Let τ(n) be the Dirichlet divisor function and k⩾2 be a fixed integer. We give an asymptotic formula of the mean square of
Δk(x)=∑n1,⋯,nk⩽xτ(n1⋯nk)−xkPk(logx).
Citation: Zhen Guo. On mean square of the error term of a multivariable divisor function[J]. AIMS Mathematics, 2024, 9(10): 29197-29219. doi: 10.3934/math.20241415
[1] | B.L. Mayer, L.H.A. Monteiro . On the divisors of natural and happy numbers: a study based on entropy and graphs. AIMS Mathematics, 2023, 8(6): 13411-13424. doi: 10.3934/math.2023679 |
[2] | Ana Lazcano de Rojas, Miguel A. Jaramillo-Morán, Julio E. Sandubete . EMDFormer model for time series forecasting. AIMS Mathematics, 2024, 9(4): 9419-9434. doi: 10.3934/math.2024459 |
[3] | Dong Pan, Huizhen Qu . Finite-time boundary synchronization of space-time discretized stochastic fuzzy genetic regulatory networks with time delays. AIMS Mathematics, 2025, 10(2): 2163-2190. doi: 10.3934/math.2025101 |
[4] | Rui Zhang, Xiaofei Yan . The third-power moment of the Riesz mean error term of symmetric square L-function. AIMS Mathematics, 2021, 6(9): 9436-9445. doi: 10.3934/math.2021548 |
[5] | Bhabesh Das, Helen K. Saikia . On the Sum of Unitary Divisors Maximum Function. AIMS Mathematics, 2017, 2(1): 96-101. doi: 10.3934/Math.2017.1.96 |
[6] | Haiping Ren, Ziwen Zhang, Qin Gong . Estimation of Shannon entropy of the inverse exponential Rayleigh model under progressively Type-Ⅱ censored test. AIMS Mathematics, 2025, 10(4): 9378-9414. doi: 10.3934/math.2025434 |
[7] | Zhuoyu Chen, Wenpeng Zhang . A new reciprocity formula of Dedekind sums and its applications. AIMS Mathematics, 2024, 9(5): 12814-12824. doi: 10.3934/math.2024626 |
[8] | Boran Kim . Locally recoverable codes in Hermitian function fields with certain types of divisors. AIMS Mathematics, 2022, 7(6): 9656-9667. doi: 10.3934/math.2022537 |
[9] | M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr . Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields. AIMS Mathematics, 2024, 9(7): 17634-17656. doi: 10.3934/math.2024857 |
[10] | Haidy A. Newer, Bader S Alanazi . Bayesian estimation and prediction for linear exponential models using ordered moving extremes ranked set sampling in medical data. AIMS Mathematics, 2025, 10(1): 1162-1182. doi: 10.3934/math.2025055 |
Let τ(n) be the Dirichlet divisor function and k⩾2 be a fixed integer. We give an asymptotic formula of the mean square of
Δk(x)=∑n1,⋯,nk⩽xτ(n1⋯nk)−xkPk(logx).
Let τ(n) be the Dirichlet divisor function. It is known that for a real number x⩾2,
∑n⩽xτ(n)=xlogx+(2γ−1)x+Δ(x), | (1.1) |
where γ is Euler's constant. It was first proved by Dirichlet that
Δ(x)≪√x. |
Let θ denotes the smallest number such that
Δ(x)≪xθ+ε | (1.2) |
holds for any ε>0. Many authors worked on making θ smaller, such as Voronoi [1], Corput [2], Kolesnik [3], Huxley [4], etc. Until now the best result, namely θ=131/416 is due to Huxley [4].
It is conjectured that θ=1/4, which is supported by the classical mean square result: Suppose T is a large real number, then for any ε>0, one has
∫T1Δ2(x)dx=16π2C2T3/2+O(T54+ε), | (1.3) |
where
C2=∞∑n=1τ2(n)n3/2. |
This result was given by Cramér [5] in 1922. In 1956, Tong [6] showed that the error term in (1.3) can be reduced to Tlog5T. In 1988, Preissmann [7] reduced the error term to Tlog4T. In 2009, Lau and Tsang [8] proved that
∫T1Δ2(x)dx=16π2C2T3/2+O(Tlog3TloglogT). |
Let k⩾2 be a fixed integer. Tóth and Zhai [9] considered the average of divisor function of k variables. They obtain the asymptotic formula
∑n1,⋯,nk⩽xτ(n1⋯nk)=xkPk(logx)+O(xk−1+θ+ε) | (1.4) |
holds for any ε>0, where θ is the exponent in (1.2) and Pk(t) is a polynomial in t of degree k. We denote Δk(x) by
Δk(x):=∑n1,⋯,nk⩽xτ(n1⋯nk)−xkPk(logx). | (1.5) |
We have the following theorem:
Theorem 1.1. Suppose T⩾2 is a large real number, then we have
∫T1Δk2(x)dx=k24π2T2k−12L2k−2(logT)+O(T2k−35+ε), | (1.6) |
where L2k−2(u) is a polynomial in u of degree 2k−2, and the implied constant about "O" depends on k and ε.
We present some lemmas.
Lemma 2.1. Suppose x⩾2 is large, then for any 1≪N≪x, we have
Δ(x)=x1/4√2π∑n⩽Nτ(n)n3/4cos(4π√nx−π4)+O(x1/2+εN1/2). |
Proof. See [10,Chapter 3.2].
Lemma 2.2. Suppose T⩾2, Tε≪y≪T, and let
δ1(x,y)=x1/4√2π∑n⩽yτ(n)n3/4cos(4π√nx−π4),δ2(x,y)=Δ(x)−δ1(x,y), |
then we have
∫2TTδ22(x,y)dx≪T3/2y1/2log3T+Tlog4T. |
Proof. See, for example, the following references: Lau and Tsang [8], Tsang [11], Zhai [12].
Lemma 2.3. Suppose G0,m0 are fixed real positive numbers, let G(x) be a monotonic function defined on [a,b] such that
|G(x)|⩽G0 |
and m(x) be a differentiable real function such that
|m′(x)|⩾m0 |
on [a,b], F(⋅)=cos(⋅) or sin(⋅) or e(⋅), then
∫baG(x)F(m(x))dx≪G0m0−1. |
Proof. See [10,Lemma 2.1].
Lemma 2.4. Let k⩾2 be a fixed integer and let s1,⋯,sk be complex numbers. Then for ℜsj>1, where j=1,2,⋯,k, we have
∞∑n1,⋯,nk=1τ(n1⋯nk)ns11⋯nskk=ζ2(s1)⋯ζ2(sk)Fk(s1,⋯,sk), |
where
Fk(s1,⋯,sk)=∞∑n1,⋯,nk=1f(n1,⋯,nk)ns11⋯nskk. |
This series is absolutely convergent provided that ℜsj>0 and ℜ(sj+sl)>1(1⩽j,l⩽k), and f(n1,⋯,nk) is multiplicative and symmetric in all variables.
Moreover, for r1,⋯,rk∈{1,2},
∞∑n1,⋯,nk=1f(n1,⋯,nk)τr1(n1)⋯τrk(nk)ns11⋯nskk | (2.1) |
is absolutely convergent provided that ℜsj>0 and ℜ(sj+sl)>1(1⩽j,l⩽k).
Proof. See Tóth and Zhai [9,Proposition 2.1], and the convergence of (2.1) is a direct corollary.
Lemma 2.5. Suppose x,y are large real numbers, k⩾2 is a fixed integer, s,w are given real numbers such that 0<s<1/2<w<1, f is defined in Lemma 2.4. Let M1 and M2 denote the vectors (m1,⋯,mk) and (mk+1,⋯,m2k), D1 and D2 denote (∏k−1j=1mj) and (∏2k−1j=k+1mj), respectively. Let
Tg,k(x,y;s,w)=∑m1,⋯,m2k⩽xn1,n2⩽ymkm2k=n1n2f(M1)f(M2)g(M1,M2)D1D2(mkm2k)s⋅τ(n1)τ(n2)(n1n2)w,Tg,k(s,w)=∑M1,M2∈Nkn1,n2∈Nmkm2k=n1n2f(M1)f(M2)g(M1,M2)D1D2(mkm2k)s⋅τ(n1)τ(n2)(n1n2)w, |
where g(M1,M2) is any function that satisfies
g(M1,M2)≪(2k∏j=1mj)ε, |
then we have:
(i) Tg,k(s,w) is absolutely convergent.
(ii) We have
Tg,k(s,w)−Tg,k(x,y;s,w)≪x−2s+ε+y1−2wlog3y. |
Proof. (i) Since mk/m2k=n1/n2, we can find positive integers t1,t2,g1,g2 such that
mkm2k=n1n2=t1t2, |
where (t1,t2)=1 and t1g1=mk, t2g1=m2k, t1g2=n1, t2g2=n2. Denote by M1′ and M2′ the vectors (m1,⋯,mk−1) and (mk+1,⋯,m2k−1), respectively, then we have
Tg,k(s,w)≪∑M1′,M2′∈Nk−1t1,t2,g1,g2∈N(t1,t2)=1|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1g2)τ(t2g2)D1D2(t1g1)s(t2g1)s(t1g2)w(t2g2)w⩽∑M1′,M2′∈Nk−1t1,t2,g1,g2∈N(t1,t2)=1|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)τ2(g2)D1D2(t1g1)s(t2g1)s(t1t2)wg22w≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12s(t1t2)s+w∞∑g2=1τ2(g2)g22w≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12s(t1t2)s+w:=U1, |
where we use the conclusion: For a given real number c, we have
∞∑n=1τ2(n)nc<∞(c>1), | (2.2) |
moreover, for a large real number U, using partial summation and the conclusion
∑n⩽Uτ2(n)≪Ulog3U, |
we have
∑n⩽Uτ2(n)nc≪∫U21ucd(∑n⩽uτ2(n))≪U1−clog3U. | (2.3) |
Since for any real δ>0,
τ(n)/nδ≪1, | (2.4) |
then
U1=∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1,t1g1,M2,t2g1)|D1D2(t1g1)s(t2g1)s⋅τ(t1)τ(t2)(t1t2)w≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|D1D2(t1g1)s(t2g1)s≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)|(D1D2)1−ε(t1g1)s−ε(t2g1)s−ε≪∑M1′,M2′∈Nk−1t1,t2,g1,g1′∈N|f(M1′,t1g1)||f(M2′,t2g1′)|(D1D2)1−ε(t1g1)s−ε(t2g1′)s−ε:=U2. |
Let t1g1=mk, t2g1′=m2k′, by Lemma 2.4, we have
U2=∑M1′,M2′∈Nk−1mk,m2k′∈N|f(M1′,mk)||f(M2′,m2k′)|τ(mk)τ(m2k′)(D1D2)1−εmks−εm2k′s−ε=(∑M1′∈Nk−1mk∈N|f(M1′,mk)|τ(mk)D11−εmks−ε)2≪1. |
Thus, we conclude that (i) holds.
(ii) Since m1,⋯,mk−1,mk+1,⋯,m2k−1 are symmetric, we have
Tg,k(s,w)−Tg,k(x,y;s,w)≪T1+T2+T3, | (2.5) |
where
T1=T1(x;s,w)=∑M1,M2∈Nkn1,n2∈Nmkm2k=n1n2m1>x|f(M1)||f(M2)||g(M1,M2)|D1D2mksm2ks⋅τ(n1)τ(n2)n1wn2w,T2=T2(x;s,w)=∑M1,M2∈Nkn1,n2∈Nmkm2k=n1n2mk>xorm2k>x|f(M1)||f(M2)||g(M1,M2)|D1D2mksm2ks⋅τ(n1)τ(n2)n1wn2w,T3=T3(y;s,w)=∑M1,M2∈Nkn1,n2∈Nmkm2k=n1n2n1>yorn2>y|f(M1)||f(M2)||g(M1,M2)|D1D2mksm2ks⋅τ(n1)τ(n2)n1wn2w. |
Similar to (i), let (t1,t2)=1 and t1g1=mk, t2g1=m2k, t1g2=n1, t2g2=n2, and denote by M1′ and M2′ the vectors (m1,⋯,mk−1) and (mk+1,⋯,m2k−1) respectively, then
T1=∑M1′,M2′∈Nk−1t1,t2,g1,g2∈N(t1,t2)=1m1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1g2)τ(t2g2)D1D2(t1g1)s(t2g1)s(t1g2)w(t2g2)w⩽∑M1′,M2′∈Nk−1t1,t2,g1,g2∈N(t1,t2)=1m1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)τ2(g2)D1D2(t1g1)s(t2g1)s(t1t2)wg22w≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nm1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12s(t1t2)s+w∞∑g2=1τ2(g2)g22w≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nm1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12s(t1t2)s+w:=T1′, | (2.6) |
where we use (2.2).
Let
D1′=D1/m1, |
by (2.4), we have
T1′=∑M1′,M2′∈Nk−1t1,t2,g1∈Nm1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2(t1g1)2s−3ε(t2g1)3εt1w−s+3εt2s+w−3ε≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nm1>x|f(M1′,t1g1)||f(M1′,t2g1)||g(M1′,t1g1,M2′,t2g1)|D1D2(t1g1)2s−3ε(t2g1)3ε≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nm1>x|f(M1′,t1g1)||f(M2′,t2g1)|m11−εD1′1−εD21−ε(t1g1)2s−4ε(t2g1)2ε≪∑M1′,M2′∈Nk−1t1,t2,g1,g1′∈Nm1>x|f(M1′,t1g1)||f(M2′,t2g1′)|m11−εD1′1−εD21−ε(t1g1)2s−4ε(t2g1′)2ε:=T1″. | (2.7) |
Let t1g1=mk, t2g1′=m2k′, we have
T1″=∑M1′,M2′∈Nk−1mk,m2k′∈Nm1>x|f(M1′,mk)||f(M2′,m2k′)|τ(mk)τ(m2k′)m11−2s+5εD1′1−εD21−εmk2s−4εm2k′2ε⋅1m12s−6ε≪x−2s+6ε∑M1′,M2′∈Nk−1mk,m2k′∈N|f(M1′,mk)||f(M2′,m2k′)|τ(mk)τ(m2k′)m11−2s+5εD1′1−εD21−εmk2s−4εm2k′2ε≪x−2s+6ε∑M1′∈Nk−1mk∈N|f(M1′,mk)|τ(mk)m11−2s+5εD1′1−εmk2s−4ε∑M1′∈Nk−1mk∈N|f(M1′,mk)|τ(mk)D11−εmk2ε≪x−2s+ε, |
the convergence of the two series in the last step can be obtained by Lemma 2.4, and we use the arbitrariness of ε.
For T2, if mk>x, we replace the condition "m1>x" by "t1g1>x" in (2.6), thus
T2≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nt1g1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12s(t1t2)s+w:=T2′. |
Using (2.4) we have
T2′=∑M1′,M2′∈Nk−1t1,t2,g1∈Nt1g1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2(t1g1)2s−3ε(t2g1)3εt1w−s+3εt2s+w−3ε≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nt1g1>x|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|D1D2(t1g1)2s−3ε(t2g1)3ε≪∑M1′,M2′∈Nk−1t1,t2,g1∈Nt1g1>x|f(M1′,t1g1)||f(M2′,t2g1)|(D1D2)1−ε(t1g1)2s−4ε(t2g1)2ε≪∑M1′,M2′∈Nk−1t1,t2,g1,g1′∈Nt1g1>x|f(M1′,t1g1)||f(M2′,t2g1′)|(D1D2)1−ε(t1g1)2s−4ε(t2g1′)2ε:=T2″. | (2.8) |
Let t1g1=mk, t2g1′=m2k′, we have
T2″=∑M1′,M2′∈Nk−1mk,m2k′∈Nmk>x|f(M1′,mk)||f(M2′,m2k′)|τ(mk)τ(m2k′)(D1D2)1−εmk2s−4εm2k′2ε⋅1m12s−6ε≪x−2s+6ε∑M1′,M2′∈Nk−1mk,m2k′∈N|f(M1′,mk)||f(M2′,m2k′)|τ(mk)τ(m2k′)(D1D2)1−εmk2s−4εm2k′2ε≪x−2s+6ε∑M1′∈Nk−1mk∈N|f(M1′,mk)|τ(mk)D11−εmk2s−4ε∑M1′∈Nk−1mk∈N|f(M1′,mk)|τ(mk)D11−εmk2ε≪x−2s+ε, |
the convergence of the two series in the last step can be obtained by Lemma {2.4}, and we use the arbitrariness of ε. If m2k>x, exchange t1 and t2, we can also obtain
T2≪x−2s+ε. |
For T3, if n1>y, similar to (i), we obtain (t1,t2)=1 and t1g1=mk, t2g1=m2k, t1g2=n1, t2g2=n2, then
T3=∑M1′,M2′∈Nk−1t1,t2,g1,g2∈N(t1,t2)=1t1g2>y|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1g2)τ(t2g2)D1D2(t1g1)s(t2g1)s(t1g2)w(t2g2)w⩽∑M1′,M2′∈Nk−1t1,t2,g1,g2∈N(t1,t2)=1t1g2>y|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)τ2(g2)D1D2(t1g1)s(t2g1)s(t1t2)wg22w≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12s(t1t2)s+w∑g2>yt1τ2(g2)g22w≪y1−2wlog3y∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2g12st11+s−wt2s+w, |
where we use (2.3) by taking U=y/t1.
We denote the latter series by Σ, using (2.4) we have
Σ=∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|τ(t1)τ(t2)D1D2(t1g1)s(t2g1)st11−wt2w≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)||g(M1′,t1g1,M2′,t2g1)|D1D2(t1g1)s(t2g1)s≪∑M1′,M2′∈Nk−1t1,t2,g1∈N|f(M1′,t1g1)||f(M2′,t2g1)|(D1D2)1−ε(t1g1)s−ε(t2g1)s−ε≪∑M1′,M2′∈Nk−1t1,t2,g1,g1′∈N|f(M1′,t1g1)||f(M2′,t2g1′)|(D1D2)1−ε(t1g1)s−ε(t2g1′)s−ε. |
Let t1g1=mk, t2g1′=m2k′, we obtain
Σ≪∑M1′,M2′∈Nk−1mk,m2k′∈N|f(M1′,mk)||f(M1′,m2k′)|τ(mk)τ(m2k′)(D1D2)1−εmks−εm2k′s−ε=(∑M1′∈Nk−1mk∈N|f(M1′,mk)|τ(mk)D11−εmks−ε)2≪1 |
by Lemma 2.4, thus
T3≪y1−2wlog3y. |
If n2>y, exchange t1 and t2, similarly we obtain
T3≪y1−2wlog3y. |
Above all, we obtain
T1,T2≪x−2s+εandT3≪y1−2wlog3y, |
then (ii) holds from (2.5).
We shall give a more explicit expression of Δk(x). According to Lemma 2.4,
τ(n1⋯nk)=∑m1d1=n1,⋯,mkdk=nkf(m1,⋯,mk)τ(d1)⋯τ(dk) |
holds for any n1,⋯,nk∈N, where f is multiplicative and symmetric in all variables.
Therefore, we deduce by (1.1) that
\begin{align} \sum\limits_{n_1, \cdots, n_k\leqslant x}\tau(n_1\cdots n_k) = &\sum\limits_{m_1, \cdots, m_k\leqslant x}f(m_1, \cdots, m_k)\prod\limits_{j = 1}^k\left(\sum\limits_{d_j\leqslant {x/m_j}}\tau(d_j)\right)\\ = &\sum\limits_{m_1, \cdots, m_k\leqslant x}f(m_1, \cdots, m_k)\prod\limits_{j = 1}^k\left(M\left(\frac{x}{m_j}\right)+\Delta\left(\frac{x}{m_j}\right)\right)\\ = &\sum\limits_{m_1, \cdots, m_k\leqslant x}f(m_1, \cdots, m_k)\left(\prod\limits_{j = 1}^kM\left(\frac{x}{m_j}\right)\right)\\ &+k\sum\limits_{m_1, \cdots, m_k\leqslant x}f(m_1, \cdots, m_k)\left(\prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\right)\Delta\left(\frac{x}{m_k}\right)\\ &+\binom{k}{2}\sum\limits_{m_1, \cdots, m_k\leqslant x}f(m_1, \cdots, m_k) \left(\prod\limits_{j = 1}^{k-2}M\left(\frac{x}{m_j}\right)\right)\Delta\left(\frac{x}{m_k}\right)\Delta\left(\frac{x}{m_{k-1}}\right)\\ &+\cdots\\ &+\binom{k}{k-1}\sum\limits_{m_1, \cdots, m_k\leqslant x}f(m_1, \cdots, m_k)M\left(\frac{x}{m_1}\right)\left(\prod\limits_{j = 2}^{k}\Delta\left(\frac{x}{m_j}\right)\right)\\ &+\sum\limits_{m_1, \cdots, m_k\leqslant x}f(m_1, \cdots, m_k)\left(\prod\limits_{j = 1}^{k}\Delta\left(\frac{x}{m_j}\right)\right)\\ : = &\sum\limits_{m_1, \cdots, m_k\leqslant x}f(m_1, \cdots, m_k)\left(\prod\limits_{j = 1}^kM\left(\frac{x}{m_j}\right)\right)+\mathbf{E}(x), \end{align} | (3.1) |
where
\begin{eqnarray} M(u) = u\log u+(2\gamma-1)u. \end{eqnarray} | (3.2) |
Here we have
\begin{align} \sum\limits_{m_1, \cdots, m_k\le x}f(m_1, \cdots, m_k)\prod\limits_{j = 1}^k\left(M\left(\frac{x}{m_j}\right)\right) & = \sum\limits_{m_1, \cdots, m_k = 1}^{\infty}f(m_1, \cdots, m_k)\prod\limits_{j = 1}^k\left(M\left(\frac{x}{m_j}\right)\right)+O(x^{k-1+\varepsilon})\\ & = x^kP_k(\log x)+O\left(x^{k-1+\varepsilon}\right) \end{align} | (3.3) |
by the proof of Theorem 3.4 in Tóth and Zhai [9]. From (1.2) we have
\Delta(\frac{x}{m_j})\ll(\frac{x}{m_j})^{\theta+\varepsilon} |
for any 1\leqslant j\leqslant k , then
\begin{eqnarray} \mathbf{E}(x)&\ll&\sum\limits_{m_1, \cdots, m_k\leqslant x}|f(m_1, \cdots, m_k)|\left(\prod\limits_{j = 1}^{k-2}M\left(\frac{x}{m_j}\right)\right)\Delta\left(\frac{x}{m_k}\right)\Delta\left(\frac{x}{m_{k-1}}\right)\\ \\ &\ll& x^{k-2+2\theta+\varepsilon}\sum\limits_{m_1, \cdots, m_k\leqslant x}\frac{|f\left(m_1, \cdots, m_k\right)|}{m_1\cdots m_{k-2}(m_{k-1}m_{k})^\theta} \cdot\frac{(m_{k-1}m_{k})^{\frac{1}{2}-\theta+\varepsilon}}{(m_{k-1}m_{k})^{\frac{1}{2}-\theta+\varepsilon}}\\ \\ &\ll& x^{k-2+2\theta+\varepsilon}(x^2)^{\frac{1}{2}-\theta+\varepsilon}\sum\limits_{m_1, \cdots, m_k = 1}^{\infty}\frac{|f(m_1, \cdots, m_k)|}{m_1\cdots m_{k-2}(m_{k-1}m_{k})^{\frac{1}{2}+\varepsilon}}\\ \\ &\ll& x^{k-1+\varepsilon}, \end{eqnarray} | (3.4) |
where the convergence of latter series can be obtained by Lemma 2.4. Then we conclude that
\begin{eqnarray} \Delta_k(x) = {\Delta_k}^*(x)+O\left(x^{k-1+\varepsilon}\right) \end{eqnarray} | (3.5) |
follows by (1.4), (3.1), (3.3), and (3.4), where
\begin{eqnarray} {\Delta_k}^*(x) = k\sum\limits_{m_1, \cdots, m_k\leqslant x}f(m_1, \cdots, m_k)\left(\prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\right)\Delta\left(\frac{x}{m_k}\right). \end{eqnarray} |
Suppose T\geqslant2 , we shall first estimate \int_T^{2T}({\Delta_k}^{*}(x))^2dx . Since m_1, \cdots, m_{k-1} are symmetric, we can divide {\Delta_k}^{*}(x) into three parts,
\begin{eqnarray} {\Delta_k}^*(x)& = &M_1+O(M_2+M_3), \end{eqnarray} |
where the implied constant about " O " depends on k and \varepsilon ,
\begin{eqnarray} &&M_1 = M_1(x, y): = k\sum\limits_{m_1, \cdots, m_k\leqslant y}f(m_1, \cdots, m_k)\prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\Delta\left(\frac{x}{m_k}\right), \\ &&M_2 = M_2(x, y): = \sum\limits_{\substack{m_1, \cdots, m_k\leqslant x\\m_1 > y}} |f(m_1, \cdots, m_k)|\prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\left|\Delta\left(\frac{x}{m_k}\right)\right|, \\ &&M_3 = M_3(x, y): = \sum\limits_{\substack{m_1, \cdots, m_k\leqslant x\\m_k > y}}|f(m_1, \cdots, m_k)|\prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\left|\Delta\left(\frac{x}{m_k}\right)\right|, \end{eqnarray} | (4.1) |
where y is a parameter that satisfies T^{\varepsilon}\ll y\ll T . So we obtain
\begin{align} \int_{T}^{2T}({\Delta_k}^*(x))^2dx = &\int_{T}^{2T}{M_1}^2dx+O\left(\int_{T}^{2T}(M_1M_2+M_2M_3+M_1M_3)dx\right)\\ &+ \quad O\left(\int_{T}^{2T}({M_2}^2+{M_3}^2)dx\right). \end{align} | (4.2) |
First, we deal with \int_{T}^{2T}{M_1}^2dx . By Lemma 2.1 we obtain
\begin{align} M_1(x, y)& = k\sum\limits_{m_1, \cdots, m_k\leqslant y}f(m_1, \cdots, m_k)\prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right) \left(\delta_1\left(\frac{x}{m_k}, y\right)+\delta_2\left(\frac{x}{m_k}, y\right)\right)\\ \\ &: = M_{11}(x, y)+M_{12}(x, y), \end{align} |
where
\begin{align} M_{11}(x, y)& = k\sum\limits_{m_1, \cdots, m_k\leqslant y}f(m_1, \cdots, m_k)\prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\delta_1\left(\frac{x}{m_k}, y\right), \\ M_{12}(x, y)& = k\sum\limits_{m_1, \cdots, m_k\leqslant y}f(m_1, \cdots, m_k)\prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\delta_2\left(\frac{x}{m_k}, y\right), \end{align} |
and \delta_1(\cdot, y) and \delta_2(\cdot, y) are defined in Lemma 2.2, thus we have
\begin{eqnarray} \int_T^{2T}{M_1}^2(x, y)dx = \int_T^{2T}{M_{11}}^2(x, y)dx+O\left(\int_T^{2T}\left(M_{11}(x, y)M_{12}(x, y)+{M_{12}}^2(x, y)\right)dx\right). \end{eqnarray} | (4.3) |
Let \mathbf{M_1}, \mathbf{M_2} be defined in Lemma 2.5, using
\cos{\alpha}\cos{\beta} = \frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta)), |
we have
\begin{align} {M_{11}}^2(x, y) = &k^2\sum\limits_{m_1, \cdots, m_{2k}\leqslant y} f(\mathbf{M}_1) f(\mathbf{M}_2)\prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\prod\limits_{j = k+1}^{2k-1}M\left(\frac{x}{m_j}\right) \\ &\times\frac{x^{1/2}} {2\pi^2(m_km_{2k})^{1/4}}\sum\limits_{n_1, n_2\leqslant y}\frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}} \cos\left(4\pi\sqrt{\frac{n_1x}{m_k}}-\frac{\pi}{4}\right)\cos\left(4\pi\sqrt{\frac{n_2x}{m_{2k}}}-\frac{\pi}{4}\right)\\ = &k^2\sum\limits_{m_1, \cdots, m_{2k}\leqslant y} f(\mathbf{M}_1) f(\mathbf{M}_2)\prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\prod\limits_{j = k+1}^{2k-1}M\left(\frac{x}{m_j}\right) \frac{x^{1/2}}{4\pi^2(m_km_{2k})^{1/4}} \\ &\times\sum\limits_{n_1, n_2\leqslant y}\frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}} \left[\cos\left(4\pi\left(\sqrt{\frac{n_1}{m_k}}-\sqrt{\frac{n_2}{m_{2k}}}\right)\sqrt x\right) +\sin\left(4\pi\left(\sqrt{\frac{n_1}{m_k}}+\sqrt{\frac{n_2}{m_{2k}}}\right)\sqrt x\right)\right] \\ : = &k^2(S_0(x, y)+S_1(x, y)+S_2(x, y)), \end{align} | (4.4) |
where
\begin{align} S_0(x, y) = &\frac{x^{1/2}}{4\pi^2}\sum\limits_{m_1, \cdots, m_{2k}\leqslant y} \frac{f(\mathbf{M}_1)f(\mathbf{M}_2)}{(m_km_{2k})^{1/4}} \prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\prod\limits_{j = k+1}^{2k-1}M\left(\frac{x}{m_j}\right) \sum\limits_{\substack{n_1, n_2\le y\\n_1m_{2k} = n_2m_k}}\frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}}, \\ S_1(x, y) = &\frac{x^{1/2}}{4\pi^2}\sum\limits_{m_1, \cdots, m_{2k}\leqslant y} \frac{f(\mathbf{M}_1)f(\mathbf{M}_2)}{(m_km_{2k})^{1/4}}\prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\prod\limits_{j = k+1}^{2k-1}M\left(\frac{x}{m_j}\right)\\ &\times\sum\limits_{\substack{n_1, n_2\leqslant y\\n_1m_{2k}\not = n_2m_k}}\frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}} \cos\left(4\pi\left(\sqrt{\frac{n_1}{m_k}}-\sqrt{\frac{n_2}{m_{2k}}}\right)\sqrt x\right), \\ S_2(x, y) = &\frac{x^{1/2}}{4\pi^2}\sum\limits_{m_1, \cdots, m_{2k}\leqslant y} \frac{f(\mathbf{M}_1)f(\mathbf{M}_2)}{(m_km_{2k})^{1/4}}\prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\prod\limits_{j = k+1}^{2k-1}M\left(\frac{x}{m_j}\right)\\ &\times\sum\limits_{n_1, n_2\leqslant y}\frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}} \sin\left(4\pi\left(\sqrt{\frac{n_1}{m_k}}+\sqrt{\frac{n_2}{m_{2k}}}\right)\sqrt x\right). \end{align} |
So, it turns to evaluate
\begin{eqnarray} \int_0 = \int_T^{2T}S_0(x, y)dx\:, \ \ \:\int_1 = \int_T^{2T}S_1(x, y)dx\:, \ \ \:\int_2 = \int_T^{2T}S_2(x, y)dx. \end{eqnarray} |
We need to give more explicit expressions for (\prod_{j = 1}^{k-1}M(\frac{x}{m_j})) and (\prod_{j = k+1}^{2k-1}M(\frac{x}{m_j})) . By the proof of Theorem 3.3 in Tóth and Zhai [9] in the case f_j(n) = \tau(n), \:a_j = 1, \:\delta_j = 1\:(1\leqslant j\leqslant k-1) we obtain
\begin{eqnarray} \prod\limits_{j = 1}^{k-1} M\left(\frac{x}{m_j}\right) = \frac{x^{k-1}}{m_1\cdots m_{k-1}}\sum\limits_{l_1 = 0}^{k-1}C_{l_1}(\log m_1, \cdots, \log m_{k-1})(\log x)^{l_1}, \end{eqnarray} | (4.5) |
where
C_{l_1}(\log m_1, \cdots, \log m_{k-1}) = \sum\limits_{j_1, \cdots, j_{k-1} = 0, 1}c(j_1, \cdots, j_{k-1})(\log m_1)^{j_1}\cdots(\log m_{k-1})^{j_{k-1}}, |
and c(j_1, \cdots, j_{k-1}) are constants (j_1, \cdots, j_{k-1} = 0, 1) . Similarly, when k+1\leqslant j\leqslant 2k-1 , we have
\begin{eqnarray} \prod\limits_{j = k+1}^{2k-1} M\left(\frac{x}{m_j}\right) = \frac{x^{k-1}}{m_{k+1}\cdots m_{2k-1}}\sum\limits_{l_2 = k}^{2k-1}C_{l_2}(\log m_{k+1}, \cdots, \log m_{2k-1})(\log x)^{l_2-k}, \end{eqnarray} | (4.6) |
where
C_{l_2}(\log m_{k+1}, \cdots, \log m_{2k-1}) = \sum\limits_{j_{k+1}, \cdots, j_{2k-1} = 0, 1}c(j_{k+1}, \cdots, j_{2k-1})(\log m_{k+1})^{j_{k+1}}\cdots(\log m_{2k-1})^{j_{2k-1}}, |
and c(j_{k+1}, \cdots, j_{2k-1}) are constants (j_{k+1}, \cdots, j_{2k-1} = 0, 1) .
We denote C_{l_1}(\log m_1, \cdots, \log m_{k-1})C_{l_2}(\log m_{k+1}, \cdots, \log m_{2k-1}) by C_{l_1, l_2}(\mathbf{M}_1, \mathbf{M}_2) , using (4.5) and (4.6) we have
\begin{eqnarray} S_0(x, y) = \frac{x^{2k-\frac{3}{2}}}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}(\log x)^{l_1+l_2}\sum\limits_{\substack{{m_1, \cdots, m_{2k}\leqslant y}\\n_1, n_2\leqslant y\\ \frac{m_k}{m_{2k}} = \frac{n_1}{n_2}}} \frac{f(\mathbf{M}_1)f(\mathbf{M}_2)C_{l_1, l_2}(\mathbf{M}_1, \mathbf{M}_2)}{D_1D_2(m_km_{2k})^{\frac{1}{4}}} \cdot\frac{\tau(n_1)\tau(n_2)}{(n_1n_2)^{\frac{3}{4}}}, \end{eqnarray} | (4.7) |
where D_1, D_2 are defined in Lemma 2.5. Using (2.4) we obtain
\begin{eqnarray} \:\:\:C_{l_1, l_2}(\mathbf{M}_1, \mathbf{M}_2) \ll\left(\prod\limits_{j = 1}^{k-1}m_j\prod\limits_{j = k+1}^{2k-1}m_j\right)^\varepsilon\ll\left(\prod\limits_{j = 1}^{2k}m_j\right)^{\varepsilon}. \end{eqnarray} |
Choosing
g(\mathbf{M}_1, \mathbf{M}_2) = g_{l_1, l_2}(\mathbf{M}_1, \mathbf{M}_2) = C_{l_1, l_2}(\mathbf{M}_1, \mathbf{M}_2), |
s = 1/4 , w = 3/4 in Lemma 2.5, we obtain that S_0(x, y) can be written as
\begin{align} S_0(x, y)& = \frac{x^{2k-\frac{3}{2}}}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}(\log x)^{l_1+l_2}\times T_{g, k}\left(y, y;\frac{1}{4}, \frac{3}{4}\right)\\ & = \frac{x^{2k-\frac{3}{2}}}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}(\log x)^{l_1+l_2}\left(T_{g, k}\left(\frac{1}{4}, \frac{3}{4}\right)+O\left({y}^{-\frac{1}{2}+\varepsilon}\right)\right). \end{align} | (4.8) |
Since g(\mathbf{M}_1, \mathbf{M}_2) is related to l_1, l_2 , we denote T_{g, k}\left(\frac{1}{4}, \frac{3}{4}\right) in (4.8) by D_{k, l_1, l_2} , we conclude that
\begin{eqnarray} S_0(x, y) = \frac{x^{2k-\frac{3}{2}}}{4\pi^2}Q_{2k-2}(\log x) +O\left(x^{2k-\frac{3}{2}+\varepsilon}{y}^{-\frac{1}{2}+\varepsilon}\right), \end{eqnarray} | (4.9) |
where
\begin{eqnarray} Q_{2k-2}(t) = \sum\limits_{l_1, l_2 = 0}^{k-1}D_{k, l_1, l_2}\:t^{\:l_1+l_2}. \end{eqnarray} |
Then it follows from (4.9) that
\begin{eqnarray} \int_T^{2T}S_0(x, y)dx = \frac{1}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}D_{k, l_1, l_2}\int_T^{2T}x^{2k-\frac{3}{2}}(\log x)^{l_1+l_2}dx +O\left(T^{2k-\frac{1}{2}+\varepsilon}{y}^{-\frac{1}{2}}\right). \end{eqnarray} | (4.10) |
Let \mathbf{M_1}, \mathbf{M_2}, D_1, D_2 be defined in Lemma 2.5, then by (4.5) and (4.6) we have
\begin{align} \int_2 = &\int_T^{2T}\frac{x^{2k-\frac{3}{2}}}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}(\log x)^{l_1+l_2}\sum\limits_{m_1, \cdots, m_{2k}\leqslant y} \frac{C_{l_1, l_2}(\mathbf{M}_1, \mathbf{M}_2)}{D_1D_2}\\ &\times\sum\limits_{n_1, n_2\leqslant y} \frac{f(\mathbf{M}_1)f(\mathbf{M}_2)}{{m_k}^{1/4}{m_{2k}}^{1/4}}\cdot\frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}} \sin\left(4\pi\left(\sqrt{\frac{n_1}{m_k}}+\sqrt{\frac{n_2}{m_{2k}}}\right)\sqrt x\right)dx. \end{align} |
Let
G(x) = x^{2k-\frac{3}{2}}(\log x)^{l_1+l_2}, \ \ \ F(\cdot) = \sin(\cdot), \ \ \ m(x) = 4\pi\left(\sqrt{\frac{n_1}{m_k}}+\sqrt{\frac{n_2}{m_{2k}}}\right)\sqrt x, \ \ \ a = T, \ \ b = 2T |
in Lemma 2.3, change the order of integration and summation, then we have
\begin{align} \int_2 = &\frac{1}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}\sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant{y}\\n_1, n_2\leqslant y}} \frac{C_{l_1, l_2}(\mathbf{M}_1, \mathbf{M}_2)}{D_1D_2}\cdot\frac{f(\mathbf{M}_1)f(\mathbf{M}_2)} {{m_k}^{1/4}{m_{2k}}^{1/4}}\cdot\frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}}\\ &\times\:\int_T^{2T}x^{2k-\frac{3}{2}}(\log x)^{l_1+l_2}\sin\left(4\pi\left(\sqrt{\frac{n_1}{m_k}}+\sqrt{\frac{n_2}{m_{2k}}}\right)\sqrt x\right)dx\\ \ll&\sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant{y}\\n_1, n_2\leqslant y}} \frac{|C_{l_1, l_2}(\mathbf{M}_1, \mathbf{M}_2)|}{D_1D_2}\cdot\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|} {{m_k}^{1/4}{m_{2k}}^{1/4}}\cdot\frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}}\\ &\times\:T^{2k-\frac{3}{2}+\varepsilon}\cdot\frac{T^{\frac{1}{2}}}{\sqrt{\frac{n_1}{m_k}}+\sqrt{\frac{n_2}{m_{2k}}}}, \end{align} |
then we use
a^2+b^2\geqslant2ab, \ \ \ C_{l_1, l_2}(\mathbf{M}_1, \mathbf{M}_2)\ll\left(\prod\limits_{j = 1}^{2k}m_j\right)^{\varepsilon} |
to obtain
\begin{align} \int_2&\ll T^{2k-1+\varepsilon}\sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant{y}\\n_1, n_2\leqslant y}} \frac{\left(\prod\limits_{j = 1}^{2k}m_j\right)^{\varepsilon}}{D_1D_2}\cdot\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|} {{m_k}^{1/4}{m_{2k}}^{1/4}}\cdot\frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}} \cdot\left(\frac{m_km_{2k}}{n_1n_2}\right)^{\frac{1}{4}}\\ &\ll T^{2k-1+(2k+1)\varepsilon}\sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant{y}\\n_1, n_2\leqslant y}} \frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|}{D_1D_2} \cdot\frac{\tau(n_1)\tau(n_2)}{{n_1}{n_2}}\cdot\frac{T^{2\varepsilon}}{{m_k}^{\varepsilon}{m_{2k}}^{\varepsilon}}\\ &\ll T^{2k-1+(2k+3)\varepsilon}\sum\limits_{m_1, \cdots, m_{2k} = 1}^{\infty} \frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|}{D_1D_2{m_k}^{\varepsilon}{m_{2k}}^{\varepsilon}} \sum\limits_{n_1, n_2\leqslant y}\frac{\tau(n_1)\tau(n_2)}{{n_1}{n_2}}\\ &\ll T^{2k-1+(2k+4)\varepsilon}\left(\sum\limits_{m_1, \cdots, m_{2k} = 1}^{\infty} \frac{|f(\mathbf{M}_1)|}{D_1{m_k}^{\varepsilon}}\right)^2, \end{align} |
where by partial summation we obtain
\sum\limits_{n_1, n_2\leqslant y}\frac{\tau(n_1)\tau(n_2)}{{n_1}{n_2}}\ll\log^4{y}\ll\log^4T\ll T^{\varepsilon}. |
Since \varepsilon > 0 is arbitrary, using Lemma 2.4 we conclude that
\begin{eqnarray} \int_2\ll T^{2k-1+\varepsilon}. \end{eqnarray} | (4.11) |
Then we turn to estimate \int_1 , similar to \int_2 , we have
\begin{align} \int_1 = &\int_T^{2T}\frac{x^{2k-\frac{3}{2}}}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}(\log x)^{l_1+l_2}\sum\limits_{m_1, \cdots, m_{2k}\leqslant y} \frac{C_{l_1, l_2}(\mathbf{M}_1, \mathbf{M}_2)}{D_1D_2}\\ &\times\sum\limits_{\substack{n_1, n_2\leqslant y\\n_1m_{2k}\not = n_2m_k}} \frac{f(\mathbf{M}_1)f(\mathbf{M}_2)}{{m_k}^{1/4}{m_{2k}}^{1/4}}\cdot\frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}} \cos\left(4\pi\left(\sqrt{\frac{n_1}{m_k}}-\sqrt{\frac{n_2}{m_{2k}}}\right)\sqrt x\right)dx. \end{align} |
Let
G(x) = x^{2k-\frac{3}{2}}(\log x)^{l_1+l_2}, \ \ \ F(\cdot) = \cos(\cdot), \ \ \ m(x) = 4\pi(\sqrt{\frac{n_1}{m_k}}-\sqrt{\frac{n_2}{m_{2k}}})\sqrt x, \ \ \ a = T, \ \ b = 2T |
in Lemma 2.3, change the order of integration and summation, then we have
\begin{align} \int_1 = &\frac{1}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}\sum\limits_{m_1, \cdots, m_{2k}\leqslant{y}} \frac{C_{l_1, l_2}(\mathbf{M}_1, \mathbf{M}_2)}{D_1D_2}\cdot\frac{f(\mathbf{M}_1)f(\mathbf{M}_2)} {{m_k}^{1/4}{m_{2k}}^{1/4}}\sum\limits_{\substack{n_1, n_2\leqslant y\\n_1m_{2k}\not = n_2m_k}}\frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}}\\ &\times\:\int_T^{2T}x^{2k-\frac{3}{2}}(\log x)^{l_1+l_2}\cos\left(4\pi\left(\sqrt{\frac{n_1}{m_k}}-\sqrt{\frac{n_2}{m_{2k}}}\right)\sqrt x\right)dx\\ \ll&\sum\limits_{l_1, l_2 = 0}^{k-1}\sum\limits_{m_1, \cdots, m_{2k}\leqslant{y}} \frac{|C_{l_1, l_2}(\mathbf{M}_1, \mathbf{M}_2)|}{D_1D_2}\cdot\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|} {{m_k}^{1/4}{m_{2k}}^{1/4}}\sum\limits_{\substack{n_1, n_2\leqslant y_2\\n_1m_{2k}\not = n_2m_k}}\frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}}\\ &\times\:T^{2k-\frac{3}{2}+\varepsilon}\cdot\frac{T^{\frac{1}{2}}}{|\sqrt{\frac{n_1}{m_k}}-\sqrt{\frac{n_2}{m_{2k}}}|}. \end{align} |
Since
C_{l_1, l_2}(\mathbf{M}_1, \mathbf{M}_2)\ll\left(\prod\limits_{j = 1}^{2k}m_j\right)^{\varepsilon}, |
we have
\begin{align} \int_1 &\ll T^{2k-1+\varepsilon}\sum\limits_{m_1, \cdots, m_{2k}\leqslant{y}} \frac{\left(\prod\limits_{j = 1}^{2k}m_j\right)^{\varepsilon}}{D_1D_2}\cdot\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|}{{m_k}^{1/4}{m_{2k}}^{1/4}} \sum\limits_{\substack{n_1, n_2\leqslant y\\n_1m_{2k}\not = n_2m_k}} \frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}}\cdot\frac{1}{|\sqrt{\frac{n_1}{m_k}}-\sqrt{\frac{n_2}{m_{2k}}}|}\\ &\ll T^{2k-1+(2k+1)\varepsilon}\sum\limits_{m_1, \cdots, m_{2k}\leqslant{y}}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|} {D_1D_2{m_k}^{1/4}{m_{2k}}^{1/4}}\sum\limits_{\substack{n_1, n_2\leqslant y\\n_1m_{2k}\not = n_2m_k}} \frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}}\cdot\frac{1}{|\sqrt{\frac{n_1}{m_k}}-\sqrt{\frac{n_2}{m_{2k}}}|}\\ &: = T^{2k-1+(2k+1)\varepsilon}\sum\limits_{m_1, \cdots, m_{2k}\leqslant{y}}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|} {D_1D_2{m_k}^{1/4}{m_{2k}}^{1/4}}\left(R_1+R_2\right), \end{align} | (4.12) |
where
\begin{align} R_1& = \sum\limits_{\substack{{n_1, n_2\leqslant y, \quad n_1m_{2k}\not = n_2m_k}\\ \left|\sqrt{\frac{n_1}{m_k}}-\sqrt{\frac{n_2}{m_{2k}}}\right|\le\frac{(n_1n_2)^{1/4}}{10(m_km_{2k})^{1/4}}}} \frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}}\cdot\frac{1}{|\sqrt{\frac{n_1}{m_k}}-\sqrt{\frac{n_2}{m_{2k}}}|}, \\ R_2& = \sum\limits_{\substack{{n_1, n_2\leqslant y, \quad n_1m_{2k}\not = n_2m_k}\\ \left|\sqrt{\frac{n_1}{m_k}}-\sqrt{\frac{n_2}{m_{2k}}}\right| > \frac{(n_1n_2)^{1/4}}{10(m_km_{2k})^{1/4}}}} \frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}}\cdot\frac{1}{|\sqrt{\frac{n_1}{m_k}}-\sqrt{\frac{n_2}{m_{2k}}}|}. \end{align} |
Then we have
\begin{eqnarray} R_2\ll\sum\limits_{n_1, n_2\leqslant y}\frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}}\cdot\frac{(m_km_{2k})^{1/4}}{(n_1n_2)^{1/4}}\ll(m_km_{2k})^{\frac{1}{4}}\log^4T, \end{eqnarray} | (4.13) |
where we use partial summation to obtain
\sum\limits_{n_1, n_2\leqslant y}\frac{\tau(n_1)\tau(n_2)}{n_1n_2}\ll\log^4y\ll \log^4T. |
And for R_1 , by Lagrange's mean value theorem we have
\sqrt{\beta_1}-\sqrt{\beta_2}\asymp(\sqrt{\beta_1\beta_2})^{-\frac{1}{2}}|\beta_1-\beta_2| |
for any
\beta_1\asymp\beta_2\in\mathbb{R}, |
thus let
\beta_1 = n_1/m_k, \ \ \ \beta_2 = n_2/m_{2k} |
in R_1 , we obtain
\begin{align} R_1&\ll\sum\limits_{\substack{n_1, n_2\leqslant y\\n_1m_{2k}\not = n_2m_k}} \frac{\tau(n_1)\tau(n_2)}{{n_1}^{3/4}{n_2}^{3/4}}\cdot\frac{1}{|\frac{n_1}{m_k}-\frac{n_2}{m_{2k}}|(\frac{m_km_{2k}}{n_1n_2})^{1/4}}\\ & = (m_km_{2k})^{\frac{3}{4}}\sum\limits_{\substack{n_1, n_2\leqslant y\\n_1m_{2k}\not = n_2m_k}}\frac{\tau(n_1)\tau(n_2)}{n_1^{1/2}n_2^{1/2}|n_1m_{2k}-n_2m_k|}. \end{align} |
For some real numbers N_1 , N_2 satisfying 1\leqslant N_1, N_2\leqslant y , one has
\begin{align} R_1&\ll(m_km_{2k})^{\frac{3}{4}}\log^2y\sum\limits_{\substack{N_1 < n_1\leqslant2N_1\\N_2 < n_2\leqslant2N_2\\n_1m_{2k}\not = n_2m_k}} \frac{\tau(n_1)\tau(n_2)}{(n_1n_2)^{1/2}|n_1m_{2k}-n_2m_k|}\\ &\ll\frac{(m_km_{2k})^{\frac{3}{4}}y^{\varepsilon}}{(N_1N_2)^{1/2}}\sum\limits_{\substack{N_1 < n_1\leqslant2N_1\\N_2 < n_2\leqslant2N_2\\n_1m_{2k}\not = n_2m_k}}\frac{1}{|n_1m_{2k}-n_2m_k|}, \end{align} | (4.14) |
we denote the latter sum by T(m_k, m_{2k}) . Let
|n_1m_{2k}-n_2m_k| = r, |
we have
r\equiv-n_1m_{2k}(\text{mod}\ {m_k}), |
so we can find a constant c_0 such that
1\leqslant c_0 < m_k, \ \ \ r = m_kt+c_0, |
where t is an integer such that 0 < t < 2y^2 , thus
\begin{align} T(m_k, m_{2k})& = \sum\limits_{N_1 < n_1\leqslant2N_1}\sum\limits_{\substack{N_2 < n_2\leqslant2N_2\\n_1m_{2k}\not = n_2m_k}}\frac{1}{|n_1m_{2k}-n_2m_k|}\\ &\leqslant\sum\limits_{N_1 < n_1\leqslant2N_1}\left(1+\sum\limits_{1\leqslant t\leqslant2y^2}\frac{1}{m_kt+c_0}\right)\\ &\ll N_1\log y, \end{align} |
similarly, we have
T(m_k, m_{2k})\ll N_2\log y, |
thus
T(m_k, m_{2k})\ll (N_1N_2)^{\frac{1}{2}}\log y. |
By (4.14) we have
\begin{eqnarray} R_1\ll\frac{(m_km_{2k})^{\frac{3}{4}}y^{\varepsilon}}{(N_1N_2)^{1/2}}(N_1N_2)^{\frac{1}{2}}\log y\ll(m_km_{2k})^{\frac{3}{4}}T^{\varepsilon}. \end{eqnarray} | (4.15) |
Finally by (4.12), (4.13) and (4.15) we obtain
R_1+R_2\ll T^{\varepsilon}(m_km_{2k})^{3/4}, |
thus
\begin{align} \int_1&\ll T^{2k-1+(2k+1)\varepsilon}\sum\limits_{m_1, \cdots, m_{2k}\leqslant{y}}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|} {D_1D_2{m_k}^{1/4}{m_{2k}}^{1/4}}\cdot T^{{\varepsilon}}{m_k}^{3/4}{m_{2k}}^{3/4}\\ &\ll T^{2k-1+(2k+2)\varepsilon}\sum\limits_{m_1, \cdots, m_{2k}\leqslant{y}}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|{m_k}^{1/2}{m_{2k}}^{1/2}} {D_1D_2}\\ &\ll T^{2k-1+(2k+2)\varepsilon}y\sum\limits_{m_1, \cdots, m_{2k}\leqslant{y}}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|} {D_1D_2}\cdot\frac{T^{2\varepsilon}}{{m_k}^{\varepsilon}{m_{2k}}^{\varepsilon}}\\ &\ll T^{2k-1+(2k+4)\varepsilon}y\left(\sum\limits_{m_1, \cdots, m_{k} = 1}^{\infty}\frac{|f(\mathbf{M}_1)|} {D_1{m_k}^{\varepsilon}}\right)^2\\ &\ll T^{2k-1+\varepsilon}y, \end{align} | (4.16) |
since \varepsilon > 0 is arbitrary, T^\varepsilon\ll y\ll T , and the convergence of the latter series can be obtained by Lemma 2.4. Above all, by (4.4), (4.10), (4.11), and (4.16) we obtain
\begin{align} \int_T^{2T}{M_{11}}^2(x, y)dx = &\frac{k^2}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}D_{k, l_1, l_2}\int_T^{2T}x^{2k-\frac{3}{2}}(\log x)^{l_1+l_2}dx\\ &+O\left(T^{2k-\frac{1}{2}+\varepsilon}{y}^{-\frac{1}{2}}\right)+O\left(T^{2k-1+\varepsilon}y\right). \end{align} | (4.17) |
We are going to estimate \int_T^{2T}M_{12}(x, y)dx ,
\begin{align} \begin{aligned} \int_T^{2T}{M_{12}}^2(x, y)dx & = k^2\int_T^{2T}\left(\sum\limits_{m_1, \cdots, m_{k}\leqslant y}f(\mathbf{M}_1)\prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\delta_2\left(\frac{x}{m_k}, y\right)\right)^2dx\nonumber\\ &\ll \int_T^{2T}\sum\limits_{m_1, \cdots, m_{2k}\leqslant y}|f(\mathbf{M}_1)||f(\mathbf{M}_2)|\left(\prod\limits_{j = 1}^{k-1}\frac{x\log x}{m_j}\prod\limits_{j = k+1}^{2k-1}\frac{x\log x}{m_j}\right) \left|\delta_2\left(\frac{x}{m_k}, y\right)\right|\left|\delta_2\left(\frac{x}{m_{2k}}, y\right)\right|dx\nonumber\\ &\ll \sum\limits_{m_1, \cdots, m_{2k}\leqslant y}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|}{D_1D_2} \int_{T}^{2T}x^{2k-2+\varepsilon}\left|\delta_2\left(\frac{x}{m_k}, y\right)\right|\left|\delta_2\left(\frac{x}{m_{2k}}, y\right)\right|dx\nonumber\\ &\ll T^{2k-2+\varepsilon}\sum\limits_{m_1, \cdots, m_{2k}\leqslant y}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|}{D_1D_2} \left(\int_{T}^{2T}{\delta_2}^2\left(\frac{x}{m_{k}}, y\right)dx\right)^{\frac{1}{2}}\left(\int_{T}^{2T}{\delta_2}^2\left(\frac{x}{m_{2k}}, y\right)dx\right)^{\frac{1}{2}}.\nonumber\end{aligned} \end{align} | (4.18) |
By Lemma 2.2 we have
\begin{align} \left(\int_{T}^{2T}{\delta_2}^2\left(\frac{x}{m_k}, y\right)dx\right)^{\frac{1}{2}} & = \left(m_k\int_{\frac{T}{m_k}}^{\frac{2T}{m_k}}{\delta_2}^2\left(u, y\right)du\right)^{\frac{1}{2}}\\ &\ll\left(m_k\left(\frac{T^{\frac{3}{2}}}{{m_k}^{\frac{3}{2}}{y}^{\frac{1}{2}}}\log^3T+\frac{T}{m_k}\log^4T\right)\right)^{\frac{1}{2}}\\ &\ll\frac{T^{\frac{3}{4}+\varepsilon}}{{m_k}^{\frac{1}{4}}{y}^{\frac{1}{4}}}+T^{\frac{1}{2}+\varepsilon}, \end{align} |
similarly, we have
\begin{eqnarray} \left(\int_{T}^{2T}{\delta_2}^2\left(\frac{x}{m_{2k}}, y\right)dx\right)^{\frac{1}{2}} \ll\frac{T^{\frac{3}{4}+\varepsilon}}{{m_{2k}}^{\frac{1}{4}}{y}^{\frac{1}{4}}}+T^{\frac{1}{2}+\varepsilon}. \end{eqnarray} |
Thus,
\begin{align} \int_T^{2T}{M_{12}}^2(x, y)dx &\ll T^{2k-2+\varepsilon}\sum\limits_{m1, \cdots, m_{2k}\leqslant y} \frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|}{D_1D_2}\left(\frac{T^{\frac{3}{4}+\varepsilon}}{{m_k}^{\frac{1}{4}}{y}^{\frac{1}{4}}}+T^{\frac{1}{2}+\varepsilon}\right) \left(\frac{T^{\frac{3}{4}+\varepsilon}}{{m_{2k}}^{\frac{1}{4}}{y}^{\frac{1}{4}}}+T^{\frac{1}{2}+\varepsilon}\right)\\ &\ll T^{2k-\frac{1}{2}+3\varepsilon}{y}^{-\frac{1}{2}}\sum\limits_{m1, \cdots, m_{2k} = 1}^{\infty} \frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|}{D_1D_2{m_k}^{\frac{1}{4}}{m_{2k}}^{\frac{1}{4}}}\\ &\ll T^{2k-\frac{1}{2}+3\varepsilon}{y}^{-\frac{1}{2}}, \end{align} | (4.19) |
since y\ll T , and the convergence of the latter series is given by Lemma 2.4.
Then by (4.17), (4.19), and Cauchy-Schwarz's inequality, we are able to obtain
\begin{eqnarray} \int_T^{2T}M_{11}M_{12}dx\ll\left(\int_T^{2T}{M_{11}}^2dx\right)^{\frac{1}{2}}\left(\int_T^{2T}{M_{12}}^2dx\right)^{\frac{1}{2}}\ll\frac{T^{2k-\frac{1}{2}+\varepsilon}}{{y}^{\frac{1}{4}}}. \end{eqnarray} | (4.20) |
So from (4.3) and (4.17)–(4.20), we obtain
\begin{align} \int_T^{2T}{M_{1}}^2dx = &\frac{k^2}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}D_{k, l_1, l_2}\int_T^{2T}x^{2k-\frac{3}{2}}(\log x)^{l_1+l_2}dx\\ &+O\left(T^{2k-\frac{1}{2}+\varepsilon}{y}^{-\frac{1}{4}}\right)+O\left(T^{2k-1+\varepsilon}y\right). \end{align} | (4.21) |
Let \mathbf{M_1}, \mathbf{M_2}, D_1, D_2 be defined in Lemma 2.5, then for \int_T^{2T}{M_3}^2dx we deduce that
\begin{eqnarray} \int_T^{2T}{M_3}^2(x, y)dx = \int_{T}^{2T}\left(\sum\limits_{\substack{m_1, \cdots, m_k\leqslant x\\m_k > y}}|f(m_1, \cdots, m_k)| \prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right)\left|\Delta\left(\frac{x}{m_k}\right)\right|\right)^2dx \end{eqnarray} |
change order of integration and summation we obtain
\begin{align} \int_T^{2T}{M_3}^2(x, y)dx &\leqslant\int_{T}^{2T}\sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant 2T\\m_k, m_{2k} > y}}|f(\mathbf{M}_1)f(\mathbf{M}_2)| \prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right) \prod\limits_{j = k+1}^{2k-1}M\left(\frac{x}{m_j}\right)\left|\Delta\left(\frac{x}{m_k}\right)\right|\left|\Delta\left(\frac{x}{m_{2k}}\right)\right|dx\\ & = \sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant{2T}\\m_k, m_{2k} > y}}|f(\mathbf{M}_1)f(\mathbf{M}_2)|\int_{T}^{2T} \prod\limits_{j = 1}^{k-1}M\left(\frac{x}{m_j}\right) \prod\limits_{j = k+1}^{2k-1}M\left(\frac{x}{m_j}\right)\left|\Delta\left(\frac{x}{m_k}\right)\right|\left|\Delta\left(\frac{x}{m_{2k}}\right)\right|dx\\ &\ll\sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant{2T}\\m_k, m_{2k} > y}}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|}{D_1D_2} \int_{T}^{2T}x^{2k-2+\varepsilon}\left|\Delta\left(\frac{x}{m_k}\right)\right|\left|\Delta\left(\frac{x}{m_{2k}}\right)\right|dx\\ &\ll T^{2k-2+\varepsilon}\sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant{2T}\\m_k, m_{2k} > y}}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|}{D_1D_2} \int_{T}^{2T}\left|\Delta\left(\frac{x}{m_k}\right)\right|\left|\Delta\left(\frac{x}{m_{2k}}\right)\right|dx. \end{align} |
Using Cauchy-Schwarz's inequality and (1.3), we deduce that
\begin{align} \int_{T}^{2T}\left|\Delta\left(\frac{x}{m_k}\right)\right|\left|\Delta\left(\frac{x}{m_{2k}}\right)\right|dx &\ll\left(\int_{T}^{2T}\Delta^2\left(\frac{x}{m_k}\right)dx\right)^{\frac{1}{2}}\left(\int_{T}^{2T}\Delta^2\left(\frac{x}{m_{2k}}\right)dx\right)^{\frac{1}{2}}\\ &\ll\left(m_k\int_{\frac{T}{m_k}}^{\frac{2T}{m_k}}\Delta^2(u)du\right)^{\frac{1}{2}}\left(m_{2k}\int_{\frac{T}{m_{2k}}}^{\frac{2T}{m_{2k}}}\Delta^2(u)du\right)^{\frac{1}{2}}\\ &\ll\frac{T^{\frac{3}{2}}}{{m_k}^{\frac{1}{4}}{m_{2k}}^{\frac{1}{4}}}, \end{align} |
thus, by Lemma 2.4, we have
\begin{align} \int_T^{2T}{M_3}^2(x, y)dx&\ll T^{2k-\frac{1}{2}+\varepsilon}\sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant2T\\m_k, m_{2k} > y}} \frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|}{D_1D_2{m_k}^{\frac{1}{4}}{m_{2k}}^{\frac{1}{4}}}\\ &\ll T^{2k-\frac{1}{2}+\varepsilon}\sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant2T\\m_k, m_{2k} > y}}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|} {D_1D_2{m_k}^{\varepsilon}{m_{2k}}^{\varepsilon}}{m_k}^{-\frac{1}{4}+\varepsilon}{m_{2k}}^{-\frac{1}{4}+\varepsilon}\\ &\ll T^{2k-\frac{1}{2}+\varepsilon}{y}^{-\frac{1}{2}+2\varepsilon}\sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant2T\\m_k, m_{2k} > y}}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|} {D_1D_2{m_k}^{\varepsilon}{m_{2k}}^{\varepsilon}}\\ &\ll T^{2k-\frac{1}{2}+\varepsilon}{y}^{-\frac{1}{2}}\sum\limits_{m_1, \cdots, m_{2k} = 1}^{\infty}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|} {D_1D_2{m_k}^{\varepsilon}{m_{2k}}^{\varepsilon}}\\ &\ll \frac{T^{2k-\frac{1}{2}+\varepsilon}}{{y}^{\frac{1}{2}}}. \end{align} | (4.22) |
For \int_T^{2T}{M_2}^2dx , let {D_1}^{'} = D_1/m_1 , {D_2}^{'} = D_2/m_{k+1} , similar to \int_T^{2T}{M_3}^2dx , we obtain by Lemma 2.4 that
\begin{align} \int_T^{2T}{M_2}^2(x, y)dx&\ll T^{2k-\frac{1}{2}+\varepsilon}\sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant2T\\m_1, m_{k+1} > y}} \frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|}{D_1D_2{m_k}^{\frac{1}{4}}{m_{2k}}^{\frac{1}{4}}}\\ &\ll T^{2k-\frac{1}{2}+\varepsilon}\sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant2T\\m_1, m_{k+1} > y}}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|{m_1}^{-\frac{1}{4}+\varepsilon}{m_{k+1}}^{-\frac{1}{4}+\varepsilon}} {{D_1}^{'}{D_2}^{'}{m_1}^{\frac{3}{4}+\varepsilon}{m_k}^{\frac{1}{4}}{m_{k+1}}^{\frac{3}{4}+\varepsilon}{m_{2k}}^{\frac{1}{4}}}\\ &\ll T^{2k-\frac{1}{2}+\varepsilon}{y}^{-\frac{1}{2}+2\varepsilon}\sum\limits_{\substack{m_1, \cdots, m_{2k}\leqslant2T\\m_1, m_{k+1} > y}}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|} {{D_1}^{'}{D_2}^{'}{m_1}^{\frac{3}{4}+\varepsilon}{m_k}^{\frac{1}{4}}{m_{k+1}}^{\frac{3}{4}+\varepsilon}{m_{2k}}^{\frac{1}{4}}}\\ &\ll T^{2k-\frac{1}{2}+\varepsilon}{y}^{-\frac{1}{2}}\sum\limits_{m_1, \cdots, m_{2k} = 1}^{\infty}\frac{|f(\mathbf{M}_1)||f(\mathbf{M}_2)|} {{D_1}^{'}{D_2}^{'}{m_1}^{\frac{3}{4}+\varepsilon}{m_k}^{\frac{1}{4}}{m_{k+1}}^{\frac{3}{4}+\varepsilon}{m_{2k}}^{\frac{1}{4}}}\\ &\ll \frac{T^{2k-\frac{1}{2}+\varepsilon}}{{y}^{\frac{1}{2}}}. \end{align} | (4.23) |
By (4.21)–(4.23) and Cauchy-Schwarz's inequality, we are able to estimate the following terms in (4.2)
\begin{eqnarray} &&\int_T^{2T}M_1M_2dx\ll\left(\int_T^{2T}{M_1}^2dx\right)^{\frac{1}{2}}\left(\int_T^{2T}{M_2}^2dx\right)^{\frac{1}{2}}\ll\frac{T^{2k-\frac{1}{2}+\varepsilon}}{{y}^{\frac{1}{4}}}, \\ &&\int_T^{2T}M_1M_3dx\ll\left(\int_T^{2T}{M_1}^2dx\right)^{\frac{1}{2}}\left(\int_T^{2T}{M_3}^2dx\right)^{\frac{1}{2}}\ll\frac{T^{2k-\frac{1}{2}+\varepsilon}}{{y}^{\frac{1}{4}}}, \\ &&\int_T^{2T}M_2M_3dx\ll\left(\int_T^{2T}{M_2}^2dx\right)^{\frac{1}{2}}\left(\int_T^{2T}{M_3}^2dx\right)^{\frac{1}{2}}\ll\frac{T^{2k-\frac{1}{2}+\varepsilon}}{{y}^{\frac{1}{2}}}. \end{eqnarray} | (4.24) |
Above all, taking y = T^{\frac{2}{5}} , then
\begin{eqnarray} \int_T^{2T}\left({\Delta_k}^{*}(x)\right)^2dx = \frac{k^2}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}D_{k, l_1, l_2}\int_T^{2T}x^{2k-\frac{3}{2}}(\log x)^{l_1+l_2}dx +O\left(T^{2k-\frac{3}{5}+\varepsilon}\right) \end{eqnarray} | (4.25) |
follows by (4.2) and (4.21)–(4.24).
Using (3.5) and the Cauchy-Schwarz's inequality we obtain
\begin{align} \int_T^{2T}{\Delta_k}^2(x)dx = &\int_T^{2T}\left({\Delta_k}^{*}(x)\right)^2dx+O\left(\int_T^{2T}{\Delta_k}^{*}(x)x^{k-1+\varepsilon}dx\right)+O\left(T^{2k-1+\varepsilon}\right)\\ = &\frac{k^2}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}D_{k, l_1, l_2}\int_T^{2T}x^{2k-\frac{3}{2}}(\log x)^{l_1+l_2}dx+O\left(T^{2k-\frac{3}{5}+\varepsilon}\right)\\ &+ \quad O\left(\left(\int_T^{2T}\left({\Delta_k}^{*}(x)\right)^2dx\right)^{\frac{1}{2}}\left(\int_T^{2T}x^{2k-2+\varepsilon}dx\right)^{\frac{1}{2}}\right)\\ = &\frac{k^2}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}D_{k, l_1, l_2}\int_T^{2T}x^{2k-\frac{3}{2}}(\log x)^{l_1+l_2}dx+O\left(T^{2k-\frac{3}{5}+\varepsilon}\right). \end{align} |
Then replacing T by T/2 , T/2^2 , and so on, and adding up all the results, we obtain
\begin{align} \int_1^{T}{\Delta_k}^2(x)dx& = \frac{k^2}{4\pi^2}\sum\limits_{l_1, l_2 = 0}^{k-1}D_{k, l_1, l_2}\int_1^{T}x^{2k-\frac{3}{2}}(\log x)^{l_1+l_2}dx +O\left(T^{2k-\frac{3}{5}+\varepsilon}\right)\\ & = \frac{k^2}{4\pi^2}T^{2k-\frac{1}{2}}L_{2k-2}(\log T)+O\left(T^{2k-\frac{3}{5}+\varepsilon}\right), \end{align} |
where we use integration by part several times to obtain L_{2k-2}(u) is a polynomial in u of degree 2k-2 denoted by
L_{2k-2}(u) = \sum\limits_{l_1, l_2 = 0}^{k-1}D_{k, l_1, l_2}\sum\limits_{r = 0}^{l_1+l_2}\frac{(-1)^r(l_1+l_2)!}{(2k-\frac{1}{2})^{r+1}(l_1+l_2-r)!}u^{l_1+l_2}. |
To sum up, this finishes the proof of the Theorem.
In this paper, we give an asymptotic formula of the mean square of \Delta_{k}(x) , which can be viewed as an analogue of (1.3). We use the convergence of the multivariable Dirichlet series, and it can be used to show the properties of other multivariable arithmetic functions. In 2023, Tóth[13], Heyman and Tóth[14] gave some useful applications of the Dirichlet series.
The author would like to appreciate the referee for his/her patience in refereeing this paper. This work is supported by Natural Science Foundation of Beijing Municipal (Grant No.1242003), and the National Natural Science Foundation of China (Grant Nos.12471009 and 12301006).
No potential conflicts of interest were reported by the author.
[1] |
G. F. Voronoï, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. Sci. École Norm. Sup., 21 (1904), 207–267. https://doi.org/10.24033/asens.539 doi: 10.24033/asens.539
![]() |
[2] | J. G. van der Corput, Zum teilerproblem, Math. Ann., 98 (1928), 697–716. https://doi.org/10.1007/BF01451619 |
[3] | G. Kolesnik, On the order of \zeta ({1\over 2}+it) and \Delta (R), Pacific J. Math., 98 (1982), 107–122. |
[4] |
M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc., 87 (2003), 591–609. https://doi.org/10.1112/S0024611503014485 doi: 10.1112/S0024611503014485
![]() |
[5] |
H. Cramér, Über zwei Sätze des Herrn G. H. Hardy, Math. Z., 15 (1922), 201–210. https://doi.org/10.1007/BF01494394 doi: 10.1007/BF01494394
![]() |
[6] | K. C. Tong, On division problems I, Acta Math. Sinica, 5 (1955), 313–324. |
[7] | E. Preissmann, Sur la moyenne quadratique du terme de reste du problème du cercle, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 151–154. |
[8] |
Y. K. Lau, K. M. Tsang, On the mean square formula of the error term in the Dirichlet divisor problem, Math. Proc. Cambridge Philos. Soc., 146 (2009), 277–287. https://doi.org/10.1017/S0305004108001874 doi: 10.1017/S0305004108001874
![]() |
[9] |
L. Tóth, W. Zhai, On multivariable averages of divisor functions, J. Number Theory, 192 (2018), 251–269. https://doi.org/10.1016/j.jnt.2018.04.015 doi: 10.1016/j.jnt.2018.04.015
![]() |
[10] | A. P. Ivić, The Riemann zeta-function, Wiley-Interscience Publication, 1985. |
[11] |
K. M. Tsang, Higher-power moments of \Delta(x), \; E(t) and P(x), Proc. London Math. Soc., 65 (1992), 65–84. https://doi.org/10.1112/plms/s3-65.1.65 doi: 10.1112/plms/s3-65.1.65
![]() |
[12] |
W. Zhai, On higher-power moments of \Delta(x) II, Acta Arith., 114 (2004), 35–54. https://doi.org/10.4064/aa114-1-3 doi: 10.4064/aa114-1-3
![]() |
[13] | L. Tóth, Short proofs, generalizations, and applications of certain identities concerning multiple Dirichlet series, J. Integer Seq., 26 (2023), 15. |
[14] |
R. Heyman, L. Tóth, Hyperbolic summation for functions of the GCD and LCM of several integers, Ramanujan J., 62 (2023), 273–290. https://doi.org/10.1007/s11139-022-00681-2 doi: 10.1007/s11139-022-00681-2
![]() |
1. | Zhen Guo, On the Symmetric Form of the Three Primes Theorem Weighted by Δ(x), 2025, 17, 2073-8994, 76, 10.3390/sym17010076 | |
2. | Zhen Guo, Xin Li, On moments of the error term of the multivariable kth divisor functions, 2025, 00193577, 10.1016/j.indag.2025.01.003 | |
3. | Zhen Guo, On sign changes of \Delta _k(x), 2025, 0019-5588, 10.1007/s13226-025-00760-2 |