Processing math: 100%
Research article

On the generalized Cochrane sum with Dirichlet characters

  • Received: 01 September 2023 Revised: 06 October 2023 Accepted: 31 October 2023 Published: 07 November 2023
  • MSC : 11F20, 11L05

  • In this paper, we defined a new generalized Cochrane sum with Dirichlet characters, and gave the upper bound of the generalized Cochrane sum with Dirichlet characters. Moreover, we studied the asymptotic estimation problem of the mean value of the generalized Cochrane sum with Dirichlet characters and obtained a sharp asymptotic formula for it. By using this asymptotic formula, we also gave the mean value of the generalized Dedekind sum.

    Citation: Jiankang Wang, Zhefeng Xu, Minmin Jia. On the generalized Cochrane sum with Dirichlet characters[J]. AIMS Mathematics, 2023, 8(12): 30182-30193. doi: 10.3934/math.20231542

    Related Papers:

    [1] Xuan Wang, Li Wang, Guohui Chen . The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters. AIMS Mathematics, 2024, 9(7): 17774-17783. doi: 10.3934/math.2024864
    [2] Lei Liu, Zhefeng Xu . Mean value of the Hardy sums over short intervals. AIMS Mathematics, 2020, 5(6): 5551-5563. doi: 10.3934/math.2020356
    [3] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [4] Wenjia Guo, Xiaoge Liu, Tianping Zhang . Dirichlet characters of the rational polynomials. AIMS Mathematics, 2022, 7(3): 3494-3508. doi: 10.3934/math.2022194
    [5] Zhuoyu Chen, Wenpeng Zhang . A new reciprocity formula of Dedekind sums and its applications. AIMS Mathematics, 2024, 9(5): 12814-12824. doi: 10.3934/math.2024626
    [6] Wenjia Guo, Yuankui Ma, Tianping Zhang . New identities involving Hardy sums $S_3(h, k)$ and general Kloosterman sums. AIMS Mathematics, 2021, 6(2): 1596-1606. doi: 10.3934/math.2021095
    [7] Guohui Chen, Wenpeng Zhang . One kind two-term exponential sums weighted by third-order character. AIMS Mathematics, 2024, 9(4): 9597-9607. doi: 10.3934/math.2024469
    [8] Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183
    [9] Yan Ma, Di Han . On the high-th mean of one special character sums modulo a prime. AIMS Mathematics, 2023, 8(11): 25804-25814. doi: 10.3934/math.20231316
    [10] Junfeng Cui, Li Wang . The generalized Kloosterman's sums and its fourth power mean. AIMS Mathematics, 2023, 8(11): 26590-26599. doi: 10.3934/math.20231359
  • In this paper, we defined a new generalized Cochrane sum with Dirichlet characters, and gave the upper bound of the generalized Cochrane sum with Dirichlet characters. Moreover, we studied the asymptotic estimation problem of the mean value of the generalized Cochrane sum with Dirichlet characters and obtained a sharp asymptotic formula for it. By using this asymptotic formula, we also gave the mean value of the generalized Dedekind sum.



    Let h,q be integers with q>0. The classical Dedekind sum s(h,q) is defined by

    s(h,q)=q1a=1((aq))((haq)),

    where

    ((x))={x[x]12,ifxis not an integer;0,ifxis an integer

    and [x] is the largest integer not exceeding x. The Dedekind sum plays an important role in the Dedekind η function and has applications to many parts of mathematics (see [7,11,12]).

    For any nonnegative integer n, let Bn and Bn(X) be the n-th Bernoulli number and polynomial, respectively, which is defined by

    tet1=n=0Bntnn!, tetXet1=n=0Bn(X)tnn!,

    where ¯Bn(X)=Bn(X[X]) is the n-th periodic Bernoulli function in the interval (0,1] for n>1, ¯B1(X)=B1(X[X]) and if X is an integer, then ¯B1(X)=0. For positive integers m,n, we have the generalized Dedekind sum

    S(h,m,n,q)=q1a=1¯Bm(aq)¯Bn(ahq).

    Let p be an odd prime and let χ be any even Dirichlet character mod p. For any integers n,k, Xie and Zhang [8] showed that if n is an odd integer, then

    p1h=1χ(h)|S(h,n,n,p)|2k=2(n!)4k42(n1)k(pζ(2n)2π2n)2k|L(2nk,χ)|2ζ(4nk)+O(p2knexp(6lnplnlnp)), (1.1)

    they also have the following result for any even integer n

    p1h=1χ(h)|S(h,n,n,p)|2k=2(n!)4k42(n1)k(pζ(2n)2π2n)2k|L(2nk,χ)|2ζ(4nk)+O(p2k1). (1.2)

    In October 2000, Professor Todd Cochrane first introduced a sum analogous to the Dedekind sum as follows:

    C(h,q)=qa=1((ˉaq))((haq)),

    where ˉa satisfies aˉa1(modq), qa=1 denotes the summation over all 1aq such that (a,q)=1. Many scholars studied the properties of C(h,q). Zhang and Yi [13] gave the following upper bound estimate:

    |C(h,q)|q12d(q)ln2q,

    where d(q) is the divisor function. Ma et al. [4] gave the upper bound estimate of the incomplete Cochrane sum.

    Xu and Zhang [9] defined the high-dimensional Cochrane sum by the following equation:

    C(h,k,q)=qa1=1qak=1((a1q))((akq))((h¯a1akq)).

    For any fixed positive integer k with (q,k(k+1))=1, they gave the following upper bound estimate:

    |C(h,k,q)|2(k+1)2πk+1qk2d(q)(2k+2k)ω(q)lnk+1q,

    where ω(q) denotes the number of all different prime divisors of q. Liu [5] improved this result.

    For positive integers m,n, the main purpose of this paper is to study the generalized Cochrane sum with any Dirichlet character χ mod q as follows:

    C(h,m,n,q,χ)=qa=1χ(a)¯Bm(¯aq)¯Bn(ahq),

    which is an interesting generalization of Cochrane sum. Ren and Yi [6] studied the mean square value of C(h,1,1,p,χ), for a prime p1mod4 and the Legendre's symbol χmodp, they obtained

    p1h=1|C(h,1,1,p,χ)|2=1180p2p1A(p21+1p211)2+O(p1+o(1)), (1.3)

    where A is the set of quadratic residues of p, p1 is prime which is not equal to p. Liu and Zhang [2,3] studied the mean square value of C(h,m,n,q,χ) and its hybrid mean value formula when χ is the principal Dirichlet character. In this paper, by using an upper bound estimate of the Kloosterman sum with Dirichlet characters, we show that

    Theorem 1.1. Let p be an odd prime and let χ be any Dirichlet character mod p. For any integers m,n, we have

    C(h,m,n,p,χ)m!n!(2π)(m+n)p12ln2p,

    if χ(1)(1)n+m, then C(h,m,n,p,χ)=0.

    We also obtain the mean square value of C(h,m,n,p,χ) as follows:

    Theorem 1.2. Let p be an odd prime and let χ be any Dirichlet character mod p. For any integers m,n with χ(1)=(1)n+m, we have

    p1h=1|C(h,m,n,p,χ)|2=8(m!n!)2p2(2πi)2(m+n)ζ(2m)ζ(2n)ζ(2m+2n)|L(m+n,χ)|2+O(p2min(n,m)exp(4lnplnlnp)).

    If χ1 mod a prime p1mod4 is the Legendre's symbol, then according to the value of the Dirichlet L-function L(2,χ1), we also can get (1.3):

    Corollary 1.3. Let p1mod4 be a prime and the Legendre's symbol χ1 mod p. We have

    p1h=1|C(h,1,1,p,χ1)|2=1180p2p1A(p21+1p211)2+O(pexp(4lnplnlnp)),

    where A is the set of quadratic residues of p, p1 is prime, which is not equal to p.

    Moreover, we give the mean square value of S(h,m,n,p,χ) as follows:

    Theorem 1.4. Let p be an odd prime and let χ be any Dirichlet character mod p. For any integers m,n with χ(1)=(1)n+m, we have

    p1h=1χ(h)S(¯h,m,m,p)S(h,n,n,p)=8(m!n!)2p2(2πi)2(m+n)ζ(2m)ζ(2n)ζ(2m+2n)|L(m+n,χ)|2+O(p2min(n,m)exp(4lnplnlnp)).

    Obviously, Theorem 1.4 generalizes and improves (1.1) and (1.2) when k=1.

    To prove theorems, we need the following several lemmas.

    Lemma 2.1. Let p be an odd prime and an integer h with (h,p)=1, and let χ1 be any Dirichlet character mod p. For any positive integers m,n, if χ1(1)(1)m+n then C(h,m,n,p,χ1)=0, and if χ1(1)=(1)n+m, then we have

    C(h,m,n,p,χ1)=4m!n!(2πi)m+n1ϕ(p)χmodpχχ1(1)=(1)m¯χ(h)(+r=1G(χχ1,r)rm)(+s=1G(χ,s)sn),

    and

    C(h,m,n,p,χ1)=4m!n!(2πi)m+n1ϕ(p)χmodpχχ1(1)=(1)m¯χ(h)τ(χ)τ(χχ1)L(m,¯χχ1)L(n,¯χ),

    where τ(χ)=G(χ,1), G(χ,r)=p1a=1χ(a)e(rap) denotes Gauss sum, L(n,χ)=+t=1χ(t)tn is a Dirichlet L-function.

    Proof. Applying the orthogonality of multiplicative characters, it follows that

    C(h,m,n,p,χ1)=p1a=1χ1(a)¯Bm(¯ap)¯Bn(ahp)=1ϕ(p)χmodp{p1a=1χχ1(a)¯Bm(ap)}{p1b=1χ(b)¯Bn(hbp)}.

    Noting that [1]

    ¯Bn(x)=n!(2πi)n+r=r0e(xr)rn,

    and G(χ,hn)=¯χ(h)G(χ,n). We have

    C(h,m,n,p,χ1)=1ϕ(p)χmodp{p1a=1(m!(2πi)m+r=r0χχ1(a)e(rap)rm)}×{p1b=1(n!(2πi)n+s=s0χ(b)e(sbhp)sn)}=m!n!(2πi)m+n1ϕ(p)χmodp{+r=r01rmp1a=1χχ1(a)e(rap)}×{+s=s01snp1b=1χ(b)e(sbhp)}=m!n!(2πi)m+n1ϕ(p)χmodp{+r=r0G(χχ1,r)rm}{+s=s0G(χ,sh)sn}=m!n!(2πi)m+n1ϕ(p)χmodp¯χ(h)(1+χχ1(1)(1)m)(+r=1G(χχ1,r)rm)×(1+χ(1)(1)n)(+s=1G(χ,s)sn)=4m!n!(2πi)m+n1ϕ(p)χmodpχχ1(1)=(1)m¯χ(h)(+r=1G(χχ1,r)rm)(+s=1G(χ,s)sn),

    where χ1(1)=(1)m+n. If χ1(1)(1)m+n, then C(h,m,n,p,χ1)=0.

    Moreover, we also have

    C(h,m,n,p,χ1)=4m!n!(2πi)m+n1ϕ(p)χmodpχχ1(1)=(1)m¯χ(h)τ(χ)τ(χχ1)L(m,¯χχ1)L(n,¯χ),

    where τ(χ)=G(χ,1).

    Lemma 2.2. Let p be a prime and let χ be any Dirichlet character mod p. For any integers r,s, we have

    |p1a=1χ(a)e(ra+s¯ap)|2p.

    Proof. See Lemma 1 of [10].

    Lemma 2.3. Let p be an odd prime and an integer h with (h,p)=1, and let χ be any Dirichlet character mod p, then we have

    χmodpχχ1(1)=(1)m¯χ(h)(r=1G(χχ1,r)rm)(s=1G(χ,s)sn)p32ln2p.

    Proof. For any fixed parameter Np, according to Abel's identity, we have

    r=1G(χχ1,r)rm=1rNG(χχ1,r)rm+m+NN<ryG(χχ1,r)rm+1dy.

    Since |G(χ,r)|p12, we have

    1rNG(χχ1,r)rmp121rN1rmp12lnN,

    and from the estimates for trigonometric sums we have

    N<ryG(χχ1,r)=p1a=1χχ1(a)N<rye(arp)=p1a=1χχ1(a)e((N+1)ap)e(([y]+1)ap)1e(ap)p1a=11|sinπap|p1a=1paplnp,

    it follows that

    m+NN<ryG(χχ1,r)rm+1dyplnpNm,

    then we have

    χmodpχχ1(1)=(1)m¯χ(h)(+r=1G(χχ1,r)rm)(+s=1G(χ,s)sn)=χmodpχχ1(1)=(1)m¯χ(h)(1rNG(χχ1,r)rm+m+NN<ryG(χχ1,r)rm+1dy)×(1rNG(χ,s)sn+n+NN<ryG(χ,s)sn+1dy)=χmodpχχ1(1)=(1)m¯χ(h)(Nr=1G(χχ1,r)rm)(Ns=1G(χ,s)sn)+nχmodpχχ1(1)=(1)m¯χ(h)(Nr=1G(χχ1,r)rm)(+NN<ryG(χ,s)sn+1dy)+mχmodpχχ1(1)=(1)m¯χ(h)(Ns=1G(χ,s)sn)(+NN<ryG(χχ1,r)rm+1dy)+mn(+NNryG(χχ1,r)rm+1dy)(+NN<ryG(χ,s)sn+1dy)χmodpχχ1(1)=(1)m¯χ1(h)(Nr=1G(χχ1,r)rm)(Ns=1G(χ,s)sn)+O(p32lnNlnpmin(Nm,Nn)).

    Note that

    χmodpχχ1(1)=(1)mχ(a)={12ϕ(p),a1modp;(1)mχ1(1)12ϕ(p),a1modp;0,otherwise. (2.1)

    Then, from the orthogonality of Dirichlet characters we find

    χmodpχχ1(1)=(1)m¯χ1(h)(Nr=1G(χχ1,r)rm)(Ns=1G(χ,s)sn)=χmodpχχ1(1)=(1)m¯χ(h)(1rNp1a=1χχ1(a)e(rap)rm)(1sNp1b=1χ(b)e(sbp)sn)=1rN1sN1rmsnp1a=1p1b=1χ1(a)e(ra+sbp)χmodpχχ1(1)=(1)mχ(a)χ(b)¯χ(h)=ϕ(p)21rN1sN1rmsnp1a=1p1b=1abhmodpχ1(a)e(ra+sbp)+(1)mχ1(1)ϕ(p)21rN1sN1rmsnp1a=1p1b=1abhmodpχ1(a)e(ra+sbp).

    According to Lemma 2.2, we obtain

    χmodpχχ1(1)=(1)m¯χ(h)(Nr=1G(χχ1,r)rm)(Ns=1G(χ,s)sn)p32ln2N.

    Taking N=p2, we can get Lemma 2.3

    χmodpχχ1(1)=(1)m¯χ(h)(+r=1G(χχ1,r)rm)(+s=1G(χ,s)sn)p32ln2p.

    Lemma 2.4. Let p be a prime and let χ be any Dirichlet character mod p. For any integers m,n, we have

    χmodpχχ1(1)=(1)n|L(n,χχ1)|2|L(m,χ)|2=(p1)ζ(2m)ζ(2n)2ζ(2m+2n)|L(n+m,χ1)|2+O(p1min(n,m)exp(4lnplnlnp)).

    Proof. First, we assume that n>m, according to Abel's identity we can write

    L(n,χχ1)L(m,χ)=t=1χ(t)D(t)tm=Nt=1χ(t)D(t)tm+mNB(y,χ)ym+1dy,

    where D(t)=d|tχ1(d)dnm, B(y,χ)=N<tyχ(t)D(t). We know that

    B(y,χ)=N<tyχ(t)D(t)=N<tyχ(t)dtχ1(d)dnm=tyχ(t)ly/tχχ1(l)lnm+lyχχ1(l)lnmty/lχ(t)tNχ(t)lN/tχχ1(l)lnmlNχχ1(l)lnmtN/lχ(t)tyχ(t)lyχχ1(l)lnm+lNχχ1(l)lnmtNχ(t).

    It follows that

    |B(y,χ)|ylny,
    χmodpχχ1(1)=(1)n|B(y,χ)|2yϕ(p)ln2y.

    From the Cauchy inequality we have

    χmodpχχ1(1)=(1)n|mNB(y,χ)ym+1dy|2{mN1ym+1(χmodpχχ1(1)=(1)n|B(y,χ)|2)1/2dt}2{mNym12ϕ12(p)lnydt}2ϕ(p)ln2NN2m1.

    From (2.1), we have

    χmodpχχ1(1)=(1)n|Nn1=1χ(n1)D(n1)nm1|2=ϕ(p)21n1,n2Nn1n2(modp)(n1n2,p)=1D(n1)¯D(n2)nm1nm2+χ1(1)(1)nϕ(p)21n1,n2Nn1n2(modp)(n1n2,p)=1D(n1)¯D(n2)nm1nm2=ϕ(p)21n1N(n1,p)=1|D(n1)|2n2m1+O(ϕ(p)Nn2=1[N/p]l=1d(n2)d(lp+n2)nm2(lp+n2)m)+O(ϕ(p)p1n1=1d(n1)d(qn1)nm1(pn1)m)+O(ϕ(p)Nn1=1[N/p]l=1+n1/pd(n1)d(lpn1)nm1(lpn1)m)=ϕ(p)21n1(n1,p)=1|D(n1)|2n2m1+O(ϕ(p)pmexp(2lnNlnlnN)),

    noting that |D(n1)|d(n1)=tn11exp((1+ϵ)ln2lnNlnlnN), it follows that

    χmodpχχ1(1)=(1)n(Nt=1χ(t)D(t)tm)(mNB(y,χ)ym+1dy)(lnN)2N1ym+1(χmodpχ(1)=(1)n|B(y,χ)|)dyϕ(p)N12m(lnN)3.

    Taking N=p2 and ϕ(p)=p1, then

    χmodpχχ1(1)=(1)n|L(n,χχ1)|2|L(m,χ)|2=p121n1(n1,p)=1|D(n1)|2n2m1+O(p1mexp(4lnplnlnp)).

    From the Euler product formula, we can get

    n1=1(n1,p)=1|D(n1)|2n2m1=p1p(1+|D(p1)|2p2m1+|D(p21)|2p4m1++|D(pk1)|2p2mk1+)

    and

    D(pk1)=1+χ1(p1)pnm1+(χ1(p1)pnm1)2++(χ1(p1)pnm1)k=1(χ1(p1)pnm1)k+11χ1(p1)pnm1,

    and it is straightforward to show that

    n1=1(n1,p)=1|D(n1)|2n2m1=p1p111p2m1+1p2n2m111p2n1χ1(p1)pnm11χ1(p1)pn+m1¯χ1(p1)pnm11¯χ1(p1)pn+m1|1χ1(p1)pnm1|2=p1p11p2m+2n1(11p2m1)(11p2n1)1|1χ1(p1)pn+m1|2=ζ(2m)ζ(2n)ζ(2m+2n)|L(n+m,χ1)|2(11p2m)(11p2n)11p2m+2n=ζ(2m)ζ(2n)ζ(2m+2n)|L(n+m,χ1)|2+O(p2m).

    Similarly, we also have Lemma 2.4 for nm.

    Now, we prove our theorems by using the above lemmas.

    Proof of Theorem 1.1. Combining Lemma 2.1 and Lemma 2.3, we have

    C(h,m,n,p,χ)m!n!(2π)(m+n)p12ln2p.

    Proof of Theorem 1.2. From Lemma 2.1 and Lemma 2.4, we have

    p1h=1|C(h,m,n,p,χ)|2=16(m!n!)2(2πi)2(m+n)1ϕ2(p)p1h=1|χ1modpχχ1(1)=(1)m¯χ1(h)τ(χ1)τ(χχ1)L(m,¯χχ1)L(n,¯χ1)|2=16(m!n!)2(2πi)2(m+n)p2ϕ(p)χ1modpχχ1(1)=(1)m|L(m,¯χχ1)L(n,¯χ1)|2=8(m!n!)2p2(2πi)2(m+n)ζ(2m)ζ(2n)ζ(2m+2n)|L(m+n,χ)|2+O(p2min(n,m)exp(4lnplnlnp)).

    This proves Theorem 1.2.

    Proof of Theorem 1.4. From the definition of C(h,m,n,p,χ) and the orthogonality of Dirichlet characters, we have

    |C(h,m,n,p,χ)|2=|p1a=1χ(a)¯Bm(¯ap)¯Bn(ahp)|2={p1a=1χ(a)¯Bm(¯ap)¯Bn(ahp)}{p1b=1¯χ(b)¯Bm(¯bp)¯Bn(bhp)}=p1a=1p1b=1χ(a)¯Bm(¯abp)¯Bn(abhp)¯Bm(¯bp)¯Bn(bhp)=1ϕ(p)χ1modpp1a=1χ(a){p1b=1χ1(b)¯Bm(¯abp)¯Bm(bp)}×{p1c=1χ1(c)¯Bn(hcp)¯Bn(ahcp)}=1ϕ(p)χ1modp¯χ1(h)p1a=1χ(a){p1b=1χ1(b)¯Bm(¯abp)¯Bm(bp)}×{p1c=1χ1(c)¯Bn(cp)¯Bn(acp)},

    it follows that

    p1h=1|C(h,m,n,p,χ)|2=1ϕ(p)p1h=1χ1modp¯χ1(h)p1a=1χ(a){p1b=1χ1(b)¯Bm(¯abp)¯Bm(bp)}×{p1c=1χ1(c)¯Bn(cp)¯Bn(acp)}=p1a=1χ(a){p1b=1¯Bm(¯abp)¯Bm(bp)}{p1c=1¯Bn(cp)¯Bn(acp)}.

    Thus, from Theorem 1.2, we have

    p1h=1χ(h)S(¯h,m,m,p)S(h,n,n,p)=8(m!n!)2p2(2πi)2(m+n)ζ(2m)ζ(2n)ζ(2m+2n)|L(m+n,χ)|2+O(p2min(n,m)exp(4lnplnlnp)).

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the National Natural Science Foundation of China (11971381).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
    [2] H. Y. Liu, W. P. Zhang, On the mean square value of a generalized Cochrane sum, Soochow J. Math., 30 (2004), 165–175.
    [3] H. Y. Liu, W. P. Zhang, On a generalized Cochrane sum and its hybrid mean value formula, Ramanujan J., 9 (2005), 373–380. https://doi.org/10.1007/s11139-005-1874-5 doi: 10.1007/s11139-005-1874-5
    [4] Y. K. Ma, W. P. Zhang, T. P. Zhang, Upper bound estimate of incomplete Cochrane sum, Open Math., 15 (2017), 852–858. https://doi.org/10.1515/math-2017-0068 doi: 10.1515/math-2017-0068
    [5] H. Y. Liu, A note on the upper bound estimate of high-dimensional Cochrane sums, J. Number Theory, 125 (2007), 7–13. https://doi.org/10.1016/j.jnt.2006.10.008 doi: 10.1016/j.jnt.2006.10.008
    [6] D. M. Ren, Y. Yi, On the mean value of general Cochrane sum, Proc. Japan Acad. Ser. A Math. Sci., 86 (2010), 1–5. https://doi.org/10.3792/pjaa.86.1 doi: 10.3792/pjaa.86.1
    [7] H. Rademacher, E. Grosswald, Dedekind sums, Carus Math. Monographs, 1972.
    [8] M. Xie, W. P. Zhang, On the 2kth mean value formula of general Dedekind sums, Acta Math. Sin. (Chinese Series), 44 (2001), 85–94.
    [9] Z. F. Xu, W. P. Zhang, On the order of the high-dimensional Cochrane sum and its mean value, J. Number Theory, 117 (2006), 131–145. https://doi.org/10.1016/j.jnt.2005.05.005 doi: 10.1016/j.jnt.2005.05.005
    [10] H. Zhang, W. P. Zhang, Some new sums related to D. H. Lehmer problem, Czech. Math. J., 65 (2015), 915–922. https://doi.org/10.1007/s10587-015-0217-y doi: 10.1007/s10587-015-0217-y
    [11] W. P. Zhang, On the mean values of Dedekind sums, J. Théor. Nombres Bordeaux, 8 (1996), 429–422. https://doi.org/10.5802/JTNB.179 doi: 10.5802/JTNB.179
    [12] W. P. Zhang, A note on the mean square value of the Dedekind sums, Acta Math. Hungar., 86 (2000), 275–289. https://doi.org/10.1023/A:1006724724840 doi: 10.1023/A:1006724724840
    [13] W. P. Zhang, Y. Yi, On the upper bound estimate of Cochrane sums, Soochow J. Math., 28 (2002), 297–304.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1186) PDF downloads(48) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog