Let τ(n) be the Dirichlet divisor function and k⩾2 be a fixed integer. We give an asymptotic formula of the mean square of
Δk(x)=∑n1,⋯,nk⩽xτ(n1⋯nk)−xkPk(logx).
Citation: Zhen Guo. On mean square of the error term of a multivariable divisor function[J]. AIMS Mathematics, 2024, 9(10): 29197-29219. doi: 10.3934/math.20241415
[1] | B.L. Mayer, L.H.A. Monteiro . On the divisors of natural and happy numbers: a study based on entropy and graphs. AIMS Mathematics, 2023, 8(6): 13411-13424. doi: 10.3934/math.2023679 |
[2] | Ana Lazcano de Rojas, Miguel A. Jaramillo-Morán, Julio E. Sandubete . EMDFormer model for time series forecasting. AIMS Mathematics, 2024, 9(4): 9419-9434. doi: 10.3934/math.2024459 |
[3] | Dong Pan, Huizhen Qu . Finite-time boundary synchronization of space-time discretized stochastic fuzzy genetic regulatory networks with time delays. AIMS Mathematics, 2025, 10(2): 2163-2190. doi: 10.3934/math.2025101 |
[4] | Rui Zhang, Xiaofei Yan . The third-power moment of the Riesz mean error term of symmetric square $ L $-function. AIMS Mathematics, 2021, 6(9): 9436-9445. doi: 10.3934/math.2021548 |
[5] | Bhabesh Das, Helen K. Saikia . On the Sum of Unitary Divisors Maximum Function. AIMS Mathematics, 2017, 2(1): 96-101. doi: 10.3934/Math.2017.1.96 |
[6] | Haiping Ren, Ziwen Zhang, Qin Gong . Estimation of Shannon entropy of the inverse exponential Rayleigh model under progressively Type-Ⅱ censored test. AIMS Mathematics, 2025, 10(4): 9378-9414. doi: 10.3934/math.2025434 |
[7] | Zhuoyu Chen, Wenpeng Zhang . A new reciprocity formula of Dedekind sums and its applications. AIMS Mathematics, 2024, 9(5): 12814-12824. doi: 10.3934/math.2024626 |
[8] | Boran Kim . Locally recoverable codes in Hermitian function fields with certain types of divisors. AIMS Mathematics, 2022, 7(6): 9656-9667. doi: 10.3934/math.2022537 |
[9] | M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr . Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields. AIMS Mathematics, 2024, 9(7): 17634-17656. doi: 10.3934/math.2024857 |
[10] | Haidy A. Newer, Bader S Alanazi . Bayesian estimation and prediction for linear exponential models using ordered moving extremes ranked set sampling in medical data. AIMS Mathematics, 2025, 10(1): 1162-1182. doi: 10.3934/math.2025055 |
Let τ(n) be the Dirichlet divisor function and k⩾2 be a fixed integer. We give an asymptotic formula of the mean square of
Δk(x)=∑n1,⋯,nk⩽xτ(n1⋯nk)−xkPk(logx).
Let τ(n) be the Dirichlet divisor function. It is known that for a real number x⩾2,
∑n⩽xτ(n)=xlogx+(2γ−1)x+Δ(x), | (1.1) |
where γ is Euler's constant. It was first proved by Dirichlet that
Δ(x)≪√x. |
Let θ denotes the smallest number such that
Δ(x)≪xθ+ε | (1.2) |
holds for any ε>0. Many authors worked on making θ smaller, such as Voronoi [1], Corput [2], Kolesnik [3], Huxley [4], etc. Until now the best result, namely θ=131/416 is due to Huxley [4].
It is conjectured that θ=1/4, which is supported by the classical mean square result: Suppose T is a large real number, then for any ε>0, one has
∫T1Δ2(x)dx=16π2C2T3/2+O(T54+ε), | (1.3) |
where
C2=∞∑n=1τ2(n)n3/2. |
This result was given by Cramér [5] in 1922. In 1956, Tong [6] showed that the error term in (1.3) can be reduced to Tlog5T. In 1988, Preissmann [7] reduced the error term to Tlog4T. In 2009, Lau and Tsang [8] proved that
∫T1Δ2(x)dx=16π2C2T3/2+O(Tlog3TloglogT). |
Let k⩾2 be a fixed integer. Tóth and Zhai [9] considered the average of divisor function of k variables. They obtain the asymptotic formula
∑n1,⋯,nk⩽xτ(n1⋯nk)=xkPk(logx)+O(xk−1+θ+ε) | (1.4) |
holds for any ε>0, where θ is the exponent in (1.2) and Pk(t) is a polynomial in t of degree k. We denote Δk(x) by
Δk(x):=∑n1,⋯,nk⩽xτ(n1⋯nk)−xkPk(logx). | (1.5) |
We have the following theorem:
Theorem 1.1. Suppose T⩾2 is a large real number, then we have
∫T1Δk2(x)dx=k24π2T2k−12L2k−2(logT)+O(T2k−35+ε), | (1.6) |
where L2k−2(u) is a polynomial in u of degree 2k−2, and the implied constant about "O" depends on k and ε.
We present some lemmas.
Lemma 2.1. Suppose x⩾2 is large, then for any 1≪N≪x, we have
Δ(x)=x1/4√2π∑n⩽Nτ(n)n3/4cos(4π√nx−π4)+O(x1/2+εN1/2). |
Proof. See [10,Chapter 3.2].
Lemma 2.2. Suppose T⩾2, Tε≪y≪T, and let
δ1(x,y)=x1/4√2π∑n⩽yτ(n)n3/4cos(4π√nx−π4),δ2(x,y)=Δ(x)−δ1(x,y), |
then we have
∫2TTδ22(x,y)dx≪T3/2y1/2log3T+Tlog4T. |
Proof. See, for example, the following references: Lau and Tsang [8], Tsang [11], Zhai [12].
Lemma 2.3. Suppose G0,m0 are fixed real positive numbers, let G(x) be a monotonic function defined on [a,b] such that
|G(x)|⩽G0 |
and m(x) be a differentiable real function such that
|m′(x)|⩾m0 |
on [a,b], F(⋅)=cos(⋅) or sin(⋅) or e(⋅), then
∫baG(x)F(m(x))dx≪G0m0−1. |
Proof. See [10,Lemma 2.1].
Lemma 2.4. Let k⩾2 be a fixed integer and let s1,⋯,sk be complex numbers. Then for ℜsj>1, where j=1,2,⋯,k, we have
∞∑n1,⋯,nk=1τ(n1⋯nk)ns11⋯nskk=ζ2(s1)⋯ζ2(sk)Fk(s1,⋯,sk), |
where
Fk(s1,⋯,sk)=∞∑n1,⋯,nk=1f(n1,⋯,nk)ns11⋯nskk. |
This series is absolutely convergent provided that ℜsj>0 and ℜ(sj+sl)>1(1⩽j,l⩽k), and f(n1,⋯,nk) is multiplicative and symmetric in all variables.
Moreover, for r1,⋯,rk∈{1,2},
∞∑n1,⋯,nk=1f(n1,⋯,nk)τr1(n1)⋯τrk(nk)ns11⋯nskk | (2.1) |
is absolutely convergent provided that ℜsj>0 and ℜ(sj+sl)>1(1⩽j,l⩽k).
Proof. See Tóth and Zhai [9,Proposition 2.1], and the convergence of (2.1) is a direct corollary.
Lemma 2.5. Suppose x,y are large real numbers, k⩾2 is a fixed integer, s,w are given real numbers such that 0<s<1/2<w<1, f is defined in Lemma 2.4. Let M1 and M2 denote the vectors (m1,⋯,mk) and (mk+1,⋯,m2k), D1 and D2 denote (∏k−1j=1mj) and (∏2k−1j=k+1mj), respectively. Let
Tg,k(x,y;s,w)=∑m1,⋯,m2k⩽xn1,n2⩽ymkm2k=n1n2f(M1)f(M2)g(M1,M2)D1D2(mkm2k)s⋅τ(n1)τ(n2)(n1n2)w,Tg,k(s,w)=∑M1,M2∈Nkn1,n2∈Nmkm2k=n1n2f(M1)f(M2)g(M1,M2)D1D2(mkm2k)s⋅τ(n1)τ(n2)(n1n2)w, |
where g(M1,M2) is any function that satisfies
g(M1,M2)≪(2k∏j=1mj)ε, |
then we have:
(i) Tg,k(s,w) is absolutely convergent.
(ii) We have
Tg,k(s,w)−Tg,k(x,y;s,w)≪x−2s+ε+y1−2wlog3y. |
Proof. (i) Since mk/m2k=n1/n2, we can find positive integers t1,t2,g1,g2 such that
mkm2k=n1n2=t1t2, |
where (t1,t2)=1 and t1g1=mk, t2g1=m2k, t1g2=n1, t2g2=n2. Denote by M1′ and M2′ the vectors (m1,⋯,mk−1) and (mk+1,⋯,m2k−1), respectively, then we have
Tg,k(s,w)≪∑M1′,M2′∈Nk−1t1,t2,g1,g2∈N(t1,t2)=1|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1g2)τ(t2g2)D1D2(t1g1)s(t2g1)s(t1g2)w(t2g2)w⩽∑M1′,M2′∈Nk−1t1,t2,g1,g2∈N(t1,t2)=1|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)τ2(g2)D1D2(t1g1)s(t2g1)s(t1t2)wg22w≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12s(t1t2)s+w∞∑g2=1τ2(g2)g22w≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12s(t1t2)s+w:=U1, |
where we use the conclusion: For a given real number c, we have
∞∑n=1τ2(n)nc<∞(c>1), | (2.2) |
moreover, for a large real number U, using partial summation and the conclusion
∑n⩽Uτ2(n)≪Ulog3U, |
we have
∑n⩽Uτ2(n)nc≪∫U21ucd(∑n⩽uτ2(n))≪U1−clog3U. | (2.3) |
Since for any real δ>0,
τ(n)/nδ≪1, | (2.4) |
then
U1=∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1,t1g1,M2,t2g1)|D1D2(t1g1)s(t2g1)s⋅τ(t1)τ(t2)(t1t2)w≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|D1D2(t1g1)s(t2g1)s≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)|(D1D2)1−ε(t1g1)s−ε(t2g1)s−ε≪∑M1′,M2′∈Nk−1t1,t2,g1,g1′∈N|f(M1′,t1g1)||f(M2′,t2g1′)|(D1D2)1−ε(t1g1)s−ε(t2g1′)s−ε:=U2. |
Let t1g1=mk, t2g1′=m2k′, by Lemma 2.4, we have
U2=∑M1′,M2′∈Nk−1mk,m2k′∈N|f(M1′,mk)||f(M2′,m2k′)|τ(mk)τ(m2k′)(D1D2)1−εmks−εm2k′s−ε=(∑M1′∈Nk−1mk∈N|f(M1′,mk)|τ(mk)D11−εmks−ε)2≪1. |
Thus, we conclude that (i) holds.
(ii) Since m1,⋯,mk−1,mk+1,⋯,m2k−1 are symmetric, we have
Tg,k(s,w)−Tg,k(x,y;s,w)≪T1+T2+T3, | (2.5) |
where
T1=T1(x;s,w)=∑M1,M2∈Nkn1,n2∈Nmkm2k=n1n2m1>x|f(M1)||f(M2)||g(M1,M2)|D1D2mksm2ks⋅τ(n1)τ(n2)n1wn2w,T2=T2(x;s,w)=∑M1,M2∈Nkn1,n2∈Nmkm2k=n1n2mk>xorm2k>x|f(M1)||f(M2)||g(M1,M2)|D1D2mksm2ks⋅τ(n1)τ(n2)n1wn2w,T3=T3(y;s,w)=∑M1,M2∈Nkn1,n2∈Nmkm2k=n1n2n1>yorn2>y|f(M1)||f(M2)||g(M1,M2)|D1D2mksm2ks⋅τ(n1)τ(n2)n1wn2w. |
Similar to (i), let (t1,t2)=1 and t1g1=mk, t2g1=m2k, t1g2=n1, t2g2=n2, and denote by M1′ and M2′ the vectors (m1,⋯,mk−1) and (mk+1,⋯,m2k−1) respectively, then
T1=∑M1′,M2′∈Nk−1t1,t2,g1,g2∈N(t1,t2)=1m1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1g2)τ(t2g2)D1D2(t1g1)s(t2g1)s(t1g2)w(t2g2)w⩽∑M1′,M2′∈Nk−1t1,t2,g1,g2∈N(t1,t2)=1m1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)τ2(g2)D1D2(t1g1)s(t2g1)s(t1t2)wg22w≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nm1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12s(t1t2)s+w∞∑g2=1τ2(g2)g22w≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nm1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12s(t1t2)s+w:=T1′, | (2.6) |
where we use (2.2).
Let
D1′=D1/m1, |
by (2.4), we have
T1′=∑M1′,M2′∈Nk−1t1,t2,g1∈Nm1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2(t1g1)2s−3ε(t2g1)3εt1w−s+3εt2s+w−3ε≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nm1>x|f(M1′,t1g1)||f(M1′,t2g1)||g(M1′,t1g1,M2′,t2g1)|D1D2(t1g1)2s−3ε(t2g1)3ε≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nm1>x|f(M1′,t1g1)||f(M2′,t2g1)|m11−εD1′1−εD21−ε(t1g1)2s−4ε(t2g1)2ε≪∑M1′,M2′∈Nk−1t1,t2,g1,g1′∈Nm1>x|f(M1′,t1g1)||f(M2′,t2g1′)|m11−εD1′1−εD21−ε(t1g1)2s−4ε(t2g1′)2ε:=T1″. | (2.7) |
Let t1g1=mk, t2g1′=m2k′, we have
T1″=∑M1′,M2′∈Nk−1mk,m2k′∈Nm1>x|f(M1′,mk)||f(M2′,m2k′)|τ(mk)τ(m2k′)m11−2s+5εD1′1−εD21−εmk2s−4εm2k′2ε⋅1m12s−6ε≪x−2s+6ε∑M1′,M2′∈Nk−1mk,m2k′∈N|f(M1′,mk)||f(M2′,m2k′)|τ(mk)τ(m2k′)m11−2s+5εD1′1−εD21−εmk2s−4εm2k′2ε≪x−2s+6ε∑M1′∈Nk−1mk∈N|f(M1′,mk)|τ(mk)m11−2s+5εD1′1−εmk2s−4ε∑M1′∈Nk−1mk∈N|f(M1′,mk)|τ(mk)D11−εmk2ε≪x−2s+ε, |
the convergence of the two series in the last step can be obtained by Lemma 2.4, and we use the arbitrariness of ε.
For T2, if mk>x, we replace the condition "m1>x" by "t1g1>x" in (2.6), thus
T2≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nt1g1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12s(t1t2)s+w:=T2′. |
Using (2.4) we have
T2′=∑M1′,M2′∈Nk−1t1,t2,g1∈Nt1g1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2(t1g1)2s−3ε(t2g1)3εt1w−s+3εt2s+w−3ε≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nt1g1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|D1D2(t1g1)2s−3ε(t2g1)3ε≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nt1g1>x|f(M1′,t1g1)||f(M2′,t2g1)|(D1D2)1−ε(t1g1)2s−4ε(t2g1)2ε≪∑M1′,M2′∈Nk−1t1,t2,g1,g1′∈Nt1g1>x|f(M1′,t1g1)||f(M2′,t2g1′)|(D1D2)1−ε(t1g1)2s−4ε(t2g1′)2ε:=T2″. | (2.8) |
Let t1g1=mk, t2g1′=m2k′, we have
T2″=∑M1′,M2′∈Nk−1mk,m2k′∈Nmk>x|f(M1′,mk)||f(M2′,m2k′)|τ(mk)τ(m2k′)(D1D2)1−εmk2s−4εm2k′2ε⋅1m12s−6ε≪x−2s+6ε∑M1′,M2′∈Nk−1mk,m2k′∈N|f(M1′,mk)||f(M2′,m2k′)|τ(mk)τ(m2k′)(D1D2)1−εmk2s−4εm2k′2ε≪x−2s+6ε∑M1′∈Nk−1mk∈N|f(M1′,mk)|τ(mk)D11−εmk2s−4ε∑M1′∈Nk−1mk∈N|f(M1′,mk)|τ(mk)D11−εmk2ε≪x−2s+ε, |
the convergence of the two series in the last step can be obtained by Lemma {2.4}, and we use the arbitrariness of ε. If m2k>x, exchange t1 and t2, we can also obtain
T2≪x−2s+ε. |
For T3, if n1>y, similar to (i), we obtain (t1,t2)=1 and t1g1=mk, t2g1=m2k, t1g2=n1, t2g2=n2, then
T3=∑M1′,M2′∈Nk−1t1,t2,g1,g2∈N(t1,t2)=1t1g2>y|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1g2)τ(t2g2)D1D2(t1g1)s(t2g1)s(t1g2)w(t2g2)w⩽∑M1′,M2′∈Nk−1t1,t2,g1,g2∈N(t1,t2)=1t1g2>y|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)τ2(g2)D1D2(t1g1)s(t2g1)s(t1t2)wg22w≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12s(t1t2)s+w∑g2>yt1τ2(g2)g22w≪y1−2wlog3y∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12st11+s−wt2s+w, |
where we use (2.3) by taking U=y/t1.
We denote the latter series by Σ, using (2.4) we have
Σ=∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2(t1g1)s(t2g1)st11−wt2w≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|D1D2(t1g1)s(t2g1)s≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)|(D1D2)1−ε(t1g1)s−ε(t2g1)s−ε≪∑M1′,M2′∈Nk−1t1,t2,g1,g1′∈N|f(M1′,t1g1)||f(M2′,t2g1′)|(D1D2)1−ε(t1g1)s−ε(t2g1′)s−ε. |
Let t1g1=mk, t2g1′=m2k′, we obtain
Σ≪∑M1′,M2′∈Nk−1mk,m2k′∈N|f(M1′,mk)||f(M1′,m2k′)|τ(mk)τ(m2k′)(D1D2)1−εmks−εm2k′s−ε=(∑M1′∈Nk−1mk∈N|f(M1′,mk)|τ(mk)D11−εmks−ε)2≪1 |
by Lemma 2.4, thus
T3≪y1−2wlog3y. |
If n2>y, exchange t1 and t2, similarly we obtain
T3≪y1−2wlog3y. |
Above all, we obtain
T1,T2≪x−2s+εandT3≪y1−2wlog3y, |
then (ii) holds from (2.5).
We shall give a more explicit expression of Δk(x). According to Lemma 2.4,
τ(n1⋯nk)=∑m1d1=n1,⋯,mkdk=nkf(m1,⋯,mk)τ(d1)⋯τ(dk) |
holds for any n1,⋯,nk∈N, where f is multiplicative and symmetric in all variables.
Therefore, we deduce by (1.1) that
∑n1,⋯,nk⩽xτ(n1⋯nk)=∑m1,⋯,mk⩽xf(m1,⋯,mk)k∏j=1(∑dj⩽x/mjτ(dj))=∑m1,⋯,mk⩽xf(m1,⋯,mk)k∏j=1(M(xmj)+Δ(xmj))=∑m1,⋯,mk⩽xf(m1,⋯,mk)(k∏j=1M(xmj))+k∑m1,⋯,mk⩽xf(m1,⋯,mk)(k−1∏j=1M(xmj))Δ(xmk)+(k2)∑m1,⋯,mk⩽xf(m1,⋯,mk)(k−2∏j=1M(xmj))Δ(xmk)Δ(xmk−1)+⋯+(kk−1)∑m1,⋯,mk⩽xf(m1,⋯,mk)M(xm1)(k∏j=2Δ(xmj))+∑m1,⋯,mk⩽xf(m1,⋯,mk)(k∏j=1Δ(xmj)):=∑m1,⋯,mk⩽xf(m1,⋯,mk)(k∏j=1M(xmj))+E(x), | (3.1) |
where
M(u)=ulogu+(2γ−1)u. | (3.2) |
Here we have
∑m1,⋯,mk≤xf(m1,⋯,mk)k∏j=1(M(xmj))=∞∑m1,⋯,mk=1f(m1,⋯,mk)k∏j=1(M(xmj))+O(xk−1+ε)=xkPk(logx)+O(xk−1+ε) | (3.3) |
by the proof of Theorem 3.4 in Tóth and Zhai [9]. From (1.2) we have
Δ(xmj)≪(xmj)θ+ε |
for any 1⩽j⩽k, then
E(x)≪∑m1,⋯,mk⩽x|f(m1,⋯,mk)|(k−2∏j=1M(xmj))Δ(xmk)Δ(xmk−1)≪xk−2+2θ+ε∑m1,⋯,mk⩽x|f(m1,⋯,mk)|m1⋯mk−2(mk−1mk)θ⋅(mk−1mk)12−θ+ε(mk−1mk)12−θ+ε≪xk−2+2θ+ε(x2)12−θ+ε∞∑m1,⋯,mk=1|f(m1,⋯,mk)|m1⋯mk−2(mk−1mk)12+ε≪xk−1+ε, | (3.4) |
where the convergence of latter series can be obtained by Lemma 2.4. Then we conclude that
Δk(x)=Δk∗(x)+O(xk−1+ε) | (3.5) |
follows by (1.4), (3.1), (3.3), and (3.4), where
Δk∗(x)=k∑m1,⋯,mk⩽xf(m1,⋯,mk)(k−1∏j=1M(xmj))Δ(xmk). |
Suppose T⩾2, we shall first estimate ∫2TT(Δk∗(x))2dx. Since m1,⋯,mk−1 are symmetric, we can divide Δk∗(x) into three parts,
Δk∗(x)=M1+O(M2+M3), |
where the implied constant about "O" depends on k and ε,
M1=M1(x,y):=k∑m1,⋯,mk⩽yf(m1,⋯,mk)k−1∏j=1M(xmj)Δ(xmk),M2=M2(x,y):=∑m1,⋯,mk⩽xm1>y|f(m1,⋯,mk)|k−1∏j=1M(xmj)|Δ(xmk)|,M3=M3(x,y):=∑m1,⋯,mk⩽xmk>y|f(m1,⋯,mk)|k−1∏j=1M(xmj)|Δ(xmk)|, | (4.1) |
where y is a parameter that satisfies Tε≪y≪T. So we obtain
∫2TT(Δk∗(x))2dx=∫2TTM12dx+O(∫2TT(M1M2+M2M3+M1M3)dx)+O(∫2TT(M22+M32)dx). | (4.2) |
First, we deal with ∫2TTM12dx. By Lemma 2.1 we obtain
M1(x,y)=k∑m1,⋯,mk⩽yf(m1,⋯,mk)k−1∏j=1M(xmj)(δ1(xmk,y)+δ2(xmk,y)):=M11(x,y)+M12(x,y), |
where
M11(x,y)=k∑m1,⋯,mk⩽yf(m1,⋯,mk)k−1∏j=1M(xmj)δ1(xmk,y),M12(x,y)=k∑m1,⋯,mk⩽yf(m1,⋯,mk)k−1∏j=1M(xmj)δ2(xmk,y), |
and δ1(⋅,y) and δ2(⋅,y) are defined in Lemma 2.2, thus we have
∫2TTM12(x,y)dx=∫2TTM112(x,y)dx+O(∫2TT(M11(x,y)M12(x,y)+M122(x,y))dx). | (4.3) |
Let M1,M2 be defined in Lemma 2.5, using
cosαcosβ=12(cos(α−β)+cos(α+β)), |
we have
M112(x,y)=k2∑m1,⋯,m2k⩽yf(M1)f(M2)k−1∏j=1M(xmj)2k−1∏j=k+1M(xmj)×x1/22π2(mkm2k)1/4∑n1,n2⩽yτ(n1)τ(n2)n13/4n23/4cos(4π√n1xmk−π4)cos(4π√n2xm2k−π4)=k2∑m1,⋯,m2k⩽yf(M1)f(M2)k−1∏j=1M(xmj)2k−1∏j=k+1M(xmj)x1/24π2(mkm2k)1/4×∑n1,n2⩽yτ(n1)τ(n2)n13/4n23/4[cos(4π(√n1mk−√n2m2k)√x)+sin(4π(√n1mk+√n2m2k)√x)]:=k2(S0(x,y)+S1(x,y)+S2(x,y)), | (4.4) |
where
S0(x,y)=x1/24π2∑m1,⋯,m2k⩽yf(M1)f(M2)(mkm2k)1/4k−1∏j=1M(xmj)2k−1∏j=k+1M(xmj)∑n1,n2≤yn1m2k=n2mkτ(n1)τ(n2)n13/4n23/4,S1(x,y)=x1/24π2∑m1,⋯,m2k⩽yf(M1)f(M2)(mkm2k)1/4k−1∏j=1M(xmj)2k−1∏j=k+1M(xmj)×∑n1,n2⩽yn1m2k≠n2mkτ(n1)τ(n2)n13/4n23/4cos(4π(√n1mk−√n2m2k)√x),S2(x,y)=x1/24π2∑m1,⋯,m2k⩽yf(M1)f(M2)(mkm2k)1/4k−1∏j=1M(xmj)2k−1∏j=k+1M(xmj)×∑n1,n2⩽yτ(n1)τ(n2)n13/4n23/4sin(4π(√n1mk+√n2m2k)√x). |
So, it turns to evaluate
∫0=∫2TTS0(x,y)dx, ∫1=∫2TTS1(x,y)dx, ∫2=∫2TTS2(x,y)dx. |
We need to give more explicit expressions for (∏k−1j=1M(xmj)) and (∏2k−1j=k+1M(xmj)). By the proof of Theorem 3.3 in Tóth and Zhai [9] in the case fj(n)=τ(n),aj=1,δj=1(1⩽j⩽k−1) we obtain
k−1∏j=1M(xmj)=xk−1m1⋯mk−1k−1∑l1=0Cl1(logm1,⋯,logmk−1)(logx)l1, | (4.5) |
where
Cl1(logm1,⋯,logmk−1)=∑j1,⋯,jk−1=0,1c(j1,⋯,jk−1)(logm1)j1⋯(logmk−1)jk−1, |
and c(j1,⋯,jk−1) are constants (j1,⋯,jk−1=0,1). Similarly, when k+1⩽j⩽2k−1, we have
2k−1∏j=k+1M(xmj)=xk−1mk+1⋯m2k−12k−1∑l2=kCl2(logmk+1,⋯,logm2k−1)(logx)l2−k, | (4.6) |
where
Cl2(logmk+1,⋯,logm2k−1)=∑jk+1,⋯,j2k−1=0,1c(jk+1,⋯,j2k−1)(logmk+1)jk+1⋯(logm2k−1)j2k−1, |
and c(jk+1,⋯,j2k−1) are constants (jk+1,⋯,j2k−1=0,1).
We denote Cl1(logm1,⋯,logmk−1)Cl2(logmk+1,⋯,logm2k−1) by Cl1,l2(M1,M2), using (4.5) and (4.6) we have
S0(x,y)=x2k−324π2k−1∑l1,l2=0(logx)l1+l2∑m1,⋯,m2k⩽yn1,n2⩽ymkm2k=n1n2f(M1)f(M2)Cl1,l2(M1,M2)D1D2(mkm2k)14⋅τ(n1)τ(n2)(n1n2)34, | (4.7) |
where D1,D2 are defined in Lemma 2.5. Using (2.4) we obtain
Cl1,l2(M1,M2)≪(k−1∏j=1mj2k−1∏j=k+1mj)ε≪(2k∏j=1mj)ε. |
Choosing
g(M1,M2)=gl1,l2(M1,M2)=Cl1,l2(M1,M2), |
s=1/4, w=3/4 in Lemma 2.5, we obtain that S0(x,y) can be written as
S0(x,y)=x2k−324π2k−1∑l1,l2=0(logx)l1+l2×Tg,k(y,y;14,34)=x2k−324π2k−1∑l1,l2=0(logx)l1+l2(Tg,k(14,34)+O(y−12+ε)). | (4.8) |
Since g(M1,M2) is related to l1,l2, we denote Tg,k(14,34) in (4.8) by Dk,l1,l2, we conclude that
S0(x,y)=x2k−324π2Q2k−2(logx)+O(x2k−32+εy−12+ε), | (4.9) |
where
Q2k−2(t)=k−1∑l1,l2=0Dk,l1,l2tl1+l2. |
Then it follows from (4.9) that
∫2TTS0(x,y)dx=14π2k−1∑l1,l2=0Dk,l1,l2∫2TTx2k−32(logx)l1+l2dx+O(T2k−12+εy−12). | (4.10) |
Let M1,M2,D1,D2 be defined in Lemma 2.5, then by (4.5) and (4.6) we have
∫2=∫2TTx2k−324π2k−1∑l1,l2=0(logx)l1+l2∑m1,⋯,m2k⩽yCl1,l2(M1,M2)D1D2×∑n1,n2⩽yf(M1)f(M2)mk1/4m2k1/4⋅τ(n1)τ(n2)n13/4n23/4sin(4π(√n1mk+√n2m2k)√x)dx. |
Let
G(x)=x2k−32(logx)l1+l2, F(⋅)=sin(⋅), m(x)=4π(√n1mk+√n2m2k)√x, a=T, b=2T |
in Lemma 2.3, change the order of integration and summation, then we have
∫2=14π2k−1∑l1,l2=0∑m1,⋯,m2k⩽yn1,n2⩽yCl1,l2(M1,M2)D1D2⋅f(M1)f(M2)mk1/4m2k1/4⋅τ(n1)τ(n2)n13/4n23/4×∫2TTx2k−32(logx)l1+l2sin(4π(√n1mk+√n2m2k)√x)dx≪∑m1,⋯,m2k⩽yn1,n2⩽y|Cl1,l2(M1,M2)|D1D2⋅|f(M1)||f(M2)|mk1/4m2k1/4⋅τ(n1)τ(n2)n13/4n23/4×T2k−32+ε⋅T12√n1mk+√n2m2k, |
then we use
a2+b2⩾2ab, Cl1,l2(M1,M2)≪(2k∏j=1mj)ε |
to obtain
∫2≪T2k−1+ε∑m1,⋯,m2k⩽yn1,n2⩽y(2k∏j=1mj)εD1D2⋅|f(M1)||f(M2)|mk1/4m2k1/4⋅τ(n1)τ(n2)n13/4n23/4⋅(mkm2kn1n2)14≪T2k−1+(2k+1)ε∑m1,⋯,m2k⩽yn1,n2⩽y|f(M1)||f(M2)|D1D2⋅τ(n1)τ(n2)n1n2⋅T2εmkεm2kε≪T2k−1+(2k+3)ε∞∑m1,⋯,m2k=1|f(M1)||f(M2)|D1D2mkεm2kε∑n1,n2⩽yτ(n1)τ(n2)n1n2≪T2k−1+(2k+4)ε(∞∑m1,⋯,m2k=1|f(M1)|D1mkε)2, |
where by partial summation we obtain
∑n1,n2⩽yτ(n1)τ(n2)n1n2≪log4y≪log4T≪Tε. |
Since ε>0 is arbitrary, using Lemma 2.4 we conclude that
∫2≪T2k−1+ε. | (4.11) |
Then we turn to estimate ∫1, similar to ∫2, we have
∫1=∫2TTx2k−324π2k−1∑l1,l2=0(logx)l1+l2∑m1,⋯,m2k⩽yCl1,l2(M1,M2)D1D2×∑n1,n2⩽yn1m2k≠n2mkf(M1)f(M2)mk1/4m2k1/4⋅τ(n1)τ(n2)n13/4n23/4cos(4π(√n1mk−√n2m2k)√x)dx. |
Let
G(x)=x2k−32(logx)l1+l2, F(⋅)=cos(⋅), m(x)=4π(√n1mk−√n2m2k)√x, a=T, b=2T |
in Lemma 2.3, change the order of integration and summation, then we have
∫1=14π2k−1∑l1,l2=0∑m1,⋯,m2k⩽yCl1,l2(M1,M2)D1D2⋅f(M1)f(M2)mk1/4m2k1/4∑n1,n2⩽yn1m2k≠n2mkτ(n1)τ(n2)n13/4n23/4×∫2TTx2k−32(logx)l1+l2cos(4π(√n1mk−√n2m2k)√x)dx≪k−1∑l1,l2=0∑m1,⋯,m2k⩽y|Cl1,l2(M1,M2)|D1D2⋅|f(M1)||f(M2)|mk1/4m2k1/4∑n1,n2⩽y2n1m2k≠n2mkτ(n1)τ(n2)n13/4n23/4×T2k−32+ε⋅T12|√n1mk−√n2m2k|. |
Since
Cl1,l2(M1,M2)≪(2k∏j=1mj)ε, |
we have
∫1≪T2k−1+ε∑m1,⋯,m2k⩽y(2k∏j=1mj)εD1D2⋅|f(M1)||f(M2)|mk1/4m2k1/4∑n1,n2⩽yn1m2k≠n2mkτ(n1)τ(n2)n13/4n23/4⋅1|√n1mk−√n2m2k|≪T2k−1+(2k+1)ε∑m1,⋯,m2k⩽y|f(M1)||f(M2)|D1D2mk1/4m2k1/4∑n1,n2⩽yn1m2k≠n2mkτ(n1)τ(n2)n13/4n23/4⋅1|√n1mk−√n2m2k|:=T2k−1+(2k+1)ε∑m1,⋯,m2k⩽y|f(M1)||f(M2)|D1D2mk1/4m2k1/4(R1+R2), | (4.12) |
where
R1=∑n1,n2⩽y,n1m2k≠n2mk|√n1mk−√n2m2k|≤(n1n2)1/410(mkm2k)1/4τ(n1)τ(n2)n13/4n23/4⋅1|√n1mk−√n2m2k|,R2=∑n1,n2⩽y,n1m2k≠n2mk|√n1mk−√n2m2k|>(n1n2)1/410(mkm2k)1/4τ(n1)τ(n2)n13/4n23/4⋅1|√n1mk−√n2m2k|. |
Then we have
R2≪∑n1,n2⩽yτ(n1)τ(n2)n13/4n23/4⋅(mkm2k)1/4(n1n2)1/4≪(mkm2k)14log4T, | (4.13) |
where we use partial summation to obtain
∑n1,n2⩽yτ(n1)τ(n2)n1n2≪log4y≪log4T. |
And for R1, by Lagrange's mean value theorem we have
√β1−√β2≍(√β1β2)−12|β1−β2| |
for any
β1≍β2∈R, |
thus let
β1=n1/mk, β2=n2/m2k |
in R1, we obtain
R1≪∑n1,n2⩽yn1m2k≠n2mkτ(n1)τ(n2)n13/4n23/4⋅1|n1mk−n2m2k|(mkm2kn1n2)1/4=(mkm2k)34∑n1,n2⩽yn1m2k≠n2mkτ(n1)τ(n2)n1/21n1/22|n1m2k−n2mk|. |
For some real numbers N1, N2 satisfying 1⩽N1,N2⩽y, one has
R1≪(mkm2k)34log2y∑N1<n1⩽2N1N2<n2⩽2N2n1m2k≠n2mkτ(n1)τ(n2)(n1n2)1/2|n1m2k−n2mk|≪(mkm2k)34yε(N1N2)1/2∑N1<n1⩽2N1N2<n2⩽2N2n1m2k≠n2mk1|n1m2k−n2mk|, | (4.14) |
we denote the latter sum by T(mk,m2k). Let
|n1m2k−n2mk|=r, |
we have
r≡−n1m2k(mod mk), |
so we can find a constant c0 such that
1⩽c0<mk, r=mkt+c0, |
where t is an integer such that 0<t<2y2, thus
T(mk,m2k)=∑N1<n1⩽2N1∑N2<n2⩽2N2n1m2k≠n2mk1|n1m2k−n2mk|⩽∑N1<n1⩽2N1(1+∑1⩽t⩽2y21mkt+c0)≪N1logy, |
similarly, we have
T(mk,m2k)≪N2logy, |
thus
T(mk,m2k)≪(N1N2)12logy. |
By (4.14) we have
R1≪(mkm2k)34yε(N1N2)1/2(N1N2)12logy≪(mkm2k)34Tε. | (4.15) |
Finally by (4.12), (4.13) and (4.15) we obtain
R1+R2≪Tε(mkm2k)3/4, |
thus
∫1≪T2k−1+(2k+1)ε∑m1,⋯,m2k⩽y|f(M1)||f(M2)|D1D2mk1/4m2k1/4⋅Tεmk3/4m2k3/4≪T2k−1+(2k+2)ε∑m1,⋯,m2k⩽y|f(M1)||f(M2)|mk1/2m2k1/2D1D2≪T2k−1+(2k+2)εy∑m1,⋯,m2k⩽y|f(M1)||f(M2)|D1D2⋅T2εmkεm2kε≪T2k−1+(2k+4)εy(∞∑m1,⋯,mk=1|f(M1)|D1mkε)2≪T2k−1+εy, | (4.16) |
since ε>0 is arbitrary, Tε≪y≪T, and the convergence of the latter series can be obtained by Lemma 2.4. Above all, by (4.4), (4.10), (4.11), and (4.16) we obtain
∫2TTM112(x,y)dx=k24π2k−1∑l1,l2=0Dk,l1,l2∫2TTx2k−32(logx)l1+l2dx+O(T2k−12+εy−12)+O(T2k−1+εy). | (4.17) |
We are going to estimate ∫2TTM12(x,y)dx,
∫2TTM122(x,y)dx=k2∫2TT(∑m1,⋯,mk⩽yf(M1)k−1∏j=1M(xmj)δ2(xmk,y))2dx≪∫2TT∑m1,⋯,m2k⩽y|f(M1)||f(M2)|(k−1∏j=1xlogxmj2k−1∏j=k+1xlogxmj)|δ2(xmk,y)||δ2(xm2k,y)|dx≪∑m1,⋯,m2k⩽y|f(M1)||f(M2)|D1D2∫2TTx2k−2+ε|δ2(xmk,y)||δ2(xm2k,y)|dx≪T2k−2+ε∑m1,⋯,m2k⩽y|f(M1)||f(M2)|D1D2(∫2TTδ22(xmk,y)dx)12(∫2TTδ22(xm2k,y)dx)12. | (4.18) |
By Lemma 2.2 we have
(∫2TTδ22(xmk,y)dx)12=(mk∫2TmkTmkδ22(u,y)du)12≪(mk(T32mk32y12log3T+Tmklog4T))12≪T34+εmk14y14+T12+ε, |
similarly, we have
(∫2TTδ22(xm2k,y)dx)12≪T34+εm2k14y14+T12+ε. |
Thus,
∫2TTM122(x,y)dx≪T2k−2+ε∑m1,⋯,m2k⩽y|f(M1)||f(M2)|D1D2(T34+εmk14y14+T12+ε)(T34+εm2k14y14+T12+ε)≪T2k−12+3εy−12∞∑m1,⋯,m2k=1|f(M1)||f(M2)|D1D2mk14m2k14≪T2k−12+3εy−12, | (4.19) |
since y≪T, and the convergence of the latter series is given by Lemma 2.4.
Then by (4.17), (4.19), and Cauchy-Schwarz's inequality, we are able to obtain
∫2TTM11M12dx≪(∫2TTM112dx)12(∫2TTM122dx)12≪T2k−12+εy14. | (4.20) |
So from (4.3) and (4.17)–(4.20), we obtain
∫2TTM12dx=k24π2k−1∑l1,l2=0Dk,l1,l2∫2TTx2k−32(logx)l1+l2dx+O(T2k−12+εy−14)+O(T2k−1+εy). | (4.21) |
Let M1,M2,D1,D2 be defined in Lemma 2.5, then for ∫2TTM32dx we deduce that
∫2TTM32(x,y)dx=∫2TT(∑m1,⋯,mk⩽xmk>y|f(m1,⋯,mk)|k−1∏j=1M(xmj)|Δ(xmk)|)2dx |
change order of integration and summation we obtain
∫2TTM32(x,y)dx⩽∫2TT∑m1,⋯,m2k⩽2Tmk,m2k>y|f(M1)f(M2)|k−1∏j=1M(xmj)2k−1∏j=k+1M(xmj)|Δ(xmk)||Δ(xm2k)|dx=∑m1,⋯,m2k⩽2Tmk,m2k>y|f(M1)f(M2)|∫2TTk−1∏j=1M(xmj)2k−1∏j=k+1M(xmj)|Δ(xmk)||Δ(xm2k)|dx≪∑m1,⋯,m2k⩽2Tmk,m2k>y|f(M1)||f(M2)|D1D2∫2TTx2k−2+ε|Δ(xmk)||Δ(xm2k)|dx≪T2k−2+ε∑m1,⋯,m2k⩽2Tmk,m2k>y|f(M1)||f(M2)|D1D2∫2TT|Δ(xmk)||Δ(xm2k)|dx. |
Using Cauchy-Schwarz's inequality and (1.3), we deduce that
∫2TT|Δ(xmk)||Δ(xm2k)|dx≪(∫2TTΔ2(xmk)dx)12(∫2TTΔ2(xm2k)dx)12≪(mk∫2TmkTmkΔ2(u)du)12(m2k∫2Tm2kTm2kΔ2(u)du)12≪T32mk14m2k14, |
thus, by Lemma 2.4, we have
∫2TTM32(x,y)dx≪T2k−12+ε∑m1,⋯,m2k⩽2Tmk,m2k>y|f(M1)||f(M2)|D1D2mk14m2k14≪T2k−12+ε∑m1,⋯,m2k⩽2Tmk,m2k>y|f(M1)||f(M2)|D1D2mkεm2kεmk−14+εm2k−14+ε≪T2k−12+εy−12+2ε∑m1,⋯,m2k⩽2Tmk,m2k>y|f(M1)||f(M2)|D1D2mkεm2kε≪T2k−12+εy−12∞∑m1,⋯,m2k=1|f(M1)||f(M2)|D1D2mkεm2kε≪T2k−12+εy12. | (4.22) |
For ∫2TTM22dx, let D1′=D1/m1, D2′=D2/mk+1, similar to ∫2TTM32dx, we obtain by Lemma 2.4 that
∫2TTM22(x,y)dx≪T2k−12+ε∑m1,⋯,m2k⩽2Tm1,mk+1>y|f(M1)||f(M2)|D1D2mk14m2k14≪T2k−12+ε∑m1,⋯,m2k⩽2Tm1,mk+1>y|f(M1)||f(M2)|m1−14+εmk+1−14+εD1′D2′m134+εmk14mk+134+εm2k14≪T2k−12+εy−12+2ε∑m1,⋯,m2k⩽2Tm1,mk+1>y|f(M1)||f(M2)|D1′D2′m134+εmk14mk+134+εm2k14≪T2k−12+εy−12∞∑m1,⋯,m2k=1|f(M1)||f(M2)|D1′D2′m134+εmk14mk+134+εm2k14≪T2k−12+εy12. | (4.23) |
By (4.21)–(4.23) and Cauchy-Schwarz's inequality, we are able to estimate the following terms in (4.2)
∫2TTM1M2dx≪(∫2TTM12dx)12(∫2TTM22dx)12≪T2k−12+εy14,∫2TTM1M3dx≪(∫2TTM12dx)12(∫2TTM32dx)12≪T2k−12+εy14,∫2TTM2M3dx≪(∫2TTM22dx)12(∫2TTM32dx)12≪T2k−12+εy12. | (4.24) |
Above all, taking y=T25, then
∫2TT(Δk∗(x))2dx=k24π2k−1∑l1,l2=0Dk,l1,l2∫2TTx2k−32(logx)l1+l2dx+O(T2k−35+ε) | (4.25) |
follows by (4.2) and (4.21)–(4.24).
Using (3.5) and the Cauchy-Schwarz's inequality we obtain
∫2TTΔk2(x)dx=∫2TT(Δk∗(x))2dx+O(∫2TTΔk∗(x)xk−1+εdx)+O(T2k−1+ε)=k24π2k−1∑l1,l2=0Dk,l1,l2∫2TTx2k−32(logx)l1+l2dx+O(T2k−35+ε)+O((∫2TT(Δk∗(x))2dx)12(∫2TTx2k−2+εdx)12)=k24π2k−1∑l1,l2=0Dk,l1,l2∫2TTx2k−32(logx)l1+l2dx+O(T2k−35+ε). |
Then replacing T by T/2, T/22, and so on, and adding up all the results, we obtain
∫T1Δk2(x)dx=k24π2k−1∑l1,l2=0Dk,l1,l2∫T1x2k−32(logx)l1+l2dx+O(T2k−35+ε)=k24π2T2k−12L2k−2(logT)+O(T2k−35+ε), |
where we use integration by part several times to obtain L2k−2(u) is a polynomial in u of degree 2k−2 denoted by
L2k−2(u)=k−1∑l1,l2=0Dk,l1,l2l1+l2∑r=0(−1)r(l1+l2)!(2k−12)r+1(l1+l2−r)!ul1+l2. |
To sum up, this finishes the proof of the Theorem.
In this paper, we give an asymptotic formula of the mean square of Δk(x), which can be viewed as an analogue of (1.3). We use the convergence of the multivariable Dirichlet series, and it can be used to show the properties of other multivariable arithmetic functions. In 2023, Tóth[13], Heyman and Tóth[14] gave some useful applications of the Dirichlet series.
The author would like to appreciate the referee for his/her patience in refereeing this paper. This work is supported by Natural Science Foundation of Beijing Municipal (Grant No.1242003), and the National Natural Science Foundation of China (Grant Nos.12471009 and 12301006).
No potential conflicts of interest were reported by the author.
[1] |
G. F. Voronoï, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. Sci. École Norm. Sup., 21 (1904), 207–267. https://doi.org/10.24033/asens.539 doi: 10.24033/asens.539
![]() |
[2] | J. G. van der Corput, Zum teilerproblem, Math. Ann., 98 (1928), 697–716. https://doi.org/10.1007/BF01451619 |
[3] | G. Kolesnik, On the order of ζ(12+it) and Δ(R), Pacific J. Math., 98 (1982), 107–122. |
[4] |
M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc., 87 (2003), 591–609. https://doi.org/10.1112/S0024611503014485 doi: 10.1112/S0024611503014485
![]() |
[5] |
H. Cramér, Über zwei Sätze des Herrn G. H. Hardy, Math. Z., 15 (1922), 201–210. https://doi.org/10.1007/BF01494394 doi: 10.1007/BF01494394
![]() |
[6] | K. C. Tong, On division problems I, Acta Math. Sinica, 5 (1955), 313–324. |
[7] | E. Preissmann, Sur la moyenne quadratique du terme de reste du problème du cercle, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 151–154. |
[8] |
Y. K. Lau, K. M. Tsang, On the mean square formula of the error term in the Dirichlet divisor problem, Math. Proc. Cambridge Philos. Soc., 146 (2009), 277–287. https://doi.org/10.1017/S0305004108001874 doi: 10.1017/S0305004108001874
![]() |
[9] |
L. Tóth, W. Zhai, On multivariable averages of divisor functions, J. Number Theory, 192 (2018), 251–269. https://doi.org/10.1016/j.jnt.2018.04.015 doi: 10.1016/j.jnt.2018.04.015
![]() |
[10] | A. P. Ivić, The Riemann zeta-function, Wiley-Interscience Publication, 1985. |
[11] |
K. M. Tsang, Higher-power moments of Δ(x),E(t) and P(x), Proc. London Math. Soc., 65 (1992), 65–84. https://doi.org/10.1112/plms/s3-65.1.65 doi: 10.1112/plms/s3-65.1.65
![]() |
[12] |
W. Zhai, On higher-power moments of Δ(x) II, Acta Arith., 114 (2004), 35–54. https://doi.org/10.4064/aa114-1-3 doi: 10.4064/aa114-1-3
![]() |
[13] | L. Tóth, Short proofs, generalizations, and applications of certain identities concerning multiple Dirichlet series, J. Integer Seq., 26 (2023), 15. |
[14] |
R. Heyman, L. Tóth, Hyperbolic summation for functions of the GCD and LCM of several integers, Ramanujan J., 62 (2023), 273–290. https://doi.org/10.1007/s11139-022-00681-2 doi: 10.1007/s11139-022-00681-2
![]() |
1. | Zhen Guo, On the Symmetric Form of the Three Primes Theorem Weighted by Δ(x), 2025, 17, 2073-8994, 76, 10.3390/sym17010076 | |
2. | Zhen Guo, Xin Li, On moments of the error term of the multivariable kth divisor functions, 2025, 00193577, 10.1016/j.indag.2025.01.003 | |
3. | Zhen Guo, On sign changes of $$\Delta _k(x)$$, 2025, 0019-5588, 10.1007/s13226-025-00760-2 |