Research article

Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis

  • Correction on: AIMS Mathematics 10: 4322-4325
  • Received: 12 December 2024 Revised: 26 January 2024 Accepted: 06 February 2024 Published: 26 February 2024
  • MSC : 45Dxx, 65Mxx, 44-xx

  • The main purpose of this work was to develop a spectrally accurate collocation method for solving nonlinear fractional Fredholm integro-differential equations (non-FFIDEs). A proposed spectral collocation method is based on the Legendre-Gauss-Lobatto collocation (L-G-LC) method in which the main idea is to use Caputo derivatives and Legendre-Gauss-Lobatto interpolation for nonlinear FFIDEs. A rigorous convergence analysis is provided and confirmed by numerical tests. In addition, we provide some numerical test cases to demonstrate that the approach can preserve the solution of the underlying problem.

    Citation: A. H. Tedjani, A. Z. Amin, Abdel-Haleem Abdel-Aty, M. A. Abdelkawy, Mona Mahmoud. Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis[J]. AIMS Mathematics, 2024, 9(4): 7973-8000. doi: 10.3934/math.2024388

    Related Papers:

  • The main purpose of this work was to develop a spectrally accurate collocation method for solving nonlinear fractional Fredholm integro-differential equations (non-FFIDEs). A proposed spectral collocation method is based on the Legendre-Gauss-Lobatto collocation (L-G-LC) method in which the main idea is to use Caputo derivatives and Legendre-Gauss-Lobatto interpolation for nonlinear FFIDEs. A rigorous convergence analysis is provided and confirmed by numerical tests. In addition, we provide some numerical test cases to demonstrate that the approach can preserve the solution of the underlying problem.



    加载中


    [1] L. Guo, X. L. Zhao, X. M. Gu, Y. L. Zhao, Y. B. Zheng, T. Z. Huang, Three-dimensional fractional total variation regularized tensor optimized model for image deblurring, Appl. Math. Comput., 404 (2021), 126224. https://doi.org/10.1016/j.amc.2021.126224 doi: 10.1016/j.amc.2021.126224
    [2] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
    [3] Y. Y. Huang, X. M. Gu, Y. Gong, H. Li, Y. L. Zhao, B. Carpentieri, A fast preconditioned semi-implicit difference scheme for strongly nonlinear space-fractional diffusion equations, Fractal Fract., 5 (2021), 230. https://doi.org/10.3390/fractalfract5040230 doi: 10.3390/fractalfract5040230
    [4] X. M. Gu, H. W. Sun, Y. L. Zhao, X. C. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270
    [5] W. H. Luo, C. P. Li, T. Z. Huang, X. M. Gu, G. C. Wu, A high-order accurate numerical scheme for the caputo derivative with applications to fractional diffusion problems, Numer. Func. Anal. Opt., 39 (2018), 600–622. https://doi.org/10.1080/01630563.2017.1402346 doi: 10.1080/01630563.2017.1402346
    [6] V. P. Dubey, J. Singh, S. Dubey, D. Kumar, Analysis of Cauchy problems and diffusion equations associated with the Hilfer-Prabhakar fractional derivative via Kharrat-Toma transform, Fractal Fract., 7 (2023), 413. https://doi.org/10.3390/fractalfract7050413 doi: 10.3390/fractalfract7050413
    [7] J. Singh, R. Agrawal, K. S. Nisar, A new forecasting behavior of fractional model of atmospheric dynamics of carbon dioxide gas, Part. Differ. Equ. Appl. Math., 9 (2024), 100595. https://doi.org/10.1016/j.padiff.2023.100595 doi: 10.1016/j.padiff.2023.100595
    [8] J. Singh, A. M. Alshehri, Sushila, D. Kumar, Computational analysis of fractional liénard's equation with exponential memory, J. Comput. Nonlin. Dyn., 18 (2023), 041004. https://doi.org/10.1115/1.4056858 doi: 10.1115/1.4056858
    [9] O. Martin, On the homotopy analysis method for solving a particle transport equation, Appl. Math. Model., 37 (2013), 3959–3967. https://doi.org/10.1016/j.apm.2012.08.023 doi: 10.1016/j.apm.2012.08.023
    [10] Z. Jackiewicz, M. Rahman, B. D. Welfert, Numerical solution of a Fredholm integro-differential equation modelling $\theta$-neural networks, Appl. Math. Comput., 195 (2008), 523–536. https://doi.org/10.1016/j.icarus.2007.12.026 doi: 10.1016/j.icarus.2007.12.026
    [11] Ş. Yüzbaşı, M. Sezer, B. Kemancı, Numerical solutions of integro-differential equations and application of a population model with an improved legendre method, Appl. Math. Model., 37 (2013), 2086–2101. https://doi.org/10.1016/j.apm.2012.05.012 doi: 10.1016/j.apm.2012.05.012
    [12] N. Hale, An ultraspherical spectral method for linear Fredholm and Volterra integro-differential equations of convolution type, IMA J. Numer. Anal., 39 (2019), 1727–1746. https://doi.org/10.1093/imanum/dry042 doi: 10.1093/imanum/dry042
    [13] N. Koshev, L. Beilina, An adaptive finite element method for Fredholm integral equations of the first kind and its verification on experimental data, Open Math., 11 (2013), 1489–1509. https://doi.org/10.2478/s11533-013-0247-3 doi: 10.2478/s11533-013-0247-3
    [14] J. Medlock, M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201–222. https://doi.org/10.1016/S0025-5564(03)00041-5 doi: 10.1016/S0025-5564(03)00041-5
    [15] A. Saadatmandi, M. Dehghan, A Legendre collocation method for fractional integro-differential equations, J. Vib. Control, 17 (2011), 2050–2058. https://doi.org/10.1177/1077546310395977 doi: 10.1177/1077546310395977
    [16] M. R. Eslahchi, M. Dehghan, M. Parvizi, Application of the collocation method for solving nonlinear fractional integro-differential equations, J. Comput. Appl. Math., 257 (2014), 105–128. https://doi.org/10.1016/j.cam.2013.07.044 doi: 10.1016/j.cam.2013.07.044
    [17] H. Li, Y. Jiang, Z. Wang, L. Zhang, Z. Teng, Global Mittag-Leffler stability of coupled system of fractional-order differential equations on network, Appl. Math. Comput., 270 (2015), 269–277. https://doi.org/10.1016/j.amc.2015.08.043 doi: 10.1016/j.amc.2015.08.043
    [18] M. Gülsu, Y. Öztürk, A. Anapalı, Numerical approach for solving fractional Fredholm integro-differential equation, Int. J. Comput. Math., 90 (2013), 1413–1434. https://doi.org/10.1080/00207160.2012.750720 doi: 10.1080/00207160.2012.750720
    [19] A. Darweesh, M. Alquran, K. Aghzawi, New numerical treatment for a family of two-dimensional fractional Fredholm integro-differential equations, Algorithms, 13 (2020), 37. https://doi.org/10.3390/a13020037 doi: 10.3390/a13020037
    [20] W. Jiang, T. Tian, Numerical solution of nonlinear Volterra integro-differential equations of fractional order by the reproducing kernel method, Appl. Math. Model., 39 (2015), 4871–4876. https://doi.org/10.1016/j.apm.2015.03.053 doi: 10.1016/j.apm.2015.03.053
    [21] L. Zhu, Q. Fan, Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet, Commun. Nonlinear Sci., 17 (2012), 2333–2341. https://doi.org/10.1016/j.cnsns.2011.10.014 doi: 10.1016/j.cnsns.2011.10.014
    [22] I. Aziz, M. Fayyaz, A new approach for numerical solution of integro-differential equations via Haar wavelets, Int. J. Comput. Math., 90 (2013), 1971–1989. https://doi.org/10.1080/00207160.2013.770481 doi: 10.1080/00207160.2013.770481
    [23] B. K. Mousavi, M. H. Heydari, Wilson wavelets method for solving nonlinear fractional Fredholm-Hammerstein integro-differential equations, Int. J. Comput. Math., 97 (2020), 2165–2177. https://doi.org/10.1080/00207160.2019.1683731 doi: 10.1080/00207160.2019.1683731
    [24] L. Huang, X. F. Li, Y. L. Zhao, X. Y. Duan, Approximate solution of fractional integro-differential equations by Taylor expansion method, Comput. Math. Appl., 62 (2011), 1127–1134. https://doi.org/10.1016/j.camwa.2011.03.037 doi: 10.1016/j.camwa.2011.03.037
    [25] X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
    [26] X. Ma, C. Huang, Spectral collocation method for linear fractional integro-differential equations, Appl. Math. Model., 38 (2014), 1434–1448. https://doi.org/10.1016/j.apm.2013.08.013 doi: 10.1016/j.apm.2013.08.013
    [27] F. Yousefi, A. Rivaz, W. Chen, The construction of operational matrix of fractional integration for solving fractional differential and integro-differential equations, Neural Comput. Appl., 31 (2019), 1867–1878. https://doi.org/10.1007/s00521-017-3163-9 doi: 10.1007/s00521-017-3163-9
    [28] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, D. Baleanu, Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations, Nonlinear Anal.-Model., 24 (2019), 332–352. https://doi.org/10.15388/NA.2019.3.2 doi: 10.15388/NA.2019.3.2
    [29] K. Maleknejad, Y. Mahmoudi, Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations, Appl. Math. Comput., 145 (2003), 641–653. https://doi.org/10.1016/S0096-3003(03)00152-8 doi: 10.1016/S0096-3003(03)00152-8
    [30] A. Pedas, M. Vikerpuur, Spline collocation for multi-term fractional integro-differential equations with weakly singular kernels, Fractal Fract., 5 (2021), 90. https://doi.org/10.3390/fractalfract5030090 doi: 10.3390/fractalfract5030090
    [31] R. Koundal, R. Kumar, R. Kumar, K. Srivastava, D. Baleanu, A novel collocated-shifted Lucas polynomial approach for fractional integro-differential equations, Int. J. Appl. Comput. Math., 7 (2021), 1–19. https://doi.org/10.1007/s40819-021-01108-0 doi: 10.1007/s40819-021-01108-0
    [32] L. Wu, Z. Chen, X. Ding, A minimal search method for solving fractional integro-differential equations based on modified Legendre multiwavelets, J. Appl. Math. Comput., 68 (2022), 1467–1483. https://doi.org/10.1007/s12190-021-01573-2 doi: 10.1007/s12190-021-01573-2
    [33] R. Amin, K. Shah, M. Asif, I. Khan, F. Ullah, An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet, J. Comput. Appl. Math., 381 (2021), 113028. https://doi.org/10.1016/j.cam.2020.113028 doi: 10.1016/j.cam.2020.113028
    [34] H. Jafari, N. A. Tuan, R. M. Ganji, A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations, J. King Saud Univ. Sci., 33 (2021), 101185. https://doi.org/10.1016/j.jksus.2020.08.029 doi: 10.1016/j.jksus.2020.08.029
    [35] N. Ford, M. Morgado, M. Rebelo, Nonpolynomial collocation approximation of solutions to fractional differential equations, Fract. Calc. Appl. Anal., 16 (2013), 874–891. https://doi.org/10.2478/s13540-013-0054-3 doi: 10.2478/s13540-013-0054-3
    [36] K. Du, On well-conditioned spectral collocation and spectral methods by the integral reformulation, SIAM J. Sci. Comput., 38 (2016), A3247–A3263. https://doi.org/10.1137/15M1046629 doi: 10.1137/15M1046629
    [37] G. L. Delzanno, Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form, J. Comput. Phys., 301 (2015), 338–356. https://doi.org/10.1016/j.jcp.2015.07.028 doi: 10.1016/j.jcp.2015.07.028
    [38] Y. Chen, J. Zhou, Error estimates of spectral Legendre-Galerkin methods for the fourth-order equation in one dimension, Appl. Math. Comput., 268 (2015), 1217–1226. https://doi.org/10.1016/j.amc.2015.06.082 doi: 10.1016/j.amc.2015.06.082
    [39] M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations, Comput. Appl. Math., 41 (2022), 1–21. https://doi.org/10.1007/s40314-021-01702-4 doi: 10.1007/s40314-021-01702-4
    [40] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, D. Baleanu, Spectral technique for solving variable-order fractional Volterra integro-differential equations, Numer. Meth. Part. D. E., 34 (2018), 1659–1677. https://doi.org/10.1002/num.22233 doi: 10.1002/num.22233
    [41] A. Z. Amin, M. A. Abdelkawy, E. Solouma, I. Al-Dayel, A spectral collocation method for solving the non-linear distributed-order fractional Bagley-Torvik differential equation, Fractal Fract., 7 (2023), 780. https://doi.org/10.3390/fractalfract7110780 doi: 10.3390/fractalfract7110780
    [42] A. Z. Amin, A. M. Lopes, I. Hashim, A space-time spectral collocation method for solving the variable-order fractional Fokker-Planck equation, J. Appl. Anal. Comput., 13 (2023), 969–985. https://doi.org/10.11948/20220254 doi: 10.11948/20220254
    [43] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations, Commun. Nonlinear Sci., 72 (2019), 342–359. https://doi.org/10.1016/j.cnsns.2019.01.005 doi: 10.1016/j.cnsns.2019.01.005
    [44] A. Z. Amin, M. A. Abdelkawy, E. Soluma, M. M. Babatin, A space-time spectral approximation for solving two dimensional variable-order fractional convection-diffusion equations with nonsmooth solutions, Int. J. Mod. Phys. C, 2023. https://doi.org/10.1142/S0129183124500888
    [45] M. A. Abdelkawy, A. Z. M. Amin, A. H. Bhrawy, J. A. T. Machado, A. M. Lopes, Jacobi collocation approximation for solving multi-dimensional Volterra integral equations, Int. J. Nonlinear Sci., 18 (2017), 411–425. https://doi.org/10.1515/ijnsns-2016-0160 doi: 10.1515/ijnsns-2016-0160
    [46] S. S. Ezz-Eldien, On solving systems of multi-pantograph equations via spectral tau method, Appl. Math. Comput., 321 (2018), 63–73. https://doi.org/10.1016/j.amc.2017.10.014 doi: 10.1016/j.amc.2017.10.014
    [47] D. D. Hu, Y. Y. Fu, W. J. Cai, Y. S. Wang, Unconditional convergence of conservative spectral Galerkin methods for the coupled fractional nonlinear Klein-Gordon-Schrödinger equations, J. Sci. Comput, 94 (2023), 70. https://doi.org/10.1007/s10915-023-02108-6 doi: 10.1007/s10915-023-02108-6
    [48] E. H. Doha, A. H. Bhrawy, R. M. Hafez, A Jacobi-Jacobi dual-petrov-Galerkin method for third-and fifth-order differential equations, Math. Comput. Model., 53 (2011), 1820–1832. https://doi.org/10.1016/j.mcm.2011.01.002 doi: 10.1016/j.mcm.2011.01.002
    [49] X. Tang, Efficient Chebyshev collocation methods for solving optimal control problems governed by Volterra integral equations, Appl. Math. Comput., 269 (2015), 118–128. https://doi.org/10.1016/j.amc.2015.07.055 doi: 10.1016/j.amc.2015.07.055
    [50] M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, I. Hashim, M. M. Babatin, Shifted fractional-order Jacobi collocation method for solving variable-order fractional integro-differential equation with weakly singular kernel, Fractal Fract., 6 (2021), 19. https://doi.org/10.3390/fractalfract6010019 doi: 10.3390/fractalfract6010019
    [51] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, On spectral methods for solving variable-order fractional integro-differential equations, Comput. Appl. Math., 37 (2018), 3937–3950. https://doi.org/10.1007/s40314-017-0551-9 doi: 10.1007/s40314-017-0551-9
    [52] J. Shen, T. Tang, L. Wang, Spectral methods: Algorithms, analysis and applications, Springer Science & Business Media, 41 (2011).
    [53] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods: Fundamentals in single domains, Springer Science & Business Media, 2007.
    [54] Y. X. Wei, Y. P. Chen, Convergence analysis of the spectral methods for weakly singular volterra integro-differential equations with smooth solutions, Adv. Appl. Math. Mech., 4 (2012), 1–20. https://doi.org/10.4208/aamm.10-m1055 doi: 10.4208/aamm.10-m1055
    [55] Y. Talaei, S. Noeiaghdam, H. Hosseinzadeh, Numerical solution of fractional order Fredholm integro-differential equations by spectral method with fractional basis functions, B. Irkutsk State U. M., 45 (2023), 89–103. https://doi.org/10.26516/1997-7670.2023.45.89 doi: 10.26516/1997-7670.2023.45.89
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2392) PDF downloads(122) Cited by(2)

Article outline

Figures and Tables

Figures(14)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog