Research article Topical Sections

On the study the radius of analyticity for Korteweg-de-Vries type systems with a weakly damping

  • In the present paper, we considered a Korteweg-de Vries type system with weakly damping terms and initial data in the analytic Gevery spaces. The presence of tow functions c1(x),c2(x), called damping coefficients, made the system more interesting from an application point of view due to their great importance in physics. To start, by using the fixed point theorem in Banach space, we investigated the local well-posedness. Additionally, by employing an approximate conservation law, we extended this to be global in time, ensuring that the radius of analyticity of solutions remained uniformly bounded below by a fixed positive number for all time.

    Citation: Sadok Otmani, Aissa Bouharou, Khaled Zennir, Keltoum Bouhali, Abdelkader Moumen, Mohamed Bouye. On the study the radius of analyticity for Korteweg-de-Vries type systems with a weakly damping[J]. AIMS Mathematics, 2024, 9(10): 28341-28360. doi: 10.3934/math.20241375

    Related Papers:

    [1] Aissa Boukarou, Khaled Zennir, Mohamed Bouye, Abdelkader Moumen . Nondecreasing analytic radius for the a Kawahara-Korteweg-de-Vries equation. AIMS Mathematics, 2024, 9(8): 22414-22434. doi: 10.3934/math.20241090
    [2] Hayman Thabet, Subhash Kendre, James Peters . Travelling wave solutions for fractional Korteweg-de Vries equations via an approximate-analytical method. AIMS Mathematics, 2019, 4(4): 1203-1222. doi: 10.3934/math.2019.4.1203
    [3] Musawa Yahya Almusawa, Hassan Almusawa . Numerical analysis of the fractional nonlinear waves of fifth-order KdV and Kawahara equations under Caputo operator. AIMS Mathematics, 2024, 9(11): 31898-31925. doi: 10.3934/math.20241533
    [4] Miguel Vivas-Cortez, Yasir Masood, Absar Ul Haq, Imran Abbas Baloch, Abdul Hamid Kara, F. D. Zaman . Symmetry analysis and conservation laws of time fractional Airy type and other KdV type equations. AIMS Mathematics, 2023, 8(12): 29569-29576. doi: 10.3934/math.20231514
    [5] Noufe H. Aljahdaly . Study tsunamis through approximate solution of damped geophysical Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(5): 10926-10934. doi: 10.3934/math.2024534
    [6] Qasem M. Tawhari . Advanced analytical techniques for fractional Schrödinger and Korteweg-de Vries equations. AIMS Mathematics, 2025, 10(5): 11708-11731. doi: 10.3934/math.2025530
    [7] Ihsan Ullah, Aman Ullah, Shabir Ahmad, Hijaz Ahmad, Taher A. Nofal . A survey of KdV-CDG equations via nonsingular fractional operators. AIMS Mathematics, 2023, 8(8): 18964-18981. doi: 10.3934/math.2023966
    [8] Musong Gu, Chen Peng, Zhao Li . Traveling wave solution of (3+1)-dimensional negative-order KdV-Calogero-Bogoyavlenskii-Schiff equation. AIMS Mathematics, 2024, 9(3): 6699-6708. doi: 10.3934/math.2024326
    [9] M. Mossa Al-Sawalha, Rasool Shah, Adnan Khan, Osama Y. Ababneh, Thongchai Botmart . Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives. AIMS Mathematics, 2022, 7(10): 18334-18359. doi: 10.3934/math.20221010
    [10] Saleh Baqer, Theodoros P. Horikis, Dimitrios J. Frantzeskakis . Physical vs mathematical origin of the extended KdV and mKdV equations. AIMS Mathematics, 2025, 10(4): 9295-9309. doi: 10.3934/math.2025427
  • In the present paper, we considered a Korteweg-de Vries type system with weakly damping terms and initial data in the analytic Gevery spaces. The presence of tow functions c1(x),c2(x), called damping coefficients, made the system more interesting from an application point of view due to their great importance in physics. To start, by using the fixed point theorem in Banach space, we investigated the local well-posedness. Additionally, by employing an approximate conservation law, we extended this to be global in time, ensuring that the radius of analyticity of solutions remained uniformly bounded below by a fixed positive number for all time.



    The Korteweg-de Vries (KdV) equation is a fundamental partial differential equation that describes the propagation of solitary waves in shallow water channels. In recent years, there has been many authors who have studied the behavior of the analytic radius for the solution of the KdV equation with analytic initial data. The author in [1] proved the exponential convergence rate for a spectral projection of the periodic initial-value problem for the generalized KdV equation. Based on this convergence result, a new method to determine the radius of analyticity of solutions to the generalized KdV equation is derived. Wang [2] considered the following KdV equation:

    tφ+3xφ+φxφ+a(x)φ=0,φ(0,x)=φ0(x),

    where the author established the local well-posedness solution and studied the long-time behavior of the analytic radius for the solution of the KdV equation with damping term and an analytic initial data on the real line. Boukarou and da Silva [3] considered a KdV-Kawahara equation with a weak damping term

    tφ+α5xφ+β3xφ+μxφ2+λxφ3+a(x)φ=0,φ(0,x)=φ0(x).

    The authors used linear, bilinear, and trilinear estimates in analytic Bourgain spaces, to prove the local well-posedness and the behavior of the analytic radius for this problem. Similar articles have the same problems, but without the weakly damping term we mention [4,5,6,7].

    T. Oh [8] investigated the local well-posedness of the KdV type systems

    {φt+a11φxxx+a12ψxxx+b1φφx+b2φψx+b3φxψ+b4ψψx=0,ψt+a21φxxx+a22ψxxx+b5φφx+b6φψx+b7φxψ+b8ψψx=0,(φ,ψ)|t=0=(φ0,ψ0),

    in different cases, both periodic and nonperiodic. Guo et al. [9] presented the following problem:

    {φt=φxxxφφx+12(φψ)x,ψt=ψxxxψψx+12(φψ)x,φ(0,x)=φ0(x),ψ(0,x)=ψ0(x),

    where the authors investigated the global well-posedness of solutions for the system of KdV equations.

    In 2018, Yang and Zhang [10] considered the couple KdV system

    {φt+a1φxxx=c11φφx+c12ψψx+d11φxψ+d12φψx,ψt+a2ψxxx=c21φφx+c22ψψx+d21φxψ+d22φψx,(φ,ψ)|t=0=(φ0,ψ0).

    By denoting r=a2a1 with a1,a2R{0}, in various cases of a constant r, they established the local well-posedness of the problem.

    Then, Carvajal and Panthee [11] introduced the system

    {tφ+3xφ+x(φψ2)=0,φ(t=0,x)=f(x),tψ+α3xψ+x(φ2ψ)=0,ψ(t=0,x)=g(x). (1.1)

    By different ways, the authors studied the local well-posedness of solutions for this system. Furthermore, if α=1, the problem (1.1) transformed to the system considered by Ablowiz et al. [12]. For more works in KdV systems, we refer to [13,14,15,16]. In this paper, we consider a KdV type system with weakly damping terms of the form:

    {φt+φxxx+b1φφx+b2φψx+b3φxψ+b4ψψx+c1(x)φ=0,ψt+αψxxx+b5φφx+b6φψx+b7φxψ+b8ψψx+c2(x)ψ=0,(φ,ψ)|t=0=(φ0,ψ0), (1.2)

    where bi,i=1...8 are nonegative constants.

    Several conservation laws are known for the system

    I1=φdx,
    I2=ψdx,
    I3=φ2+ψ2dx,
    I4=φ2x+αψ2φψ2dx,

    where I4 is the Hamiltonian of the system and no other conservation laws seem apparent.

    Here, we state certain notations, tools, definitions, and functional spaces which will be used later. Let fL2(R2). The spatial Fourier transform is defined by

    ˆf(ξ)=R2eixξf(x)dx,

    and then the space-time Fourier transform is given by

    ˜u(ξ,τ)=R2ei(xξ+tτ)u(x,t)dxdt.

    Remark 2.1. We denote by F1(f) for the inverse Fourier transformation of the function f.

    For σ0,bR, we denote Gσ,b(R2) the Gevery type Bourgain space defined by the norm

    uGσ,b(R2):=eσ|ξ|(1+|τξ3|)b˜u(ξ,τ)L2(R2), (2.1)

    and

    uGσ,b,β(R2):=eσ|ξ|(1+|τβξ3|)b˜u(ξ,τ)L2(R2), (2.2)

    and for σ>0, we have Gσ,b is denoted to be the restrictions of Gσ,b(R2) to R×(ν,ν). The spaces Gσ,bν are defined by:

    uGσ,bν=inf{gGσ,b:g=u on R×(ν,ν)}.

    Remark 2.2. When we replace eσ|ξ| by (1+|ξ|)s in (2.1), it will be the classical Bourgain spaces Xs,b and Xs,bν.

    Let eσ|Dx| be the Fourier multiplier operator with symbol eσ|ξ|, where

    ^eσ|Dx|f=eσ|ξ|ˆf.

    Then, the norm of Gσ can be expressed as

    φGσ=eσ|Dx|φL2.

    The interest in these spaces is due to the following fact, for which a discussion can be found in [17].

    Theorem 2.1. (Paley-Wiener theorem) Let σ>0, then fGσ if, and only if, it is the restriction to the real line of a function F, which is holomorphic in the strip

    Sσ={x+iy: x,yR,|y|<σ},

    and satisfies

    sup|y|<σF(x+iy)L2x<.

    By the Paley-Wiener theorem, every function in Gσ has a uniform analytic radius σ on the real line, see Figure 1.

    Figure 1.  Strip around x-axis.

    The question of local existence in Gσ was studied in [6]. These works show the following fact: If (φ0,ψ0)Gσ0×Gσ0 with some σ0>0, then

    (φ(t),ψ(t))Gσ0×Gσ0, (2.3)

    for t small, and (φ(t),ψ(t)) is a solution of the KdV type system with an appropriate initial data (φ0,ψ0). The global well-posedness of the KdV type system in Gσ×Gσ is not well treated, since the KdV type system has no conservation law in the analytic space Gσ×Gσ. Then, we can pose the question

    whether (2.3) holds tR? (2.4)

    Instead of attacking, we can consider the next more suitable problem: If (φ0,ψ0)Gσ0×Gσ0, then for what kind of σ(t) so that

    (φ(t),ψ(t))Gσ(t)×Gσ(t),t>0? (2.5)

    There has been some progress toward answering question (2.5). The main ideas are:

    (1) Show the local existence in Gσ×Gσ with a lifespan ν>0;

    (2) find an almost conservation law in Gσ×Gσ, namely, for some α>0,

    φ(ν)2Gσφ02Gσ+Cσαφ03Gσ, (2.6)
    ψ(ν)2Gσψ02Gσ+Cσαψ03Gσ; (2.7)

    (3) by shrinking σ gradually, and using the intervals [0,ν], [ν,2ν],, we can get a global bound of the solution on [0,T], with T>0 large enough.

    As in [6], it is shown that the analytic radius σ(t) of solution at t for the system has the lower bound

    σ(t)t43ε,t,

    where ε>0 is a small enough.

    Note here that the lower bound does not rule out the possibility that σ(t)0 as t. Then, the question (2.4) cannot be answered, as (2.4) is equivalent to see that

    σ(t)σ0,t0. (2.8)

    Now, let us consider the analytic radius for a damped KdV type system and prove that

    σ(t)~σ0,t0,

    for ~σ0>0. Although, this is still weaker than (2.8), which implies that the analytic radius does not shrink to 0 as t.

    We consider the KdV type system on R with a damping term as

    {φt+φxxx+b1φφx+b2φψx+b3φxψ+b4ψψx+c1(x)φ=0,ψt+αψxxx+b5φφx+b6φψx+b7φxψ+b8ψψx+c2(x)ψ=0,(φ,ψ)|t=0=(φ0,ψ0).

    We should impose certain assumptions on the damping coefficients c1() and c2()

    (H1) Damping effect. There exists ε>0 such that

    ci(x)ε,xR,i=1,2.

    (H2) Analyticity. There exist nonegative constants C,M so that

    kxciL(R)CMkk!,kN,i=1,2.

    Proposition 2.1. [18] Let σ>0 and ν>0.

    (1) If b>12, then

    fLtGσCbfGσ,b.

    (2) If 12<b<b<12, then

    fGσ,bνCb,bνbbfGσ,bν.

    (3) 12<b<12, then for any interval I[ν,ν],

    χIf(t)Gσ,bCbf(t)Gσ,bν,

    where χI is the characteristic function of I.

    Proposition 2.2. [18] (Linear estimates) Let σ0,12<b1, and 0<ν1. Then, for some α1>0, we have

    S(t)φ0Gσ,bνα1φ0Gσ,S(t)αψ0Gσ,bνα1ψ0Gσ,t0S(ts)f(s)dsGσ,bνfGσ,b1ν,t0Sα(ts)f(s)dsGσ,bνfGσ,b1ν.

    Now, we state the bilinear estimates.

    Lemma 2.1. [18] (Bilinear estimates) Let σ>0,b>12 be sufficiently close to 12, and b>12, then

    φφxGσ,b1φ2Gσ,b,φψxGσ,b1φGσ,bψGσ,b,φxψGσ,b1φGσ,bψGσ,b,ψψxGσ,b1ψ2Gσ,b.

    We shall need to define a special class of functions by Aσ by

    fAσ=k=0(k+1)14σkk!kxfL.

    Note that the norms of Aσ and Gσ can be connected. Let us give an equivalent norm of Gσ.

    Lemma 2.2. [2] Let σ>0 and fGσ, then we have

    f2Gσk0k+1(σkk!)kxf2L2(R).

    Furthermore, we state the product estimates

    Lemma 2.3. [2] For all σ>0,(c,f)Aσ×Gσ, we have

    cfGσcAσfGσ.

    Lemma 2.4. [2] Let (c,f)Aσ×Gσ and (σ,ν)R+×(0,1],b0,b0, then

    cfGσ,bνcAσfGσ,bν.

    These spaces will be essential for constructing analytic solutions to the problem (1.2).

    Let S(t)=et3x and Sα(t)=eαt3x. By Duhamel principle, (φ,ψ) is a solution to system (1.2) if, and only if,

    {φ(t)=S(t)φ0t0S(ts)F1(s)ds,ψ(t)=Sα(t)ψ0t0Sα(ts)F2(s)ds, (3.1)

    for 1t1, where

    F1(s)=(b1φφx+b2φψx+b3φxψ+b4ψψx+c1(x)φ)(s),F2(s)=(b5φφx+b6φψx+b7φxψ+b8ψψx+c2(x)ψ)(s),

    and we denote B=max{bi,i=1,..,8}.

    Here, we state and prove the local well-posedness theorem.

    Theorem 3.1. (Local well-posedness) Let b(12,1) and b(b,1) be given by Lemma 2.1. Then, σ0 and any (φ0,ψ0)Gσ×Gσ, and there exists a time ν>0 given by

    νb,b1(2α2(cAσ+4R))1bb, (3.2)

    with R being a constant will be define later, and a unique solution (φ,ψ) of (3.1) such that

    (φ,ψ)Yσ,bν2Cb(φ0,ψ0)Nσ. (3.3)

    Proof. Let us consider the mapping

    Γ(,)=(Γ1,Γ2), (3.4)

    where

    Γ1(φ,ψ)=S(t)φ0+t0S(ts)(b1φφx+b2φψx+b3φxψ+b4ψψx+c1(x)φ)ds,Γ2(φ,ψ)=Sα(t)ψ0+t0Sα(ts)(b5φφx+b6φψx+b7φxψ+b8ψψx+c2(x)ψ)ds,

    and define the spaces Yσ,b,Yσ,bν, and Nσ by

    Nσ=Gσ×Gσ,Yσ,b=Gσ,b×Gσ,b,α,Yσ,bν=Gσ,bν×Gσ,b,αν,

    equipped with norms

    (φ,ψ)Yσ,b=max{φGσ,b,ψGσ,b,α}, (3.5)
    (φ,ψ)Yσ,bν=max{φGσ,bν,ψGσ,b,αν}, (3.6)
    (φ0,ψ0)Nσ=max{φ0Gσ,ψ0Gσ}, (3.7)

    and we define the ball B by

    B={(φ,ψ):(φ,ψ)Yσ,bνR}. (3.8)

    where R=2α1(φ0,ψ0)Yσ,bν.

    The idea of the proof is to show that the functional Γ is contraction in B.

    Step1. In this step we show that Γ(B)B. After the Proposition 2.2, we have

    S(t)φ0,S(t)αψ0Yσ,bνα1(φ0,ψ0)Nσ. (3.9)

    Using (2) in Propositions 2.1 and 2.2 and Lemmas 2.1 and 2.4, we find

    t0S(ts)(c1(x)φ+b1φφx+b2φψx+b3φxψ+b4ψψx)(s)dsGσ,bνCbνbbt0S(ts)(c1(x)φ+b1φφx+b2φψx+b3φxψ+b4ψψx)(s)dsGσ,bνCb,bνbbc1(x)φ+b1φφx+b2φψx+b3φxψ+b4ψψxGσ,b1νCb,bνbb(c1AσφGσ,bν+b1φ2Gσ,bν+(b2+b3)φGσ,bνψGσ,b,αν+b4ψ2Gσ,b,αν)Cb,bmax{1,b}νbb(cAσ+4(φ,ψ)Yσ,bν)(φ,ψ)Yσ,bν,

    where cAσ=max{c1Aσ,c2Aσ}. Like the same as before, we get

    t0Sα(ts)(c2(x)φ+b5φφx+b6φψx+b7φxψ+b8ψψx)(s)dsGσ,b,ανCbνbbt0Sα(ts)(c2(x)φ+b5φφx+b6φψx+b7φxψ+b8ψψx)(s)dsGσ,b,ανCb,bνbbc2(x)φ+b5φφx+b6φψx+b7φxψ+b8ψψxGσ,b1,ανCb,bνbb(c2AσφGσ,bν+b5φ2Gσ,bν+(b6+b7)φGσ,bνψGσ,b,αν+b8ψ2Gσ,b,αν)Cb,bmax{1,b}νbb(cAσ+4(φ,ψ)Yσ,bν)(φ,ψ)Yσ,bν.

    In other words, there exists α2=α2(b,b,max{1,b})>0 so that

    t0S(ts)(c1(x)φ+(b1φφx+b2φψx+b3φxψ+b4ψψx)(s)dsYσ,bνα2νbb(cAσ+4(φ,ψ)Yσ,bν)(φ,ψ)Yσ,bν, (3.10)
    t0Sα(ts)(c2(x)φ+(b5φφx+b6φψx+b7φxψ+b8ψψx)(s)dsYσ,bνα2νbb(cAσ+4(φ,ψ)Yσ,bν)(φ,ψ)Yσ,bν. (3.11)

    On one hand, if (φ,ψ)B, then we deduce from (3.9)–(3.11) such that

    Γ(φ,ψ)Yσ,bνα1(φ0,ψ0)Nσ+α2νbb(cAσ+4(φ,ψ)Yσ,bν)(φ,ψ)Yσ,bνR2+α2νbb(cAσ+4R)R.

    We choose

    ν=1(2α2(cAσ+4R))1bb, (3.12)

    then we get

    Γ(φ,ψ)Yσ,bνR. (3.13)

    Step2. Here, we infer that the functional Γ is a contraction in B. Then, for all [(φ,ψ),(z,w)]B×B, similarly we have

    Γ(φ,ψ)Γ(z,w)Yσ,bν=Γ1(φ,ψ)Γ1(z,w),Γ2(φ,ψ)Γ2(z,w)Yσ,bν.

    So, we estimate Γ1(φ,ψ)Γ1(z,w) and Γ2(φ,ψ)Γ2(z,w),

    Γ1(φ,ψ)Γ1(z,w)=t0S(ts)[c1(x)(φz)+b1(φφxzzx)+b2(φψxzwx)+b3(φxψzxw)+b4(ψψxwwx)]ds.

    So, we have

    b1(φφxzzx)=b1[(φz)φx+(φxzx)z],b2(φψxzwx)=b2[(φz)ψx+(ψxwx)z],b3(φxψzxw)=b3[(φxzx)ψ+(ψw)zx],b4(ψψxwwx)=b4[(ψw)ψx+(ψxwx)w],

    then, using Lemmas 2.1 and 2.4 and Propositions 2.1 and 2.2,

    Γ1(φ,ψ)Γ1(z,w)Gσ,bνCb,bνbbt0S(ts)[c1(x)(φz)+b1(φφxzzx)+b2(φψxzwx)+b3(φxψzxw)+b4(ψψxwwx)]dsGσ,b.

    It means that there is α2(b,b,max{1,b})>0, such that

    Γ1(φ,ψ)Γ1(z,w)Gσ,bνα2νbb(cAσφzGσ,b+φzGσ,bφGσ,b+φzGσ,bzGσ,b+φzGσ,bψGσ,b,α+ψwGσ,b,αzGσ,b)+α2νbb(φzGσ,bψGσ,b,α+ψwGσ,b,αzGσ,b+ψwGσ,b,αψGσ,b,α+ψwGσ,b,αwGσ,b,α)α2νbb(cAσ+4(φ,ψ)Yσ,bν+4(z,w)Yσ,bν)(φz,ψw)Yσ,bν.

    We remind that [(φ,ψ)×(z,w)]B×B, and we get

    Γ1(φ,ψ)Γ1(z,w)Gσ,bνα2νbb(cAσ+8R)(φz,ψw)Yσ,bν. (3.14)

    Similar to that use as before, we obtain

    Γ2(φ,ψ)Γ2(z,w)Gσ,bνα2νbb(cAσ+8R)(φz,ψw)Yσ,bν. (3.15)

    Inequalities (3.14) and (3.15) lead to

    Γ(φ,ψ)Γ(z,w)Yσ,bνα2νbb(cAσ+8R)(φz,ψw)Yσ,bν.

    Then, because ν=(2α2(cAσ+4R))1, we find

    Γ(φ,ψ)Γ(z,w)Yσ,bν<(φz,ψw)Yσ,bν. (3.16)

    This means that Γ is a contraction in B.

    Uniqueness of the solution in C([0,ν],Gσ)×C([0,ν],Gσ) can be proved as follows.

    Lemma 3.1. Suppose (φ,ψ) and (φ,ψ) are two solutions to (3.1) in C([0,ν],Gσ)×C([0,ν],Gσ) with initial data (φ0,ψ0)=(φ0,ψ0) then (φ,ψ)=(φ,ψ).

    Proof. Let the conservation law I(w,w) be defined by

    I(w,w)=R(w2+w2)dx,

    and

    I1(w)=R(w2)dx,I2(w)=R(w2)dx.

    Suppose (φ,ψ) and (φ,ψ) are two solutions to (3.1), then

    {φt+φxxx+b1φφx+b2φψx+b3φxψ+b4ψψx+c1(x)φ=0,φt+φxxx+b1φφx+b2φψx+b3φxψ+b4ψψx+c1(x)φ=0,

    thus

    t(φφ)+3x(φφ)+(b1φφx+b2φψx+b3φxψ+b4ψψx+c1(x)φ)(b1φφx+b2φψx+b3φxψ+b4ψψx+c1(x)φ)=0.

    We have w=φφ and w=ψψ, then

    tw+3xw+[c1(x)(φφ)+b1(φφxφφx)+b2(φψxφψx)+b3(φxψφxψ)+b4(ψψxψψx)]=0.

    We have

    b1(φφxφφx)=b1[wφx+wxφ],b2(φvxφψx)=b2[wψx+wxφ],b3(φxψφxψ)=b3[wxψ+wφx],b4(ψψxψψx)=b4[wψx+wxψ].

    So,

    tw+3xw+[c1(x)w+b1[wφx+wxφ]+b2[wψx+wxφ]+b3[wxψ+wφx]+b4[wψx+wxψ]]=0.

    Multiplying both sides by w and integrating in space yields

    wtw+w3xw+w[c1(x)w+b1[wφx+wxφ]+b2[wψx+wxφ]+b3[wxψ+wφx]+b4[wψx+wxψ]]=0.

    Then, we have

    12ddtw2L2=Rw[c1(x)w+b1[wφx+wxφ]+b2[wψx+wxφ]+b3[wxψ+wφx]+b4[wψx+wxψ]]dx|12ddtI1(w)|=|12ddtw2L2|Cc1Lw2L2+w2L2φxL+w2L2φL+w2L2ψxL+wL2wL2φL+w2L2ψL+wL2wL2φxL+wL2wL2ψxL+wL2wxL2ψL.

    We have

    Rw3xwdx=0.

    Assume that

    (w,w)L2=max{wL2,wL2},

    then

    |12ddtI1(w)|C1(w,w)2L2.

    By the Gronwall lemma, we get

    w2L2eC1(w(0),w(0))2L2,0tν.

    A similar way for

    {ψt+αψxxx+b5φφx+b6φψx+b7φxψ+b8ψψx+c2(x)ψ=0,ψt+αψxxx+b5φφx+b6φψx+b7φxψ+b8ψψx+c2(x)ψ=0, (3.17)

    then

    |12ddtI2(w)|C2(w,w)2L2.

    By the Gronwall lemma, we get

    w2L2eC2(w(0),w(0))2L2,0tν.

    Then,

    |12ddtI(w,w)|=|12ddtR(w2+w2)dx|(eC1+eC2)(w(0),w(0))2L2,0tν.

    Since (w(0),w(0))2L2=0, we obtain that (w,w)=(0,0),0tν, or (φ,ψ)=(φ,ψ).

    We are going to show that the solution map φ0φ is Lipschitz continuous.

    Lemma 3.2. [3] Let σ>0 and b>12,ν>0, and (φ,ψ),(z,w) be solutions of problem (1.2). We pertain to initial data (φ0,ψ0) and (z0,w0), respectively. Then, there exists a constant C>0 such that

    (φ,ψ)(z,w)Yσ,bνC(φ0,ψ0)(z0,w0)Nσ.

    We begin by reminding that, for smooth, compactly supported solutions to (1.2), we have

    ddtφ2L2+2Rc1(x)φ2dx=0,ddtψ2L2+2Rc2(x)ψ2dx=0.

    Under assumption (H1), we get

    ddtφ2L22Rεφ2dx,ddtψ2L22Rεψ2dx.

    By applying Grönwall's lemma, we obtain

    φ(t)L2φ0L2eεt, (4.1)
    ψ(t)L2ψ0L2eεt, (4.2)

    so

    (φ(t),ψ(t))N0(φ0,ψ0)N0eεt. (4.3)

    The aim here is to demonstrate the energy growth bound in Nσ. Then, we state and prove the main theorem.

    Theorem 4.1. Suppose that c1,c2Aσ0 with some 0<σ<σ0. Let (φ0,ψ0)Nσ and (φ,ψ)Yσ,bν be the solution on [ν,ν]. Then, we have the following estimate:

    (φ,ψ)(ν)Yσ,bν(φ0,ψ0)2Nσ+C1(4ση(φ0,ψ0)Nσ+σcAσ0)(φ0,ψ0)2Nσ+C2cLx(φ0,ψ0)L2(R)(φ0,ψ0)Nσ, (4.4)

    where (φ0,ψ0)L2(R)=max{φ0L2(R),ψ0L2(R)} ,C1,C2 are two constants and η will be defined later.

    Proof. We set, for fixed σ>0,

    (Φ,Ψ)=(eσ|Dx|φ,eσ|Dx|ψ).

    We apply eσ|Dx| to system (1.2), and we find

    tΦ+3xΦ+b1ΦxΦ+b2ΦxΨ+b3xΦV+b4ΨxΨ+c1(x)Φ=I1+I2+I3+I4+I5, (4.5)
    tΨ+3xΨ+b5ΦxΦ+b6ΦxΨ+b7xΦV+b8ΨxΨ+c2(x)Φ=I1+I2+I3+I4+I5, (4.6)

    where

    I1=b1(eσ|Dx|φxeσ|Dx|φeσ|Dx|(φxφ))I2=b2(eσ|Dx|φxeσ|Dx|ψeσ|Dx|φxψ)I3=b3(xeσ|Dx|φeσ|Dx|ψeσ|Dx|ψxφ)I4=b4(eσ|Dx|ψxeσ|Dx|ψeσ|Dx|(ψxψ))I5=c1(x)eσ|Dx|φeσ|Dx|(c1(x)φ),

    and

    I1=b5(eσ|Dx|φxeσ|Dx|φeσ|Dx|(φxφ))I2=b6(eσ|Dx|φxeσ|Dx|ψeσ|Dx|φxψ)I3=b7(xeσ|Dx|φeσ|Dx|ψeσ|Dx|ψxφ)I4=b8(eσ|Dx|ψxeσ|Dx|ψeσ|Dx|(ψxψ))I5=c2(x)eσ|Dx|ψeσ|Dx|(c1(x)ψ).

    By multiplying (4.5) with Φ and (4.6) by Ψ, and integrating over R with respect to x, we obtain

    12ddtRΦ2dx+Rc1(x)Φ2dx=R(I1+I2+I3+I4+I5)Φdx, (4.7)
    12ddtRψ2dx+Rc1(x)ψ2dx=R(I1+I2+I3+I4+I5)Ψdx. (4.8)

    We remind that ci(x)ε,xR, and Eqs (4.7) and (4.8) become

    ddtRΦ2dx+2εRΦ2dxR(I1+I2+I3+I4+I5)Φdx, (4.9)
    ddtRψ2dx+2εRψ2dxR(I1+I2+I3+I4+I5)Ψdx. (4.10)

    By using Grönwall's lemma ror the last inequalities, we get

    φ(t)2Gσe2εtφ0Gσ+2|t0Re2ε(ts)(I1+I2+I3+I4+I5)Φdxds|, (4.11)
    ψ(t)2Gσe2εtψ0Gσ+2|t0Re2ε(ts)(I1+I2+I3+I4+I5)Ψdxds|. (4.12)

    Now, we need to estimate the second term in the righthand side of inequalities (4.10) and (4.11). We start by

    |t0Re2ε(ts)I1Φdxds|=|RRe2ε(ts)χ[0,t](s)I1Φdxds|χ[0,t](t)I1G0,b1χ[0,t](t)e2ε(ts)φGσ,b1.

    So, by using the fractional Leibnitz rule (see Theorem 2.8 in [19]), we infer that

    χ[0,t]e2ε(ts)φGσ,b1=χ[0,t]e2ε(νt)S(t)φH1btGσxCbχ[0,t]e2ε(νt)L(R)χ[0,t]S(t)φH1btGσx+χ[0,t]e2ε(νt)H1b(R)χ[0,t]S(t)φLtGσxCb,εχ[0,t]φGσ,1b+χ[0,t]φGσ,b (by Proposition (2.1)) Cbχ[0,t]φGσ,bCbφGσ,bν, (by Proposition 2.1)  (4.13)

    where in the last line we used 1b<b and Proposition 2.1.

    On other hand, after some calculation there is a constant η>0 so that

    χ[0,t]I1Cε,b,b1σηφ2Gσ,bν, (4.14)

    for more details, see [3]. Then, combining (4.13) and (4.14), we get

    |t0Re2ε(ts)I1Φdxds|Cε,b,b1σηφ3Gσ,bν|Cε,b,b1ση(φ,ψ)3Yσ,bν. (4.15)

    Like the same as before, we conclude that

    |t0Re2ε(ts)I2Φdxds|Cε,b,b2σηφ2Gσ,bνψGσ,bνCε,b,b2ση(φ,ψ)3Yσ,bν,
    |t0Re2ε(ts)I3Φdxds|Cε,b,b3σηφ2Gσ,bνψGσ,bνCε,b,b3ση(φ,ψ)3Yσ,bν,

    and

    |t0Re2ε(ts)I4Φdxds|Cε,b,b4σηψ3Gσ,bνCε,b,b4ση(φ,ψ)3Yσ,bν.

    All that's left is to estimate |t0Re2ε(ts)I1Φdxds|. By using the inequality of Cauchy Schwarz, we find

    |t0Re2ε(ts)I1Φdxds|t0e2ε(ts)I5(s)L2(R)φ(s)Gσds.

    Therefore, using Lemma 3.3 in [2], we have

    I5L2(R)2σσ0cAσφGσ+2cL(R)φL2(R).

    This leads for 0σσ0 to become

    |t0Re2ε(ts)I1Φdxds|t0e2ε(ts)R(2σσ0cAσφGσ+2cL(R)φL2(R))φGσdxdsR2χ[0,t]e2ε(ts)(2σσ0cAσφGσ+2cL(R)φL2(R))φGσdxdsR2χ[0,t]e2ε(ts)(2σσ0cAσφ2Gσ+2cL(R)φL2(R)φGσ)dxdsR2χ[0,t]e2ε(ts)(2σσ0cAσ(φ,ψ)2Nσ+2cL(R)φL2(R)(φ,ψ)Nσ)dxds.

    Combining all the estimations obtained before and using (3.3), we find

    φGσe2εt(φ0,ψ0)2Nσ+C1(4ση(φ0,ψ0)Nσ+σcAσ0)(φ0,ψ0)2Nσ+C2cLx(φ0,ψ0)L2(R)(φ0,ψ0)Nσ, (4.16)

    where C1,C2 are two constants depending on ε,b,σ0,max{bi,i=1,...,8}. We show the same calculation as before and we infer that

    ψGσe2εt(φ0,ψ0)2Nσ+C1(4ση(φ0,ψ0)Nσ+σcAσ0)(φ0,ψ0)2Nσ+C2cLx(φ0,ψ0)L2(R)(φ0,ψ0)Nσ. (4.17)

    Finally, inequalities (4.16) and (4.17) lead to

    (φ,ψ)Nσ(φ0,ψ0)2Nσ+C1(4ση(φ0,ψ0)Nσ+σcAσ0)(φ0,ψ0)2Nσ+C2cLx(φ0,ψ0)L2(R)(φ0,ψ0)Nσ,

    which establishes the proof of Theorem 4.1.

    In this part, we state and prove the main theorem in this paper.

    Theorem 4.2. Let (H1) and (H2) hold, and let (φ0,ψ0)Nσ0×Gσ0 for certain σ0>0. Then, there is a number ~σ0 such that T>0, and the problem (1.2) has a unique solution

    (φ,ψ)C([0,T];G~σ0(R))2.

    Moreover, we have

    (φ,ψ)(t)N~σ0Ceεt2.

    To demonstrate Theorem 4.2, we need the following lemma.

    Lemma 4.1. Let (φ,ψ) be a local solution of system (1.2). Then, there exist some σ1 such that, for each nN, Dn>0, satisfying

    (φ,ψ)(nν)2Nσ1(φ0,ψ0)2Nσ0+Dn(φ0,ψ0)2L2,

    where Dn depending on ν, (φ0,ψ0)Nσ, and cL.

    Proof. The proof by induction will be used.

    Case1. For n=1, thanks to (4.1), we have

    (φ,ψ)(ν)Nσ,be2εν(φ0,ψ0)2Nσ+C1(4ση(φ0,ψ0)Nσ+σcAσ0)(φ0,ψ0)2Nσ+C2cLx(φ0,ψ0)L2(R)(φ0,ψ0)Nσ.

    Applying Young's inequality on the final term on the righthand side of the last inequality, for ν>0, we get

    C2cLx(φ0,ψ0)L2(R)(φ0,ψ0)Nσ1e2εν2(φ0,ψ0)2Nσ+C22c2Lx2(1e2εν)(φ0,ψ0)2L2(R).

    The case is satisfied if σ is chosen so that

    C14ση(φ0,ψ0)Nσ1e2εν4,C1σcAσ01e2εν4, (4.18)

    and

    D1=C22c2Lx2(1e2εν).

    Since we are using σ to control these quantities, we see that it is thus necessary to restrict η to be strictly greater than zero; otherwise, the necessary σ terms would reduce to 1; see [20].

    Case2. Suppose that the result holds for n=k and we prove that it keeps holding for n+1=k+1. We set (φ,ψ)(kν) as initial data (~φ0,~ψ0) and apply the estimate from the base case. We have

    (φ,ψ)((k+1)ν)2Nσ(~φ0,~ψ0)2Nσ+D1(~φ0,~ψ0)2L2(φ,ψ)(kν)2Nσ+D1(φ,ψ)(kν)2L2(φ0,ψ0)2Nσ+Dk(φ0,ψ0)2L2+D1(φ,ψ)(kν)2L2. (by inductive hypotheses)

    By using Eqs (4.1) and (4.2) with the last inequality, we get

    (φ,ψ)((k+1)ν)2Nσ(φ0,ψ0)2Nσ+Dk(φ0,ψ0)2L2+D1e2kνε(φ0,ψ0)2L2. (4.19)

    We take

    Dk+1=Dk+D1e2kνε,

    and the proof is established.

    Proof of Theorem 4.2. It is worth noting that the estimate (4.19) leads to

    (φ,ψ)(kν)Nσ((2+D1)k1i=0e2iνε)(φ0,ψ0)Nσ,

    which implies that

    (φ,ψ)(kν)NσC(φ0,ψ0)Nσ,

    for some C>0. With the local well-posedness result repeatedly at t=nν, the last inequality becomes

    (φ,ψ)(t)NσC(φ0,ψ0)Nσ, (4.20)

    for any σ satisfying inequalities in (4.18) and σσ0.

    Let σ1 be any number nonnegative, thanks to Eqs (4.1), (4.2), and (4.18), and we have

    (φ,ψ)(t)Nσ12(φ,ψ)12L2(φ,ψ)12Nσ1Cetν2(φ0,ψ0)Nσ0.

    The proof of Theorem 4.2 is established by choosing ~σ0=σ12.

    The local well-posedness of the KdV type system with weak damping is investigated in the modified analytic space Yσ,bδ. The local well-posedness is established using the Banach contraction mapping principle, along with bilinear estimates in the Fourier restriction space. The local result, involving the approximate conservation law

    ddtφ2L2+2Rc1(x)φ2dx,ddtψ2L2+2Rc2(x)ψ2dx,

    is extended to hold globally in time. Additionally, a lower bound for the analytic radius is established. The presence of tow functions c1(x),c2(x), called damping coefficients, makes the system more interesting from an application point of view due to their great importance in physics. In the case where c1(x)=c2(x)=0, the authors studied a similar model as a single equation in [21], where a KdV type equations in Bourgain type spaces is considered and quantitative results are obtained, while our results in the present paper are qualitative studies related to the behavior of solutions in more suitable analytic spaces.

    Sadok Otmani: Conceptualization, formal analysis, writing-original draft preparation; Aissa Boukarou: Investigation, methodology; Keltoum Bouhali: Investigation, methodology; Mohamed Bouye: Writing-review and editing; Abdelkader Moumen: Writing-review and editing; Khaled Zennir: Supervision. All authors have read and approved the final version of the manuscript for publication.

    The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large group research project under grant number RGP2/281/45.

    The authors declare that there is no conflict of interest.



    [1] M. Bjorkavag, H. Kalisch, Radius of analyticity and exponential convergence for spectral projections of the generalized KdV equation, Commun. Nonlinear Sci., 15 (2010), 869–880. https://doi.org/10.1016/j.cnsns.2009.05.015 doi: 10.1016/j.cnsns.2009.05.015
    [2] M. Wang, Nondecreasing analytic radius for the KdV equation with a weakly damping, Nonlinear Anal., 215 (2022), 112653. https://doi.org/10.1016/j.na.2021.112653 doi: 10.1016/j.na.2021.112653
    [3] A. Boukarou, D. O. da Silva, On the radius of analyticity for a Korteweg-de Vries-Kawahara equation with a weak damping term, Z. Anal. Anwend., 42 (2024), 359–374. https://doi.org/10.4171/ZAA/1743 doi: 10.4171/ZAA/1743
    [4] K. Liu, M. Wang, Fixed analytic radius lower bound for the dissipative KdV equation on the real line, Nonlinear Diff. Equ. Appl., 29 (2022), 57. https://doi.org/10.1007/s00030-022-00789-w doi: 10.1007/s00030-022-00789-w
    [5] G. P. Menzala, C. F. Vasconcellos, E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Q. Appl. Math., 60 (2002), 111–129. https://doi.org/10.1090/qam/1878262 doi: 10.1090/qam/1878262
    [6] S. Selberg, D. O. Da Silva, Lower bounds on the radius of spatial analyticity for the KdV equation, Ann. Henri Poincaré, 18 (2017), 1009–1023. https://doi.org/10.1007/s00023-016-0498-1 doi: 10.1007/s00023-016-0498-1
    [7] L. Rosier, B. Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM J. Control Optim., 45 (2006), 927–956. https://doi.org/10.1137/050631409 doi: 10.1137/050631409
    [8] T. Oh, Diophantine conditions in well-posedness theory of coupled KdV-type systems: Local theory, Int. Math. Res. Notices, 18 (2009), 3516–3556. https://doi.org/10.1093/imrn/rnp063 doi: 10.1093/imrn/rnp063
    [9] Y. Guo, K. Simon, E. S. Titi, Global well-posedness of a system of nonlinearly coupled KdV equations of Majda and Biello, Commun. Math. Sci., 13 (2015), 1261–1288. https://doi.org/10.4310/CMS.2015.v13.n5.a9 doi: 10.4310/CMS.2015.v13.n5.a9
    [10] X. Yang, B. Y. Zhang, Local well-posedness of the coupled KdV-KdV systems on R, Evol. Equ. Control The., 11 (2022), 1829–1871. https://doi.org/10.3934/eect.2022002 doi: 10.3934/eect.2022002
    [11] X. Carvajal, M. Panthee, Sharp well-posedness for a coupled system of mKdV-type equations, J. Evol. Equ., 19 (2019), 1167–1197. https://doi.org/10.1007/s00028-019-00508-6 doi: 10.1007/s00028-019-00508-6
    [12] M. Ablowitz, D. Kaup, A. Newell, H. Segur, Nonlinear evolution equations of physical significance, Phys. Rev. Lett., 31 (1973), 125–127. https://doi.org/10.1103/PhysRevLett.31.125 doi: 10.1103/PhysRevLett.31.125
    [13] A. Boukarou, K. Zennir, M. Bouye, A. Moumen, Nondecreasing analytic radius for the a Kawahara-Korteweg-de-Vries equation, AIMS Math., 9 (2024), 22414–22434. https://doi.org/10.3934/math.20241090 doi: 10.3934/math.20241090
    [14] A. Boukarou, K. Guerbati, K. Zennir, S. Alodhaibi, S. Alkhalaf, Well-posedness and time regularity for a system of modified Korteweg-de Vries-type equations in analytic Gevrey spaces, Mathematics, 8 (2020), 809. https://doi.org/10.3390/math8050809 doi: 10.3390/math8050809
    [15] J. Cohen, G. Wang, Global well-posedness for a system of KdV-type equations with coupled quadratic nonlinearities, Nagoya Math. J., 215 (2014), 67–149. https://doi.org/10.1017/S0027763000010928 doi: 10.1017/S0027763000010928
    [16] S. G. Georgiev, A. Boukarou, K. Zennir, Classical solutions for the coupled system gKdV equations, Russ. Math., 66 (2022), 1–15. https://doi.org/10.3103/S1066369X22120052 doi: 10.3103/S1066369X22120052
    [17] Y. Katznelson, An introduction to harmonic analysis, New York: Dover Publications, 1976.
    [18] A. Tesfahun, On the radius of spatial analyticity for cubic nonlinear Schrodinger equations, J. Differ. Equations, 263 (2017), 7496–7512. https://doi.org/10.1016/j.jde.2017.08.009 doi: 10.1016/j.jde.2017.08.009
    [19] C. E. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1–21. https://doi.org/10.1215/S0012-7094-93-07101-3 doi: 10.1215/S0012-7094-93-07101-3
    [20] B. A. Samaniego, X. Carvajal, On the local well-posedness for some systems of coupled KdV equations, Nonlinear Anal.-Theor., 69 (2008), 692–715. https://doi.org/10.1016/j.na.2007.06.009 doi: 10.1016/j.na.2007.06.009
    [21] K. Bouhali, A. Moumen, K. W. Tajer, K. O. Taha, Y. Altayeb, Spatial analyticity of solutions to Korteweg-de Vries type equations, Math. Comput. Appl., 26 (2021), 75. https://doi.org/10.3390/mca26040075 doi: 10.3390/mca26040075
  • This article has been cited by:

    1. Aissa Boukarou, Safa M. Mirgani, Khaled Zennir, Keltoum Bouhali, Sultan S. Alodhaibi, White-Noise-Driven KdV-Type Boussinesq System, 2025, 13, 2227-7390, 1758, 10.3390/math13111758
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1042) PDF downloads(70) Cited by(1)

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog