Correction

Correction: Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis

  • Correction of: AIMS Mathematics 4: 7973-8000
  • Received: 15 January 2025 Revised: 26 February 2025 Accepted: 28 February 2025 Published: 28 February 2025
  • Citation: A. H. Tedjani, A. Z. Amin, Abdel-Haleem Abdel-Aty, M. A. Abdelkawy, Mona Mahmoud. Correction: Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis[J]. AIMS Mathematics, 2025, 10(2): 4322-4325. doi: 10.3934/math.2025199

    Related Papers:

    [1] A. H. Tedjani, A. Z. Amin, Abdel-Haleem Abdel-Aty, M. A. Abdelkawy, Mona Mahmoud . Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis. AIMS Mathematics, 2024, 9(4): 7973-8000. doi: 10.3934/math.2024388
    [2] Chuanli Wang, Biyun Chen . An $ hp $-version spectral collocation method for fractional Volterra integro-differential equations with weakly singular kernels. AIMS Mathematics, 2023, 8(8): 19816-19841. doi: 10.3934/math.20231010
    [3] Chuanhua Wu, Ziqiang Wang . The spectral collocation method for solving a fractional integro-differential equation. AIMS Mathematics, 2022, 7(6): 9577-9587. doi: 10.3934/math.2022532
    [4] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
    [5] Mahmoud A. Zaky, Weam G. Alharbi, Marwa M. Alzubaidi, R.T. Matoog . A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations. AIMS Mathematics, 2025, 10(3): 7067-7085. doi: 10.3934/math.2025322
    [6] Xiaojun Zhou, Yue Dai . A spectral collocation method for the coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2022, 7(4): 5670-5689. doi: 10.3934/math.2022314
    [7] Younes Talaei, Sanda Micula, Hasan Hosseinzadeh, Samad Noeiaghdam . A novel algorithm to solve nonlinear fractional quadratic integral equations. AIMS Mathematics, 2022, 7(7): 13237-13257. doi: 10.3934/math.2022730
    [8] Imran Talib, Md. Nur Alam, Dumitru Baleanu, Danish Zaidi, Ammarah Marriyam . A new integral operational matrix with applications to multi-order fractional differential equations. AIMS Mathematics, 2021, 6(8): 8742-8771. doi: 10.3934/math.2021508
    [9] Zena Talal Yassin, Waleed Al-Hayani, Ali F. Jameel, Ala Amourah, Nidal Anakira . Solving fuzzy system of Fredholm integro-differential equations of the second kind by using homotopy analysis method. AIMS Mathematics, 2025, 10(1): 1704-1740. doi: 10.3934/math.2025078
    [10] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Fahad Sameer Alshammari . New technique for solving the numerical computation of neutral fractional functional integro-differential equation based on the Legendre wavelet method. AIMS Mathematics, 2024, 9(6): 14288-14309. doi: 10.3934/math.2024694


  • Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis

    by A. H. Tedjani, A. Z. Amin, Abdel-Haleem Abdel-Aty, M. A. Abdelkawy, and Mona Mahmoud. AIMS Mathematics, 2024, 9(4): 7973–8000. DOI: 10.3934/math.2024388

    The author would like to make the following corrections to the published paper [1].

    ● In the abstract of our paper [1], we stated: "In addition, we provide some numerical test cases to demonstrate that the approach can preserve the non-smooth solution of the underlying problem". Acutully, this statement requires further clarification. Specifically, we address the challenge posed by non-smooth solutions, which can significantly degrade the performance of numerical schemes, particularly their order of convergence. To overcome this limitation, we employed fractional-order Legendre functions, denoted as Lε(λγ), in our numerical approach. This methodology was applied specifically in Examples 6 and 7, as mentioned in the conclusion section of [1].

    ● The corrected form of Eqs (1.1) and (1.2) are

    Dα1Y(s)=ϕ(s)+10η(s,t)G(Y(t))dt,0<α1<2, (0.1)

    with the initial conditions;

    Y(β)(0)=0,β=0,1, (0.2)

    where Dα1 denotes the fractional derivative of order α1, and 0<α1<2 (This modification must be applied consistently across the paper).

    ● Using the following transformations t=2λ1, s=2ϱ1, Y(2ϱ1)=Z(ϱ), ϕ(2ϱ1)=ϕ(ϱ), 2G(Y(2λ1)=F(Z(λ)), and η(2ϱ1,2λ1)=σ(ϱ,λ) we obtain, Eq (3.12) in [1].

    ● The initial conditions (3.12) must change to be

    Z(β)(1)=0,β=0,1. (0.3)

    ● Equation (3.17) must change to be

    11Iϱ,ν1Iλ,ν1[σ(ϱ,λ)F(Z(λ))]dλ=ν1ε=0ν1ı=0eεıLε(ϱ)11Lı(λ)dλ=ν1ε=0eε,0Lε(ϱ), (0.4)

    where

    eε,0=2ε+12|a|N|b|Nϖaϖbσ(ϱa,λb)F(Z(λb))Lı(ϱa).

    ● The system of (ν1+1) algebraic equations derived in Eq (3.23) constitutes a nonlinear system.

    Lemma 3. Consider e(x)=Z(ϱ)ZN(ϱ) to represent the error function of the solution. The subsequent inequality is applicable in this context:

    e3=1B (0.5)

    where

    B1=Iϱ,NDα1Z(ϱ)Dα1Z(ϱ)

    B2=Iϱ,N11(IIλ,N)[σ(ϱ,λ)F(Z(λ))]dλ

    B3=Iϱ,N11Iλ,N[σ(ϱ,λ)F(Z(λ))σ(ϱ,λ)F(ZN(λ))]dλ.

    Proof. By using the Caputo definition, we write the equation of non-FFIDEs as follows:

    Dα1Z(ϱ)=Iϱ,Nϕ(ϱ)+Iϱ,N11σ(ϱ,λ)F(Z(λ))dλ,0<α1<1 (0.6)

    and when utilizing the approximate solution we have,

    Iϱ,NDα1Z(ϱ)=Iϱ,Nϕ(ϱ)+11Iϱ,NIλ,N[σ(ϱ,λ)F(ZN(λ))]dλ. (0.7)

    Subtracting (0.7) from (0.6) yields

    e(ϱ)=Iϱ,NDα1Z(ϱ)Dα1Z(ϱ)+Iϱ,N11[σ(ϱ,λ)F(Z(λ))Iλ,N[σ(ϱ,λ)F(ZN(λ))]]dλ (0.8)

    hence

    e(t)=Iϱ,NDα1Z(ϱ)Dα1Z(ϱ)+Iϱ,N11Iλ,N[σ(ϱ,λ)F(Z(λ))σ(ϱ,λ)F(ZN(λ))]dλ. (0.9)

    The desired result can be obtained directly from the above.

    ● In Theorem 1, Section 4.1, we compute B1, instead of Eq (4.11), by using Lemma 3, Lemma (3-3) in [2], as

    B1L2(I)CNη|Dα1Z|Hm,N,ωc(I). (0.10)

    Accordingly, Eq (4.8) must be

    ENL2(I)CNη|Dα1Z|Hη,N,(I).+c(Nη+1)!N!(N+η)(η+1)/2[|F(Z())|H1(I)+|Z|H1(I)]+LMEN. (0.11)

    ● In Eq (4.17), which L is Lipschitz condition, and Max|σ(ϱ,λ)|M and L<1/M.

    ● The revised version of Figure 8 in [1] is included in Figure 1.

    Figure 1.  The approximate solutions for various values of α1.

    Theorem 1. Let INZ(ϱ) be the spectral approximate and let Z(ϱ) be the exact solution of the equation of non-FFIDEs and, F satisfies the Lipschitz condition with respect to its third argument with the Lipschitz constant L<1M and Max|σ(ϱ,λ)|M.

    ● In Example 6, while the solution is not smooth, then the order of convergence of the numerical scheme may deteriorate. However, this can be prevented by using fractional order Legendre functions Lε(λγ). Then, in Figures 13 and 14, γ=12 and ν1=8. Also, we used fractional order Legendre functions Lε(λγ) in Example 7 and then α1 in Table 6 must be γ.

    The changes have no material impact on the conclusion of this article. The original manuscript will be updated [1]. We apologize for any inconvenience caused to our readers by the changes.

    The authors declare there is no conflict of interest.



    [1] A. H. Tedjani, A. Z. Amin, Abdel-Haleem Abdel-Aty, M. A. Abdelkawy, Mona Mahmoud, Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis, AIMS Math., 9 (2024), 7973–8000. https://doi.org/10.3934/math.2024388 doi: 10.3934/math.2024388
    [2] Y. X. Wei, Y. P. Chen, Convergence analysis of the spectral methods for weakly singular volterra integro-differential equations with smooth solutions, Adv. Appl. Math. Mech., 4 (2012), 1–20. https://doi.org/10.4208/aamm.10-m1055 doi: 10.4208/aamm.10-m1055
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(394) PDF downloads(21) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog