions, J. Northwest Univ., 20 (1990), 9–12.
    [10] W. P. Zhang, A sum analogous to Dedekind sums and its hybrid mean value formula, Acta Arith., 107 (2003), 1–8. https://doi.org/10.4064/aa107-1-1 doi: 10.4064/aa107-1-1
    [11] E. Tsukerman, Fourier-Dedekind sums and an extension of Rademacher reciprocity, Ramanujan J., 37 (2015), 421–460. https://doi.org/10.1007/s11139-014-9555-x doi: 10.1007/s11139-014-9555-x
    [12] W. Kohnen, A short note on Dedekind sums, Ramanujan J., 45 (2018), 491–495. https://doi.org/10.1007/s11139-016-9851-8 doi: 10.1007/s11139-016-9851-8
    [13] Y. W. Chen, N. Dunn, S. Silas, Dedekind sums s(a,b) and inversions modulo b, Int. J. Number Theory, 11 (2015), 2325–2339. https://doi.org/10.1142/S1793042115501067 doi: 10.1142/S1793042115501067
    [14] W. P. Zhang, On the fourth power mean of Dirichlet L-functions, Science Press, 1989,173–179.
    [15] D. Han, W. P. Zhang, Some new identities involving Dedekind sums and the Ramanujan sum, Ramanujan J., 35 (2014), 253–262. https://doi.org/10.1007/s11139-014-9591-6 doi: 10.1007/s11139-014-9591-6
    [16] S. Macourt, An integer-valued expression of Dedekind sums, Int. J. Number Theory, 13 (2017), 1253–1259. https://doi.org/10.1142/S1793042117500683 doi: 10.1142/S1793042117500683
    [17] K. Girstmair, On a recent reciprocity formula for Dedekind sums, Int. J. Number Theory, 15 (2019), 1469–1472. https://doi.org/10.1142/S1793042119500842 doi: 10.1142/S1793042119500842
    [18] Z. Y. Zheng, M. Chen, J. Xu, On Gauss sums over Dedekind domains, Int. J. Number Theory, 18 (2022), 1047–1063. https://doi.org/10.1142/S1793042122500543 doi: 10.1142/S1793042122500543
    [19] Y. K. Ma, L. L. Luo, T. Kim, H. Z. Li, A study on a type of poly-Dedekind type DC sums, J. Northwest Univ. Natl. Sci. Edit., 53 (2023), 438–442.
    [20] M. C. Dagli, On the hybrid mean value of generalized Dedekind sums, generalized Hardy sums and Ramanujan sum, Bull. Math. Soc. Sci. Math. Roum., 63 (2020), 325–333.
    [21] E. Nguyen, J. J. Ramirez, M. P. Young, The kernel of newform Dedekind sums, J. Number Theory, 223 (2021), 53–63. https://doi.org/10.1016/j.jnt.2020.10.005 doi: 10.1016/j.jnt.2020.10.005
    [22] M. Majure, Algebraic properties of the values of newform Dedekind sums, J. Number Theory, 250 (2023), 35–48. https://doi.org/10.1016/j.jnt.2023.03.004 doi: 10.1016/j.jnt.2023.03.004
    [23] T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, 1976. https://doi.org/10.1007/978-1-4757-5579-4
    [24] K. Ireland, M. Rosen, A classical introduction to modern number theory, Springer-Verlag, 1990. https://doi.org/10.1007/978-1-4757-2103-4
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1328) PDF downloads(97) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog