Research article Special Issues

Hermite-Hadamard and Ostrowski type inequalities via α-exponential type convex functions with applications

  • This paper introduced and investigated a new form of convex mapping known as α-exponential type convexity. We presented several algebraic properties associated with this newly introduced convexity. Additionally, we established novel adaptations of well-known inequalities, including the Hermite-Hadamard and Ostrowski-type inequalities, specifically for this convex function. We also derived special cases of these newly established results. Furthermore, we provided new estimations for the trapezoidal formula, demonstrating practical applications of this research.

    Citation: Attazar Bakht, Matloob Anwar. Hermite-Hadamard and Ostrowski type inequalities via α-exponential type convex functions with applications[J]. AIMS Mathematics, 2024, 9(4): 9519-9535. doi: 10.3934/math.2024465

    Related Papers:

    [1] Hawsar Ali Hama Rashid, Mudhafar Fattah Hama . Approximate solutions for a class of nonlinear Volterra-Fredholm integro-differential equations under Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 463-483. doi: 10.3934/math.2023022
    [2] Hawsar HamaRashid, Hari Mohan Srivastava, Mudhafar Hama, Pshtiwan Othman Mohammed, Musawa Yahya Almusawa, Dumitru Baleanu . Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra-Fredholm integro type. AIMS Mathematics, 2023, 8(6): 14572-14591. doi: 10.3934/math.2023745
    [3] Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876
    [4] Zena Talal Yassin, Waleed Al-Hayani, Ali F. Jameel, Ala Amourah, Nidal Anakira . Solving fuzzy system of Fredholm integro-differential equations of the second kind by using homotopy analysis method. AIMS Mathematics, 2025, 10(1): 1704-1740. doi: 10.3934/math.2025078
    [5] Mahmoud A. Zaky, Weam G. Alharbi, Marwa M. Alzubaidi, R.T. Matoog . A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations. AIMS Mathematics, 2025, 10(3): 7067-7085. doi: 10.3934/math.2025322
    [6] Xing Hu, Yongkun Li . Multiplicity result to a system of over-determined Fredholm fractional integro-differential equations on time scales. AIMS Mathematics, 2022, 7(2): 2646-2665. doi: 10.3934/math.2022149
    [7] A. H. Tedjani, A. Z. Amin, Abdel-Haleem Abdel-Aty, M. A. Abdelkawy, Mona Mahmoud . Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis. AIMS Mathematics, 2024, 9(4): 7973-8000. doi: 10.3934/math.2024388
    [8] Prabakaran Raghavendran, Tharmalingam Gunasekar, Irshad Ayoob, Nabil Mlaiki . AI-driven controllability analysis of fractional impulsive neutral Volterra-Fredholm integro-differential equations with state-dependent delay. AIMS Mathematics, 2025, 10(4): 9342-9368. doi: 10.3934/math.2025432
    [9] Azzh Saad Alshehry, Humaira Yasmin, Rasool Shah, Roman Ullah, Asfandyar Khan . Numerical simulation and analysis of fractional-order Phi-Four equation. AIMS Mathematics, 2023, 8(11): 27175-27199. doi: 10.3934/math.20231390
    [10] Mian Bahadur Zada, Muhammad Sarwar, Reny George, Zoran D. Mitrović . Darbo-Type Zm and Lm contractions and its applications to Caputo fractional integro-differential equations. AIMS Mathematics, 2021, 6(6): 6340-6355. doi: 10.3934/math.2021372
  • This paper introduced and investigated a new form of convex mapping known as α-exponential type convexity. We presented several algebraic properties associated with this newly introduced convexity. Additionally, we established novel adaptations of well-known inequalities, including the Hermite-Hadamard and Ostrowski-type inequalities, specifically for this convex function. We also derived special cases of these newly established results. Furthermore, we provided new estimations for the trapezoidal formula, demonstrating practical applications of this research.



    The integral equations provide an important tool for modeling the numerous phenomenons and for solving boundary value problems. In addition, the references [1,2,3], studied the different applications of partial differential equations and analysis in applied mathematics. Kazemi et al. [4] discussed an efficient iterative method based on quadrature formula to solve two-dimensional nonlinear Fredholm integral equations. Fattahzadeh [5] solved two-dimensional linear and nonlinear FIE of the first kind based on Haar wavelet. Torabi and Tari [6] solved T-DIE of the first kind by multi-step method. Atabakan et al. [7] introduced the solving linear FIDEs using the well-known Chebyshev-Gauss-Lobatto collocation points. Rabbani and Zarali [8] discussed the technique of modified decomposition method to solve a system of LIDEs with initial conditions. Arqub et al. [9] discussed the numerical solution of FIDE in a reproducing kernel Hilbert space. Pandey [10] considered a non-standard finite difference method for numerical solution of LFIDEs. Erfanian and Zeidabadi [11] discussed a numerical method for the solutions of the NFIDE in the complex plane is presented. Saadatmandi and Dehghan [12] studied the higher-order LFIDDE with variable coefficients. All previous studies have studied the integro-differential equation in one dimension only. The goal of this paper is to study the N-FIDE of the second kind in two-dimensional.

    Consider

    u(m,n)+A(m,n)u(m,n)+B(m,n)u(m,n)
    =Q(m,n)λbadcL(m,n,t,s)γ(t,s,u(t,s))dtds (1)

    Under the boundary conditions:

    u(a,c)=q1r1,u(b,d)=q2r2 (2)

    Where (m,n)J,J=[a,b]×[c,d], is a continuous nonlinear in u given function, and u is the unknown function represents solution of the NT-DIDE (1). Also, λ is a constant. A (m, n), B (m, n), are known continuous functions in the class C [a, bC [a, b] with its derivatives. Integrating (1), twice, then letting m = b, n = d, then, Eq (1) reduce to

    u(m,n)=f(m,n)+λbadcp(m,n,t,s)γ(t,s,u(t,s))dtds (3)

    Equation (3) represents T-DFIDE in the nonlinear case.

    Theorem 1. Consider a metric space =(M,d) XΦ. Suppose that M is complete and let T:MM be a contraction on M. Then T has precisely one fixed point. In addition, we can write the formula of Eq (3) in the integral operator form

    ˉWu(m,n)=f(m,n)+Wu(m,n), (4)

    where

    Wu(m,n)=λbadcp(m,n,t,s)γ(t,s,u(t,s))dtds (5)

    In addition, we assume the following conditions:

    1. The (m,n,t,s), should be satisfies |p(m,n,t,s)|N.

    2. f (m, n)is continuous in C[a,b]×C[c,d], and its norm is defined as

    ||f(m,n)||={badc|f(m,n)|2dmdn}12=δ,(δ is a constant).

    3. The known continuous function γ(m,n,u(m,n)) satisfies, for the constant A>A1,A>P the following conditions

    i{badc|γ(m,n,u(m,n))|2dmdn}12A1||u(m,n)||ii|γ(m,n,u1(m,n))γ(m,n,u2(m,n))|M(m,n)|u1(m,n)u2(m,n)|,

    where ||M(m,n)||=P.

    4. The unknown function u(x,y), behaves in C[a,b]×C[c,d] as the given function f(x,y) and its norm is defined as

    ||u(m,n)||=|badc|u(m,n)|2dmdn|12.

    Theorem 2. If the conditions (1)–(3) are verified, then Eq (3) has a unique solution in C[a,b]×C[c,d].

    Lemma 1. Under the conditions (1)–(3-i), the operator W defined by (4), maps the space C[a,b]×C[c,d] into itself.

    Proof. In view of the formulas (4) and (5), we get

    ||ˉWu(m,n)||||f(m,n)||+|λ|||badc|p(m,n,t,s)||γ(t,s,u(t,s)|dtds|| (6)

    Using the condition (2), we have

    ||ˉWu(m,n)||δ+|λ|(|p(m,n,t,s)|)(badc|γ(m,n,u(m,n)|2dmdn)12 (7)

    Using conditions (1) and (3-i):

    ||ˉWu(m,n)||δ+σ||u(m,n)||,(σ=|λ|NA) (8)

    Moreover, the inequality (5) involves the roundedness of the operator W of Eq (4), where

    ||Wu(m,n)||σ||u(m,n)||. (9)

    Lemma 2. If the conditions (1) and (3-ii) are satisfied, then the operator W is a contractive in the Banach space C[a,b]×C[a,b].

    Proof. For u1(m,n) and u2(m,n) in C[a,b]×C[c,d], the formulas (4) and (5) lead to

    ||(ˉWu1ˉWu2)(m,n)|||λ|||badc|p(m,n,t,s)||γ(t,s,u1(t,s))γ(t,s,u2(t,s))|dtds|| (10)

    From the condition (3-ii), we have

    ||(ˉWu1ˉWu2)(m,n)|||λ|(|p(m,n,t,s)|)(badcM2(t,s)|u1(t,s)u2(t,s)|2dtds)12 (11)

    Finally, we obtain

    ||(ˉWu1ˉWu2)(m,n)||σ||u1(m,n)u2(m,n)|| (12)

    In this section, we will solve the nonlinear T-DFIDE by using the ADM. New algorithms for applying the ADM to nonlinear differential and partial differential equations have been introduced in Behiry et al. [13]. In addition, the error analysis of Adomian series solution for a class of NDIs have been discussed in El-Kalla [14]. A reliable approach for convergence of the ADM when applied to a class of NVIEs have been discussed in El-Kalla [15], also ADM is employed to solve nonlinear FIEs of the second kind in Atia et al. [16]. EL-Kalla in [17] the proof of convergence of ADM has been applied to a class of NVI-DEs. In [18], Parviz et al. solved systems of FI-DEs by ADM. In [19], Abdou et al. studied the convergence of the series solution to a class of NT-DHIE, and solved it by using ADM and HAM. Zeidan et al. [20] discussed a novel Adomian decomposition method for the solution of Burgers' equation.

    In this section, we will discuss and solve the NT-DFIDE of the second kind using ADM. In addition, numerical experiments are prepared to illustrate these considerations, and the estimating error is calculated.

    Consider Eq (3), where f(m,n) is assumed to be bounded m,nJ=[a,b]×[c,d], and |p(m,n,t,s)|N. The nonlinear term γ(t,s,u(t,s)) is Lipchitz continuous with |γ(u)γ(h)|L|uh| Define (C[a,b]×C[c,d],d) the space of all continuous functions on the rectangle [a,b]×[c,d] with the distance function d(h,u) where

    d(h,u)=maxx,yJ|h(m,n)u(m,n)| (13)

    u(m,n) is assumed of the form:

    u(m,n)=n=0un(m,n). (14)

    While the nonlinear term γ(t,s,u) in Eq (3) is decomposed into an infinite series

    γ(t,s,u)=n=0An. (15)

    Where the traditional formula of An is:

    An=1n!dndλn[γ(i=0λiui)]λ=0. (16)

    Another formula of Adomian polynomials is given by:

    An=γ(Sn)n1i=0Ai. (17)

    Where,

    Sn=ni=0ui(m,n), (18)

    Then, applying the ADM to Eq (3), yields

    u(m,n)=n=0un(m,n). (19)

    Where

    u0(m,n)=f(m,n) (20)
    ui(m,n)=λbadcp(m,n,t,s)Ai1dtds,i1. (21)

    In this section, we will solve the nonlinear T-DFIDE by using the HAM. This study is new, as we have noted that all previous research has been integro differential equation solved in one dimension using this method.

    Consider Eq (3), where, p(m,n,t,s) and f(x,y) are known functions, γ(t,s,u(t,s)) is a known function of u.

    For description of the method, we consider:

    N[u]=u(m,n)f(m,n)badcp(m,n,t,s)γ(t,s,u(t,s))dtds=0. (22)

    Where, N is nonlinear operator. Let u0(m,n) denote an initial guess of the exact solution u(m,n), h0 an auxiliary parameter, H(m,n) an auxiliary function, L[g(m,n)]=0 when g(m,n)=0. Then using r[0,1], we construct such a homotopy.

    (1r)L[φ(m,n;r)u0(m,n)]rhH(m,n)N[φ(m,n;r)]=H[φ(m,n;r);u0(m,n),H(m,n),h,r]. (23)

    It should be emphasized that we have great freedom to choose the initial guess u0(m,n), the auxiliary linear operator L, the non-zero auxiliary parameter h, and the auxiliary function H(m,n), ˆH is the second auxiliary function, enforcing the homotopy (23) to be zero, i.e.,

    ˆH[φ(m,nr);u0(m,n),H(m,n),h,r].

    Then, we get:

    (1r)L[φ(m,n;r)u0(m,n)]=rhH(m,n)N[φ(m,n;r)]. (24)

    When r=0, then (24) becomes

    φ(m,n;0)=u0(m,n). (25)

    Also, when r=1, and h0,H(m,n)0 then (24) is equivalent to

    φ(m,n;1)=u(m,n). (26)

    Thus, according to (25) and (26), as the embedding parameter r increases from 0 to 1, ϕ(m,n;r) varies continuously from the initial approximation u0(m,n) to the exact solution u(m,n) such a kind of continuous variation is called deformation in homotopy. ϕ(x,y;r), can be represents the power series of r as follows:

    φ(m,n;r)=u0(m,n)+l=1ul(m,n)rl. (27)

    Where

    ul(m,n)=1l!φ(m,n;r)rl|r=0. (28)

    Then, under these assumptions, we have

    u(m,n)=φ(m,n;1)=u0(m,n)+l=1ul(m,n)r. (29)

    Then,

    ˉun(m,n)={u0(m,n),u1(m,n),...,un(m,n)}. (30)

    According to the Eq (28), the governing equation of um(x,y) can be derived from the zero-order deformation equation (24). Differentiating the zero-order deformation equation (24) l times with respective to r and then dividing by l!, and setting r = 0, we have the so-called mth-order deformation equation:

    L[ul(m,n)ηlul1(m,n)]=hH(m,n)Rl(ˉul1(m,n))ul(0,0)=0. (31)

    Where

    Rl(ˉul1(m,n))=1(l1)!l1N[φ(m,n;r)rl1|r=0. (32)

    And

    ηl={0l11l>1. (33)

    In this section, we will use the HAM to solve nonlinear T-DFIDE in two-dimensional (3), which can be written in the form

    u(m,n)=f(m,n)+λbadcp(m,n,t,s)[u(t,s)]Pdtds (34)

    p is a positive integer, and p(m,n,t,s). For this, assume:

    N[u]=u(m,n)f(m,n)λbadcp(m,n,t,s)[u(t,s)]Pdtds (35)

    The corresponding mth-order deformation Eq (31) reads

    L[ul(m,n)ηlul1(m,n)]=hH(m,n)Rl1(ˉul1(m,n))ul(0,0)=0. (36)

    Where

    Rl1(ˉul1(m,n))=ul1(1ηl)fbadcp(m,n,t,s)Rl1(φP)dtds (37)
    l(φP)=ls1=0uls1s1s2=0us1s2s2s3=0us2s3...sP3sP2=0usP3sP2sP2sP1=0usP2sP1usP1. (38)

    So, to obtain a simple iteration formula for um(x,y), choose Lu=u, then substituting into (36) to obtain:

    u0(m,n)=f(m,n) (39)
    ul(m,n)=badcp(m,n,t,s)Rl1(φP)dtds,l=1,2, (40)

    In addition, we get:

    u(m,n)=l=0ul(m,n) (41)

    Example 1. Consider

    u(m,n)+Au(m,n)+Bu(m,n)=Q(m,n)1010(em,n.s2)(u(t,s))kdtds (42)

    under the boundary conditions:

    u(0,0)=0,u(1,1)=0. (43)

    The exact solution is u (m, n) = m.n, if we set k = 1, in (42), one has

    u(m,n)+Au(m,n)+Bu(m,n)=Q(m,n)1010(emn.s2)(u(t,s))dtds. (44)

    Which called the LT-DFIDE, and if we set k2 in (42), we obtained the NT-DFIDE, of the second kind, with λ=1,A=(2/m+n),B=1. In addition, the corresponding errors for the nonlinear and linear cases are computed. We solve Eq (42) using ADM and HAM. In the following Tables 1 and 2, we present the exact, numerical solutions and the corresponding errors for some points of m, n, 0m,n1, at N = 10. Maple 10 is used to carry out the computations. In Tables 1 and 2, uExact → the exact solution, uADM →approximate solution of ADM, ErrorADM→ the absolute error of ADM, uHAM →approximate solution of HAM, ErrorHAM → the absolute error of HAM.

    Table 1.  Numerical results and absolute error values by using HAM and ADM, N = 10, at linear case k = 1.
    m n uExact ADM HAM
    uADM ErrorADM uHAM ErrorHAM
    0.0 0.0 0.00 0.00012207 0.000122070 0.00012207 0.000122070
    0.1 0.1 0.01 0.00987670 0.000123297 0.00987670 0.000123297
    0.2 0.2 0.04 0.03987294 0.000127052 0.03987294 0.000127052
    0.3 0.3 0.09 0.08986643 0.000133566 0.08986643 0.000133566
    0.4 0.4 0.16 0.15985674 0.000143250 0.15985674 0.000143250
    0.5 0.5 0.25 0.24984325 0.000156741 0.24984325 0.000156741
    0.6 0.6 0.36 0.35982503 0.000174966 0.35982503 0.000174967
    0.7 0.7 0.49 0.48980074 0.000199257 0.48980074 0.000199257
    0.8 0.8 0.64 0.63976849 0.000231503 0.63976849 0.000231504
    0.9 0.9 0.81 0.80972559 0.000274402 0.80972559 0.000274402
    1.0 1.0 1.00 0.99966817 0.000331821 0.99966817 0.000331821

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical results and absolute error values by using HAM and ADM, N = 10, at nonlinear case k = 2.
    m n uExact ADM HAM
    uADM ErrorADM uHAM ErrorHAM
    0.0 0.0 0.00 0.347×10-8 0.347000×10-8 0.347×10-8 0.347×10-8
    0.1 0.1 0.01 0.00999999 0.350487×10-8 0.009999996 0.3505×10-8
    0.2 0.2 0.04 0.03999999 0.361661×10-8 0.039999996 0.3610×10-8
    0.3 0.3 0.09 0.08999999 0.379678×10-8 0.089999996 0.3800×10-8
    0.4 0.4 0.16 0.15999999 0.407208×10-8 0.159999995 0.4100×10-8
    0.5 0.5 0.25 0.24999999 0.445556×10-8 0.249999995 0.4500×10-8
    0.6 0.6 0.36 0.35999999 0.497365×10-8 0.359999995 0.5000×10-8
    0.7 0.7 0.49 0.48999999 0.566413×10-8 0.489999994 0.5700×10-8
    0.8 0.8 0.64 0.63999999 0.658078×10-8 0.639999993 0.6600×10-8
    0.9 0.9 0.81 0.80999999 0.780024×10-8 0.809999992 0.7800×10-8
    1.0 1.0 1.00 0.99999999 0.34700×10-8 0.999999999 0.3400×10-8

     | Show Table
    DownLoad: CSV

    Example 2. Consider

    u(m,n)+Au(m,n)+Bu(m,n)=Q(m,n)1010(sin(m.n).s2)(u(t,s))kdtds (45)

    Under the boundary conditions:

    u(0,0)=0,u(1,1)=0 (46)

    The exact solution is u (m, n) = m.n, if we set k = 1, in (45), one has

    u(m,n)+Au(m,n)+Bu(m,n)=Q(m,n)1010(sin(m.n).s2)(u(t,s))dtds (47)

    Which called the LT-DFIDE, and if we set k2 in (45), we obtained the NT-DFIDE, of the second kind, with λ=1,A=(2/m+n),B=1,0m,n1 at N = 10. In Tables 3 and 4, uExact → the exact solution, uADM →approximate solution of ADM, ErrorADM → the absolute error of ADM, uHAM →approximate solution of HAM, ErrorHAM → the absolute error of HAM.

    Table 3.  Numerical results and absolute error values by using HAM and ADM, N = 10, at linear case k = 1.
    m n uExact ADM HAM
    uADM ErrorADM uHAM ErrorHAM
    0.0 0.0 0.00 0.0000000 0.00000000 0.0000000 0.000000
    0.1 0.1 0.01 0.0099999 0.1999966×10-11 0.00999999 0.2×10-12
    0.2 0.2 0.04 0.0399999 0.7997866×10-11 0.03999999 0.1×10-10
    0.3 0.3 0.09 0.0899999 0.1797570×10-10 0.08999999 0.2×10-10
    0.4 0.4 0.16 0.1600000 0.3186364×10-10 0.16000000 0.00000
    0.5 0.5 0.25 0.2500000 0.4948079×10-10 0.25000000 0.00000
    0.6 0.6 0.36 0.3599999 0.7045484×10-10 0.35999999 0.1×10-9
    0.7 0.7 0.49 0.4899999 0.9412517×10-10 0.48999999 0.1×10-9
    0.8 0.8 0.64 0.6399999 0.1194390×10-9 0.63999999 0.1×10-9
    0.9 0.9 0.81 0.8099999 0.1448574×10-9 0.80999999 0.1×10-9
    1.0 1.0 1.00 0.9999999 0.200×10-9 0.99999999 0.2×10-9

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical results and absolute error values by using HAM and ADM, N = 10, at nonlinear case k = 2.
    m n uExact ADM HAM
    uADM ErrorADM uHAM ErrorHAM
    0.0 0.0 0.00 0.0000000 0.0000000 0.0000000 0.0000000
    0.1 0.1 0.01 0.0100000 0.9999833×10-13 0.0100000 0.9999833×10-12
    0.2 0.2 0.04 0.0400000 0.3998933×10-12 0.0400000 0.3998933×10-12
    0.3 0.3 0.09 0.0900000 0.8987854×10-12 0.0900000 0.8987854×10-12
    0.4 0.4 0.16 0.1600000 0.1593182×10-11 0.1600000 0.1593182×10-11
    0.5 0.5 0.25 0.2500000 0.2474039×10-11 0.2500000 0.2474039×10-11
    0.6 0.6 0.36 0.3600000 0.3522742×10-11 0.3600000 0.3522742×10-11
    0.7 0.7 0.49 0.4900000 0.4706258×10-11 0.4900000 0.4706258×10-11
    0.8 0.8 0.64 0.6400000 0.5971954×10-11 0.6400000 0.5971954×10-11
    0.9 0.9 0.81 0.8100000 0.7242871×10-11 0.8100000 0.7242871×10-10
    1.0 1.0 1.00 1.000000 0.1×10-10 1.000000 0.1×10-10

     | Show Table
    DownLoad: CSV

    Example 3. Consider

    u(m,n)+Au(m,n)+Bu(m,n)=Q(m,n)λ1010(sin(m.n).s7/3)(u(t,s))kdtds (48)

    Under the boundary conditions:

    u(0,0)=0,u(1,1)=0.01 (49)

    The exact solution is u (m, n) = m.n, if we set k = 1, in (48), one has

    u(m,n)+Au(m,n)+Bu(m,n)=Q(m,n)λ1010(sin(m.n).s7/3)(u(t,s))dtds (50)

    Which called the LT-DFIDE, and if we set k2 in (48), we obtained the NT-DFIDE, of the second kind, with λ=0.001,A=(2/m+n),B=1, 0m,n1, at N = 10. In Tables 5 and 6, uExact → the exact solution, uADM →approximate solution of ADM, ErrorADM → the absolute error of ADM, uHAM →approximate solution of HAM, ErrorHAM → the absolute error of HAM.

    Table 5.  Numerical results and absolute error values by using HAM and ADM, N = 10, at linear case k = 1.
    m n uExact ADM HAM
    uADM ErrorADM uHAM ErrorHAM
    0.0 0.0 0.00 0.01000000 0.01000000 0.0100000 0.01000000
    0.1 0.1 0.01 0.01981500 0.00981500 0.0198890 0.00988907
    0.2 0.2 0.04 0.04926020 0.00926020 0.04955642 0.00955640
    0.3 0.3 0.09 0.09833725 0.00833725 0.09900303 0.00900303
    0.4 0.4 0.16 0.16705262 0.00705262 0.16823278 0.00823278
    0.5 0.5 0.25 0.25542305 0.00542305 0.25725570 0.00725570
    0.6 0.6 0.36 0.36348296 0.00348296 0.36609244 0.00609244
    0.7 0.7 0.49 0.49129346 0.00129346 0.49477944 0.00477964
    0.8 0.8 0.64 0.63895194 0.00104805 0.64337568 0.00337568
    0.9 0.9 0.81 0.80660075 0.00339924 0.81196594 0.00196594
    1.0 1.0 1.00 0.99443286 0.00556714 1.00066609 0.00066609

     | Show Table
    DownLoad: CSV
    Table 6.  Numerical results and absolute error values by using HAM and ADM, N = 10, at nonlinear case k = 2.
    m n uExact ADM HAM
    uADM ErrorADM uHAM ErrorHAM
    0.0 0.0 0.00 0.01000000 0.0100000 0.01000000 0.0100000
    0.1 0.1 0.01 0.01988900 0.0098890 0.01988900 0.0098890
    0.2 0.2 0.04 0.49556124 0.00955612 0.04955612 0.0095561
    0.3 0.3 0.09 0.09900236 0.00900236 0.09900236 0.0090023
    0.4 0.4 0.16 0.16823159 0.00823159 0.16823159 0.0082315
    0.5 0.5 0.25 0.25725385 0.00725385 0.25725385 0.0072538
    0.6 0.6 0.36 0.36608980 0.00608071 0.36608980 0.0060898
    0.7 0.7 0.49 0.49477612 0.00477612 0.49477612 0.00477612
    0.8 0.8 0.64 0.64337121 0.00337121 0.64337121 0.00337121
    0.9 0.9 0.81 0.81196051 0.00196051 0.81196051 0.00196051
    1.0 1.0 1.00 1.00065979 0.00065979 1.00065979 0.00065979

     | Show Table
    DownLoad: CSV

    The goal of this work is studied the NFIDE of the second kind in two-dimensional. This paper proposed an effective two numerical methods to obtain the solution. For this purpose, ADM and HAM has been presented. The given numerical examples showed the efficiency and accuracy of the ADM and HAM. From the previous numerical results we deduce in linear case both ADM and HAM give the same approximate solution. In the nonlinear case, it was found that, ADM converges faster than HAM. Also, the values of absolute errors for linear case larger than the values of errors for nonlinear case. The codes were written in Maple program. The absolute errors of approximate solution in given points are small enough, so it follows that the presentation methods in this article are right. For comparison purpose, many authors have paid the attention to apply, modify and extend the considered methods in this work to tackle a variety type of integro-differential equations, see [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38].

    The author thanks the Department of Mathematics and Statistics at Taif University for encouraging scientific research.

    The author declares no conflict of interest.



    [1] Y. Khurshid, M. Khan, Y. Chu, Z. Khan, Hermite-Hadamard-Fejér inequalities for conformable fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019), 3146210. http://dx.doi.org/10.1155/2019/3146210 doi: 10.1155/2019/3146210
    [2] M. Latif, Y. Chu, New weighted Hermite-Hadamard type inequalities for differentiable strongly convex and strongly quasi-convex mappings, J. Math. Inequal., 16 (2022), 1413–1428. http://dx.doi.org/10.7153/jmi-2022-16-93 doi: 10.7153/jmi-2022-16-93
    [3] S. Zhou, S. Rashid, M. Noor, K. Noor, F. Safdar, Y. Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, AIMS Mathematics, 5 (2020), 6874–6901. http://dx.doi.org/10.3934/math.2020441 doi: 10.3934/math.2020441
    [4] M. Awan, N. Akhtar, S. Iftikhar, M. Noor, Y. Chu, New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 125. http://dx.doi.org/10.1186/s13660-020-02393-x doi: 10.1186/s13660-020-02393-x
    [5] X. Zhang, Y. Chu, X. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its application, J. Inequal. Appl., 2010 (2010), 507560. http://dx.doi.org/10.1155/2010/507560 doi: 10.1155/2010/507560
    [6] M. Khan, Y. Chu, T. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15 (2017), 1414–1430. http://dx.doi.org/10.1515/math-2017-0121 doi: 10.1515/math-2017-0121
    [7] B. Feng, M. Ghafoor, Y. Chu, M. Qureshi, X. Feng, C. Yao, et al., Hermite-Hadamard and Jensen's type inequalities for modified (p, h)-convex functions, AIMS Mathematics, 5 (2020), 6959–6971. http://dx.doi.org/10.3934/math.2020446 doi: 10.3934/math.2020446
    [8] X. You, M. Ali, H. Budak, P. Agarwal, Y. Chu, Extensions of Hermite-Hadamard inequalities for harmonically convex functions via generalized fractional integrals, J. Inequal. Appl., 2021 (2021), 102. http://dx.doi.org/10.1186/s13660-021-02638-3 doi: 10.1186/s13660-021-02638-3
    [9] M. Latif, S. Hussain, Y. Chu, Generalized Hermite-Hadamard type inequalities for differentiable harmonically-convex and harmonically quasi-convex functions, J. Math. Inequal., 15 (2021), 755–766. http://dx.doi.org/10.7153/jmi-2021-15-53 doi: 10.7153/jmi-2021-15-53
    [10] M. Latif, S. Rashid, S. Dragomir, Y. Chu, Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 317. http://dx.doi.org/10.1186/s13660-019-2272-7 doi: 10.1186/s13660-019-2272-7
    [11] S. Özcan, İ. İşcan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 201. http://dx.doi.org/10.1186/s13660-019-2151-2 doi: 10.1186/s13660-019-2151-2
    [12] S. Maden, H. Kadakal, M. Kadakal, İ. İşcan, Some new integral inequalities for n-times differentiable convex and concave functions, J. Nonlinear Sci. Appl., 10 (2017), 6141–6148. http://dx.doi.org/10.22436/jnsa.010.12.01 doi: 10.22436/jnsa.010.12.01
    [13] G. Zabandan, A new refinement of the Hermite-Hadamard inequality for convex functions, J. Inequal. Pure Appl. Math., 10 (2019), 45.
    [14] İ. İşcan, M. Kunt, Hermite-Hadamard-Fejer type inequalities for quasi-geometrically convex functions via fractional integrals, J. Math., 2016 (2016), 6523041. http://dx.doi.org/10.1155/2016/6523041 doi: 10.1155/2016/6523041
    [15] J. Wang, S. But, A. Kashuri, M. Tariq, New integral inequalities using exponential type convex functions with applications, AIMS Mathematics, 6 (2021), 7684–7703. http://dx.doi.org/10.3934/math.2021446 doi: 10.3934/math.2021446
    [16] H. Qi, M. Yussouf, S. Mehmood, Y. Chu, G. Farid, Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity, AIMS Mathematics, 5 (2020), 6030-6042. http://dx.doi.org/10.3934/math.2020386 doi: 10.3934/math.2020386
    [17] H. Kadakal, Hermite-Hadamard type inequalities for trigonometrically convex functions, Sci. Stud. Res. Ser. Math. Inform., 28 (2018), 19–28.
    [18] E. Nwaeze, M. Khan, A. Ahmadian, M. Ahmad, A. Mahmood, Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions, AIMS Mathematics, 6 (2021), 1889–1904. http://dx.doi.org/10.3934/math.2021115 doi: 10.3934/math.2021115
    [19] S. Dragomir, I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babes-Bolyai Math., 60 (2015), 527–534.
    [20] T. Antczak, (p, r)-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355–379. http://dx.doi.org/10.1006/jmaa.2001.7574 doi: 10.1006/jmaa.2001.7574
    [21] M. Awan, M. Noor, K. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405–409. http://dx.doi.org/10.12785/amis/120215 doi: 10.12785/amis/120215
    [22] M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 82. http://dx.doi.org/10.1186/s13660-020-02349-1 doi: 10.1186/s13660-020-02349-1
    [23] H. Budak, M. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910. http://dx.doi.org/10.1007/s10957-020-01726-6 doi: 10.1007/s10957-020-01726-6
    [24] H. Budak, S. Erden, M. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Method. Appl. Sci., 44 (2021), 378–390. http://dx.doi.org/10.1002/mma.6742 doi: 10.1002/mma.6742
    [25] M. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 64. http://dx.doi.org/10.1186/s13662-021-03226-x doi: 10.1186/s13662-021-03226-x
    [26] M. Ali, H. Budak, Z. Zhang, H. Yildirim, Some new Simpson's type inequalities for coordinated convex functions in quantum calculus, Math. Method. Appl. Sci., 44 (2021), 4515–4540. http://dx.doi.org/10.1002/mma.7048 doi: 10.1002/mma.7048
    [27] S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, New York: Elsevier Inc., 2003.
    [28] D. Mitrinović, J. Pečarić, A. Fink, Inequalities involving functions and their integrals and derivatives, Dordrecht: Springer, 1991. http://dx.doi.org/10.1007/978-94-011-3562-7
    [29] M. Alomari, M. Darus, Some Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA Res. Rep. Coll., 13 (2010), 6.
    [30] E. Set, M. Sarikaya, M. Emin Ozdemir, Some Ostrowski's type inequalities for functions whose second derivatives are s-convex in the second sense, Demonstr. Math., 47 (2014), 37–47. http://dx.doi.org/10.2478/dema-2014-0003 doi: 10.2478/dema-2014-0003
    [31] B. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249 (2000), 583–591. http://dx.doi.org/10.1006/jmaa.2000.6913 doi: 10.1006/jmaa.2000.6913
    [32] S. Dragomir, R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. http://dx.doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [33] P. Cerone, S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstr. Math., 37 (2004), 299–308. http://dx.doi.org/10.1515/dema-2004-0208 doi: 10.1515/dema-2004-0208
    [34] S. Dragomir, S. Wang, A new inequality of Ostowski's type in L1 norm and applications to some special means and some numerical quadrature rules, Tamkang J. Math., 28 (1997), 239–244. http://dx.doi.org/10.5556/j.tkjm.28.1997.4320 doi: 10.5556/j.tkjm.28.1997.4320
    [35] S. Dragomir, S. Wang, An inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 33 (1997), 15–20. http://dx.doi.org/10.1016/S0898-1221(97)00084-9 doi: 10.1016/S0898-1221(97)00084-9
    [36] S. Dragomir, S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105–109. http://dx.doi.org/10.1016/S0893-9659(97)00142-0 doi: 10.1016/S0893-9659(97)00142-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1239) PDF downloads(86) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog