
Optimization techniques can be used to find the optimal combination of inputs and parameters and help identify the most efficient solution. Aggregation operators (AOs) play a prominent role in discernment between two circulations of prospect and pull out anxieties from that insight. The most fundamental objective of this research is to extend the interaction AOs to the interval-valued Pythagorean fuzzy hypersoft set (IVPFHSS), the comprehensive system of the interval-valued Pythagorean fuzzy soft set (IVPFSS). The IVPFHSS adroitly contracts with defective and ambagious facts compared to the prevalent Pythagorean fuzzy soft set and interval-valued intuitionistic fuzzy hypersoft set (IVIFHSS). It is the dominant technique for enlarging imprecise information in decision-making (DM). The most important intention of this exploration is to intend interactional operational laws for IVPFHSNs. We extend the AOs to interaction AOs under IVPFHSS setting such as interval-valued Pythagorean fuzzy hypersoft interactive weighted average (IVPFHSIWA) and interval-valued Pythagorean fuzzy hypersoft interactive weighted geometric (IVPFHSIWG) operators. Also, we study the significant properties of the proposed operators, such as Idempotency, Boundedness, and Homogeneity. Still, the prevalent multi-criteria group decision-making (MCGDM) approaches consistently carry irreconcilable consequences. Meanwhile, our proposed MCGDM model is deliberate to accommodate these shortcomings. By utilizing a developed mathematical model and optimization technique, Industry 5.0 can achieve digital green innovation, enabling the development of sustainable processes that significantly decrease environmental impact. The impacts show that the intentional model is more operative and consistent in conducting inaccurate data based on IVPFHSS.
Citation: Nadia Khan, Sehrish Ayaz, Imran Siddique, Hijaz Ahmad, Sameh Askar, Rana Muhammad Zulqarnain. Sustainable practices to reduce environmental impact of industry using interaction aggregation operators under interval-valued Pythagorean fuzzy hypersoft set[J]. AIMS Mathematics, 2023, 8(6): 14644-14683. doi: 10.3934/math.2023750
[1] | Muhammad Saqlain, Xiao Long Xin, Rana Muhammad Zulqarnain, Imran Siddique, Sameh Askar, Ahmad M. Alshamrani . Energy supplier selection using Einstein aggregation operators in an interval-valued q-rung orthopair fuzzy hypersoft structure. AIMS Mathematics, 2024, 9(11): 31317-31365. doi: 10.3934/math.20241510 |
[2] | Rana Muhammad Zulqarnain, Xiao Long Xin, Muhammad Saeed . Extension of TOPSIS method under intuitionistic fuzzy hypersoft environment based on correlation coefficient and aggregation operators to solve decision making problem. AIMS Mathematics, 2021, 6(3): 2732-2755. doi: 10.3934/math.2021167 |
[3] | Li Li, Mengjing Hao . Interval-valued Pythagorean fuzzy entropy and its application to multi-criterion group decision-making. AIMS Mathematics, 2024, 9(5): 12511-12528. doi: 10.3934/math.2024612 |
[4] | Muhammad Arshad, Muhammad Saeed, Atiqe Ur Rahman, Sanaa A. Bajri, Haifa Alqahtani, Hamiden Abd El-Wahed Khalifa . Modeling uncertainties associated with multi-attribute decision-making based evaluation of cooling system using interval-valued complex intuitionistic fuzzy hypersoft settings. AIMS Mathematics, 2024, 9(5): 11396-11422. doi: 10.3934/math.2024559 |
[5] | Muhammad Arshad, Muhammad Saeed, Khuram Ali Khan, Nehad Ali Shah, Wajaree Weera, Jae Dong Chung . A robust MADM-approach to recruitment-based pattern recognition by using similarity measures of interval-valued fuzzy hypersoft set. AIMS Mathematics, 2023, 8(5): 12321-12341. doi: 10.3934/math.2023620 |
[6] | Esmail Hassan Abdullatif Al-Sabri, Muhammad Rahim, Fazli Amin, Rashad Ismail, Salma Khan, Agaeb Mahal Alanzi, Hamiden Abd El-Wahed Khalifa . Multi-criteria decision-making based on Pythagorean cubic fuzzy Einstein aggregation operators for investment management. AIMS Mathematics, 2023, 8(7): 16961-16988. doi: 10.3934/math.2023866 |
[7] | Muhammad Ihsan, Muhammad Saeed, Alhanouf Alburaikan, Hamiden Abd El-Wahed Khalifa . Product evaluation through multi-criteria decision making based on fuzzy parameterized Pythagorean fuzzy hypersoft expert set. AIMS Mathematics, 2022, 7(6): 11024-11052. doi: 10.3934/math.2022616 |
[8] | Atiqe Ur Rahman, Muhammad Saeed, Hamiden Abd El-Wahed Khalifa, Walaa Abdullah Afifi . Decision making algorithmic techniques based on aggregation operations and similarity measures of possibility intuitionistic fuzzy hypersoft sets. AIMS Mathematics, 2022, 7(3): 3866-3895. doi: 10.3934/math.2022214 |
[9] | Hifza, Muhammad Gulistan, Zahid Khan, Mohammed M. Al-Shamiri, Muhammad Azhar, Asad Ali, Joseph David Madasi . A new fuzzy decision support system approach; analysis and applications. AIMS Mathematics, 2022, 7(8): 14785-14825. doi: 10.3934/math.2022812 |
[10] | Misbah Rasheed, ElSayed Tag-Eldin, Nivin A. Ghamry, Muntazim Abbas Hashmi, Muhammad Kamran, Umber Rana . Decision-making algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set and Choquet integral. AIMS Mathematics, 2023, 8(5): 12422-12455. doi: 10.3934/math.2023624 |
Optimization techniques can be used to find the optimal combination of inputs and parameters and help identify the most efficient solution. Aggregation operators (AOs) play a prominent role in discernment between two circulations of prospect and pull out anxieties from that insight. The most fundamental objective of this research is to extend the interaction AOs to the interval-valued Pythagorean fuzzy hypersoft set (IVPFHSS), the comprehensive system of the interval-valued Pythagorean fuzzy soft set (IVPFSS). The IVPFHSS adroitly contracts with defective and ambagious facts compared to the prevalent Pythagorean fuzzy soft set and interval-valued intuitionistic fuzzy hypersoft set (IVIFHSS). It is the dominant technique for enlarging imprecise information in decision-making (DM). The most important intention of this exploration is to intend interactional operational laws for IVPFHSNs. We extend the AOs to interaction AOs under IVPFHSS setting such as interval-valued Pythagorean fuzzy hypersoft interactive weighted average (IVPFHSIWA) and interval-valued Pythagorean fuzzy hypersoft interactive weighted geometric (IVPFHSIWG) operators. Also, we study the significant properties of the proposed operators, such as Idempotency, Boundedness, and Homogeneity. Still, the prevalent multi-criteria group decision-making (MCGDM) approaches consistently carry irreconcilable consequences. Meanwhile, our proposed MCGDM model is deliberate to accommodate these shortcomings. By utilizing a developed mathematical model and optimization technique, Industry 5.0 can achieve digital green innovation, enabling the development of sustainable processes that significantly decrease environmental impact. The impacts show that the intentional model is more operative and consistent in conducting inaccurate data based on IVPFHSS.
In recent years, there has been a growing interest in using fuzzy mathematical models and optimization techniques in digital green innovation for Industry 5.0. This is due to the increasing need for sustainable industry practices and the need to optimize processes to minimize environmental impact. The environmental impact of industry refers to the negative effects of industrial activities on the environment, including air and water pollution, deforestation, greenhouse gas emissions, and biodiversity loss. Industrial activities can have both direct and indirect impacts on the environment. Fuzzy mathematical models are a type of mathematical model that can handle uncertain or vague data. This is particularly useful in digital green innovation, where data may be incomplete or imprecise. Fuzzy logic can model complex relationships between inputs and outputs and help identify optimal solutions without a clear answer. Optimization techniques can be used to bargain the best possible solution to a problem. In the context of digital green innovation, this might involve optimizing processes to reduce energy consumption or minimize waste. Optimization techniques can be used to find the optimal combination of inputs and parameters and help identify the most efficient solution. Fuzzy mathematical models and optimization techniques offer a variety of applications in digital green innovation for Industry 5.0. One significant application is the optimization of energy-efficient buildings. Using these techniques, engineers and architects can develop more energy-efficient designs that reduce energy consumption and minimize environmental impact. In addition, these techniques can be used to identify the optimal combination of renewable energy sources for a particular location. Renewable energy sources such as solar, wind, and hydropower can provide clean and sustainable energy, but the optimal combination for a particular location depends on climate, geography, and available resources. Fuzzy mathematical models and optimization techniques can be used to identify the most effective and efficient combination of renewable energy sources for a specific location, reducing greenhouse gas emissions and minimizing environmental impact. Furthermore, optimization techniques can be used to improve supply chain efficiency and reduce the environmental impact of transportation and logistics. By optimizing transportation routes and modes, companies can reduce emissions and fuel consumption, resulting in a more sustainable supply chain. Optimization techniques can also identify the optimal time to maintain equipment and vehicles, reducing downtime and improving efficiency.
Overall, fuzzy mathematical models and optimization techniques provide numerous opportunities for digital green innovation in Industry 5.0. By utilizing these techniques, businesses and industries can develop more sustainable processes, technologies, and supply chains with a reduced environmental impact, helping to create a more sustainable future. In addition to fuzzy mathematical models and optimization techniques, another area of interest for digital green innovation in Industry 5.0 is Multiple Criteria Group Decision Making (MCGDM) mathematical models and optimization. MCGDM is a decision-making approach that is particularly useful when multiple criteria or objectives need to be considered. In digital green innovation, this might involve balancing economic, environmental, and social factors in decision-making processes. MCGDM can help identify optimal solutions that take into account multiple factors. Optimization techniques can be used to identify the best possible solution to a given problem. In the context of MCGDM, this might involve identifying the optimal trade-off between different criteria or objectives. Optimization techniques can help identify the most efficient solution that satisfies all criteria. MCGDM mathematical models and optimization techniques can be used to develop more sustainable practices in Industry 5.0. For example, these techniques can optimize supply chains to minimize the environmental impact or develop green technologies that balance economic and environmental factors. Most verdicts are reserved when the objectives and boundaries are ordinarily unstipulated or indistinct in realistic surroundings. The theory of fuzzy sets (FS), originated by Zadeh [1], provides a means of dealing with equivocal and tentative data in the DM process. Xiao [2] introduced a cost-aware, fault-tolerant and reliable strategy for operator development on fuzzy complex event processing systems based on the TOPSIS technique. Turksen [3] proposed an interval-valued FS (IVFS) with basic operations. Existing FS and IVFS cannot provide evidence about a substitute non-membership degree (NMD). However, the current FS and IVFS cannot handle situations where experts consider an NMD in the DM process. Atanassov [4] introduced the intuitionistic fuzzy set (IFS) to overawed this inadequacy. Wang and Liu [5] proposed several operations for IFS. Xiao [6] presented the distance measure for IFS and utilized it in pattern classification problems. Atanassov [7] extended IFS to an interval-valued IFS (IVIFS). Xiao [8] introduced the novel evidential fuzzy multi-criteria decision-making (MCDM) method, is proposed by integrating Dempster-Shafer theory with belief entropy. Despite these advancements, the existing IFS cannot handle inconsistent and conflicting data, as it assumes a linear relationship between membership degree (MD) and NMD. When the MD and NMD values of a team of experts exceed 1 (e.g., MD = 0.6 and NMD = 0.7), the current IFS cannot effectively handle the situation as 0.6 + 0.7 ≥ 1.
Over the past few decades, various AOs have been settled and widely studied in several extensions of FS and non-classical decision theory circles. These AOs' well-established structures have originated their approach into frequent application fields such as economics, biology, education, knowledge-based systems, and robotics. The utility of AOs in a field depends on how well the mathematical properties of AOs correspond to the fusion procedure of elementary facts. Some AOs have mathematical properties that can be deduced as behavioral parameters, i.e., their values stimulus the operator's behavior. Previous research on AOs and their applications has concentrated on the domain exemplification competency of the power of DM. In addition, AOs appearances are imperative in the performance of factors, which is essential for specialists, particularly when these interactive constraints are deputations of domain-specific facts that are openly or statistically tough to an extent. In this case, the behavioral parameters of these AOs become more than just another mathematical feature. Yager [9] introduced the Pythagorean fuzzy set (PFS) to address the limitations of existing fuzzy set theories, which could not handle inconsistent and uncertain data. The PFS corrects these errors by revising the basic condition κ+δ≤1 to κ2+δ2≤1. Khan et al. [10] introduced the dissimilarity measure and refined the VIKOR method for PFS. Rahman et al. [11] extended the PFS theory by proposing the Einstein-weighted geometric AOs, which were then used to develop a multi-attribute group decision-making (MAGDM) technique. Huang et al. [12] protracted the MULTIMOORA technique for PFS based on distance measure and score function. Zhang and Xu [13] further expanded on the operational rules of PFS and applied the TOPSIS to address MCDM problems. Lin et al. [14] developed the directional correlation coefficient measures for PFS and used their presented measures in medical diagnosis and cluster analysis. Wei and Lu [15] introduced the power aggregation operators for PFS and deliberated their essential properties, demonstrating their use in a decision-making system for multi-attribute decision-making (MADM). Akram et al. [16] clarify the application of the ELECTRE Ⅱ technique for group decision-making in a complex Pythagorean fuzzy context. Xiao and Ding [17] established the divergence measure between PFS by compelling the advantage of the Jensen–Shannon divergence. They also developed a competent DM algorithm to resolve medical diagnoses. Wang and Li [18] investigated the interactions between Pythagorean fuzzy numbers (PFNs) and power Bonferroni mean operators. Lin et al. [19] presented the partitioned Bonferroni mean AOs for linguistic PFS with their essential properties. Khan et al. [20] developed the Archimedean AOs for T-spherical fuzzy sets and established a MADM model to determine DM complications. Akram et al. [21] developed the complex Pythagorean fuzzy N-soft VIKOR technique that can direct an excessive contract of linguistic inaccuracy and imprecision intrinsic in human valuations. Zhang [22] proposed a unique DM method based on similarity measures to address MCGDM obstacles in PFS scenarios. Riaz and Farid [23] protracted the hybrid AOs for picture fuzzy sets and established a DM technique to resolve MCDM problems. Lin et al. [24] proposed the partitioned Heronian mean AOs for picture fuzzy sets and developed a MADM model to resolve DM issues. Finally, Peng and Yang [25] extended the theory to include interval-valued Pythagorean fuzzy sets (IVPFS) and proposed a DM system based on their proposed method. Lin et al. [26] evaluated the Internet of Things platforms as an MCDM problem since it comprises numerous concerns. A novel incorporated MCDM technique is put forward for handling this problem. Rahman et al. [27] expanded weighted geometric AOs to interval-valued Pythagorean fuzzy sets (IVPFS) and developed a DM method based on these operators. Lin et al. [28] developed the weighted AOs for linguistic q-rung orthopair fuzzy sets and established a MADM technique based on their developed operators to solve DM issues. While these methods have a broad range of applications, there are some limitations to using them in parametric chemistry due to their inadequacy in dealing with uncertainties and vagueness. To address these issues, Molodtsov [29] introduced the concept of soft sets (SS) and their properties for handling chaos and ambiguity. Building on this idea, Maji et al. [30] proposed basic operations for SS and later established fuzzy soft sets by combining fuzzy and soft sets theories [31]. They also extended the concept to intuitionistic fuzzy soft sets (IFSS) [32], for which Arora and Garg [33] developed AOs and a DM technology based on these operators. Das [34] established a group DM technique for fuzzy parameterized intuitionistic multi-fuzzy N-soft set. Additionally, Jiang et al. [35] presented interval-valued IFSS (IVIFSS). They discussed its essential properties, while Zulqarnain et al. [36] proposed a TOPSIS technique based on the correlation coefficient (CC) for IVIFSS to solve MADM problems. Peng et al. [37] extended the concept to PFSS by incorporating both PFS and SS, and Zulqarnain et al. [38] developed AOs for IVPFSS and presented a MAGDM approach for solving real-world problems.
The theory of hypersoft sets (HSS), proposed by Smarandache [39], encompasses compound sub-parameters in the parametric function f, which represents the cartesian product with n features. HSS is considered the most suitable model for handling multiple sub-attributes of the parameters in association with SS and other established concepts. There are various HSS approaches with corresponding DM methods. The possibility IFHSS was introduced by Rahman et al. [40], and they established DM methods using similarity measures. Rahman et al. [41] demonstrated a DM methodology for neutrosophic HSS. Saeed et al. [42] utilized neutrosophic hypersoft mapping to diagnose the brain tumor. Zulqarnain et al. [43] protracted the AOs for IFHSS and extended the DM methodologies consuming their settled AOs. Zulqarnain et al. [44] extended IFHSS to PFHSS with fundamental operations. Zulqarnain et al. [45] raised the AOs in the IVPFHSS setting and demonstrated an MCDM technique to resolve DM complications. The selection and assessment of suppliers is a crucial article of proficient movement. Variations in current management policies use suppliers' evaluations dignified from various perspectives, comprising environmentally friendly and public desires. Consequently, this delinquent is called sustainable supplier selection (SSS) in the literature and is a reference delinquent for MCGDM. At the same time, multiple authorizations [46,47,48,49] designate the necessity for an MCGDM method for worker selection, concentrating on proper lexical deliberations for environmental facts and expert expectations.
The IVPFHSS is a composite structure that combines the properties of both IVPFS and HSS. IVIFSS and IVPFSS are widely used systematic tools for handling known and uncertain information. The use of AOs in DM is crucial, as it enables the combination of information from multiple sources for a comprehensive evaluation. However, the current AOs for IVPFHSS are inadequate in dealing with imprecise and uncertain data in DM development. Additionally, the model proposes that the NMD in interval form is an independent NMD (MD). Therefore, these models are not effective in providing clear preferences for alternatives. To address this issue, incorporating IVPFHSNs over interaction AOs is an intriguing topic. We propose the interaction AOs for IVPFHSS, such as the IVPFHSIWA and IVPFHSIWG operators. These AOs can be compared to prevalent fusion extensions of FS. The models discussed above suggest that the overall MD (NMD) is determined by its compatible NMD (MD) interval values. Therefore, the outcome of the core replica is adverse, and the partiality of the alternative cannot be appropriately constituted. So, incorporating these interval-valued Pythagorean fuzzy hypersoft numbers (IVPFHSNs) with their interactions is an encouraging topic. The AOs defined in [45] are not abundant to check the data on better concepts and have a spongy ability to acquire precise outcomes. Such as U = {u1,u2} be a set of two experts with weights ωi = (0.6,0.4)T and e1,e2 be the selected factors with their compatible sub-parameters, such as e1={e11,e12} and e2={e21}. Where L' be a 2-tuple cartesian product of the considered factors, can be indicated as L'=e1×e2={e11,e12}×{e21}= {(e11,e21),(e12,e21)}={ˇd1,ˇd2} with weights νj = (0.4,.0.6)T. Let I be an alternate, then preferences of experts can be précised as I = [([0.7,0.8],[0.0,0.0])([0.2,0.6],[0.3,0.5])([0.3,0.6],[0.5,0.7])([0.5,0.7],[0.1,0.6])] longsighted the sub-parameters of the planned aspects in terms of IVPFHSNs. Then, we conquered the collected value by the IVPFHSWA [45] operator is ⟨[0.8333,0.9487],[0.0,0.0]⟩. Similarly, we engaged the IVPFHSWG [45] operator and achieved a collected value ⟨[0.3584,0.6505],[0.0,0.0]⟩. This shows that there is no effect on the collective consequence δˇdk. As δˇdk = δˇd11 = [0.0,0.0], δˇd12 = [0.5,0.7], δˇd21 = [0.3,0.5], and δˇd22 = [0.1,0.6], which is arbitrary. An amended consolidating approach appeals to investigators to crack baffling and unsatisfactory details. Consequently, the significances of these AOs are unreliable, and no extra information for substitutes is specified. Hence, integrating these IVPFHSNs over AOs is a stimulating theme. The methodologies taken in [45] are unsatisfactory in scrutinizing the facts with a reflection on established theory and clear implications. Then, we originate the composed value using the IVPFHSWA and IVPFHSWG operators unable to deliver the proper evaluation considering the interaction. So, we claim that the developed interaction AOs for IVPFHSS is an enhanced classification technique that fascinates detectives to crack incomprehensible and inadequate specifics.
We implement a strategy for picking sustainable suppliers using IVPFHSS information to address these inadequacies. An enriched consolidating system fascinates researchers to defect inexplicable and scarce data to address these inadequacies. IVPFHSS is energetic in DM interpreting the consideration concerns by accumulating abundant foundations into a particular value. The existing AOs for IVPFHSS cannot manage the situation while the information of any sub-attribute is given in the form of intervals. It is a novel amalgam configuration to handle ambiguous complications through the DM process. Therefore, to instigate the present investigation of IVPFHSS, we will discuss extant interaction AOs founded on asymmetrical facts. The fundamental purposes of the extant exploration are specified as follows:
(1) To capitalize on the advantages of incorporating multiple sub-attributes of parameters in the DM coordination, we expanded the interaction AOs of IVPFHSS.
(2) IVPFHSS interaction AOs are known as elegant dominant AOs. In some cases, basic AOs function labeling does not respond to accurate determination of the DM procedure. For this, the prevailing AOs need to be modified. We will propose interactional operational laws for interval-valued Pythagorean fuzzy hypersoft numbers (IVPFHSNs) to reveal these barriers.
(3) Based on the developed interactional operational laws, the IVPFHSIWA and IVPFHSIWG operators have been introduced with their desirable properties.
(4) A new algorithm based on the planned operators has been established to demonstrate the MCGDM problems.
(5) Supplier selection is a deferential aspect of thermal power plant equipment as it appreciates the actual surroundings for all features. Supplier selection is a strenuous but substantial phase in proficient development. The constructor's proficiency, efficiency, and eccentricity will suffer due to the absence of a supplier.
(6) A comparative study of the developed MCGDM model and prevalent methodologies is delivered to reflect the efficacy and supremacy of our protracted model.
The organizational structure of this article assumes the following: The second part deals with some elementary notions that support the configuration of our development of the advanced study. Section 3 proposes some new algebraic operations for IVPFHSS considering the interaction. Also, IVPFHSIWA and IVPFHSIWG operators will be introduced with their basic characteristics in the same section. Section 4 presents the MCGDM method based on the proposed interaction AOs. A numerical example is discussed in the same section to verify the practicality of established supplier selection techniques in thermal equipment plants. In addition, a brief comparative analysis is performed to confirm the potential of the method developed in Section 5.
This section comprises some fundamental definitions that will organize the subsequent work.
Definition 2.1. [29] A soft set over U is a pair (Ω,A), where A is a non-empty set of attributes, and Ω is a mapping from A to the power set of U, denoted by P(U).
In other words,
(Ω,A)={Ω(t)∈P(U):t∈A,Ω(t)=∅ift∉A}. |
Definition 2.2. [25] Let A be any subset of U, and let [a,b] be an interval in the set of real numbers. An interval-valued Pythagorean fuzzy set A over U is defined as a mapping:
Ω:A→[0,1]. |
That assigns an MD and NMD to each element t in A, such that the MD and NMD of an element t in A is an interval [κlA(t),κuA(t)] and [δlA(t),δuA(t)] w.r.t. U, where κlA(t) and κuA(t) are the lower and upper bounds of the MD interval and δlA(t) and δuA(t) are the lower and upper bounds of the NMD interval, respectively. Also, satisfied the 0≤(κuA(t))2+(δuA(t))2≤1.
Definition 2.3. [38] The pair (Ω,N) is called an IVPFSS over U and is defined as follows:
Ω:N→℘KU. |
Here, ℘KU denotes the collection of interval-valued Pythagorean fuzzy subsets of the universe of discourse U. Also, it can be represented as:
(Ω,N)={x,([κlA(t),κuA(t)],[δlA(t),δuA(t)])|t∈A}. |
Where, MD=[κlA(t),κuA(t)], NMD=[δlA(t),δuA(t)], κlA(t),κuA(t),δlA(t),δuA(t)∈[0,1] and fulfilled the consequent state 0≤(κuA(t))2+(δuA(t))2≤1 and A⊂N.
The studies mentioned above cannot deal with the situation when any expert considers the sub-attribute of any deliberated parameter. Smarandache [39] proposed the hypersoft set to handle such complications.
Definition 2.4. [39] Let U be a universal set and P(U) be a power set over U, and t = {t1, t2, t3, ..., tn}, (n ≥ 1) and Ti designated the set of parameters and their corresponding multi-sub-parameters, such as Ti ∩ Tj = φ, where i ≠ j for each n ≥ 1 and i, j 𝜖 {1, 2, 3 … n}. Suppose T1 × T2 × T3× … × Tn = ⃛A = {d1h×d2k×⋯×dnl} be an assortment of multi sub-attributes, where 1 ≤ h ≤ α, 1 ≤ k ≤ β, and 1 ≤ l ≤ γ, and α, β, γ ∈ N. Then the pair (F,T1×T2×T3×⋯×Tn)=(Ω,⃛A) is known as HSS and is defined as follows:
Ω:T1×T2×T3×⋯×Tn=⃛A→P(U). |
Also, it is defined as
(Ω,⃛A)={ˇd,Ω⃛A(ˇd):ˇd∈⃛A,Ω⃛A(ˇd)∈P(U)}. |
Definition 2.5. [45] Let U be a universal set and P(U) be a power set over U, and t = {t1, t2, t3, ..., tn}, (n ≥ 1) and Ti denoted the set of attributes and their compatible multi-sub-attributes, such as Ti ∩ Tj = φ, where i ≠ j for each n ≥ 1 and i, j 𝜖 {1, 2, 3 … n}. Suppose T1×T2×T3×⋯×Tn=⃛A={d1h×d2k×⋯×dnl} be an assortment of multi sub-parameters, where 1≤h≤α, 1≤k≤β, and 1≤l≤γ, and α,β,γ∈N. Then the pair (F,T1×T2×T3×⋯×Tn)=(Ω,⃛A) is called IVPFHSS, and its mapping can be defined as:
Ω:T1×T2×T3×⋯×Tn=⃛A→IVPFHSU. |
Also, it is defined as
(Ω,⃛A)={(ˇd,Ω⃛A(ˇd)):ˇd∈⃛A,Ω⃛A(ˇd)∈IVPFHSU∈[0,1]}, where Ω⃛A(ˇd)={⟨ζ,κΩ(ˇd)(ζ),δΩ(ˇd)(ζ)⟩:ζ∈U}, and κΩ(ˇd)(ζ)=[κlΩ(ˇd)(ζ),κuΩ(ˇd)(ζ)], δΩ(ˇd)(ζ)=[δlΩ(ˇd)(ζ),δuΩ(ˇd)(ζ)], κΩ(ˇd)(ζ) be the MD interval and δΩ(ˇd)(ζ) be the NMD interval, such as κlΩ(ˇd)(ζ),κuΩ(ˇd)(ζ),δlΩ(ˇd)(ζ),δuΩ(ˇd)(ζ)∈[0,1], and 0≤(κuΩ(ˇd)(ζ))2+(δuΩ(ˇd)(ζ))2≤1. It can be written as F = ([κlΩ(ˇd)(ζ),κuΩ(ˇd)(ζ)],[δlΩ(ˇd)(ζ),δuΩ(ˇd)(ζ)]).
The score and accuracy functions used to calculate the alternative rank for IVPFHSS can be defined as follows:
If F=([κlΩ(ˇd)(ζ),κuΩ(ˇd)(ζ)],[δlΩ(ˇd)(ζ),δuΩ(ˇd)(ζ)]) be an IVPFHSN. Then
S(F)=(κlΩ(ˇd)(ζ))2+(κuΩ(ˇd)(ζ))2−(δlΩ(ˇd)(ζ))2−(δuΩ(ˇd)(ζ))22. | (2.1) |
And
A(F)=(κlΩ(ˇd)(ζ))2+(κuΩ(ˇd)(ζ))2+(δlΩ(ˇd)(ζ))2+(δuΩ(ˇd)(ζ))22. | (2.2) |
Definition 2.6. [45] Let Mˇdk=([κlˇdk,κuˇdk],[δlˇdk,δuˇdk]), Mˇd11=([κlˇd11,κuˇd11],[δlˇd11,δuˇd11]), and
Mˇd12=([κlˇd12,κuˇd12],[δlˇd12,δuˇd12]) be three IVPFHSNs and β>0, we have
(1) Mˇd11⊕Mˇd12=([√κlˇd112+κlˇd122−κlˇd112κlˇd122,√κuˇd112+κuˇd122−κuˇd112κuˇd122],[δlˇd11δlˇd12,δuˇd11δuˇd12])
(2) Mˇd11⊗Mˇd12=([κlˇd11κlˇd12,κuˇd11κuˇd12],[√δlˇd112+δlˇd122−δlˇd112δlˇd122,√δuˇd112+δuˇd122−δuˇd112δuˇd122])
(3) βMˇdk=([√1−(1−κlˇdk2)β,√1−(1−κuˇdk2)β],[δlˇdkβ,δuˇdkβ])=(√1−(1−[κlˇdk,κuˇdk]2)β,[δlˇdkβ,δuˇdkβ])
(4) Mˇdkβ=([κlˇdkβ,κuˇdkβ],[√1−(1−δlˇdk2)β,√1−(1−δuˇdk2)β])=([κlˇdkβ,κuˇdkβ],√1−(1−[δlˇdk,δuˇdk]2)β).
Zulqarnain et al. [45] proposed AOs for an array of IVPFHSNs denoted as Meij, where ωi and νj are weights assigned to professionals and attributes, respectively, subject to certain conditions: ωi>0 and ∑ni=1ωi=1;νj>0 and ∑mj=1νj=1.
IVPFHSWA(Mˇd11,Mˇd12,………,Mˇdnm)= |
(√1−∏mj=1(∏ni=1(1−[κlˇdij,κuˇdij]2)ωi)νj,∏mj=1(∏ni=1([δlˇdij,δuˇdij])ωi)νj) | (2.3) |
IVPFHSWG(Mˇd11,Mˇd12,………,Mˇdnm)= |
(∏mj=1(∏ni=1([κlˇdij,κuˇdij])ωi)νj,√1−∏mj=1(∏ni=1(1−[δlˇdij,δuˇdij]2)ωi)νj) | (2.4) |
Upon analyzing the IVPFHSWA and IVPFHSWG operators, it becomes apparent that they produce undesirable outcomes in certain cases. To report these concerns, we propose the interaction AOs for IVPFHSNs.
This section will present interaction operational laws for IVPFHSNs and propose the IVPFHSIWA and IVPFHSIWG operators based on these laws.
Definition 3.1. Let Mˇdk=([κlˇdk,κuˇdk],[δlˇdk,δuˇdk]), Mˇd11=([κlˇd11,κuˇd11],[δlˇd11,δuˇd11]), and
Mˇd12=([κlˇd12,κuˇd12],[δlˇd12,δuˇd12]) be three IVPFHSNs and β>0, and by algebraic norms, interactional operational laws for IVPFHSNs can be defined as:
(1) Mˇd11⊕Mˇd12 =
([√κlˇd112+κlˇd122−κlˇd112κlˇd122,√κuˇd112+κuˇd122−κuˇd112κuˇd122],[√δlˇd112+δlˇd122−δlˇd112δlˇd122−κlˇd112δlˇd122−δlˇd112κlˇd122,√δuˇd112+δuˇd122−δuˇd112δuˇd122−κuˇd112δuˇd122−δuˇd112κuˇd122]) |
(2) Mˇd11⊗Mˇd12 =
([√κlˇd112+κlˇd122−κlˇd112κlˇd122−κlˇd112δlˇd122−δlˇd112κlˇd122,√κuˇd112+κuˇd122−κuˇd112κuˇd122−κuˇd112δuˇd122−δuˇd112κuˇd122],[√δlˇd112+δlˇd122−δlˇd112δlˇd122,√δuˇd112+δuˇd122−δuˇd112δuˇd122]) |
(3) βMˇdk=(√1−(1−[κlˇdk,κuˇdk]2)β,√(1−[κlˇdk,κuˇdk]2)β−(1−([κlˇdk,κuˇdk]2+[δlˇdk,δuˇdk]2))β)
(4) Mˇdkβ=(√(1−[δlˇdk,δuˇdk]2)β−(1−[([κlˇdk,κuˇdk]2+[δlˇdk,δuˇdk]2)])β,√1−(1−[δlˇdk,δuˇdk]2)β).
We will present the average interactional aggregation operator with some important results and properties for IVPFHSS using the above-presented interactional operational laws for IVPFHSNs in the following.
Definition 3.2. Let Mˇdk=([κlˇdk,κuˇdk],[δlˇdk,δuˇdk]) be a collection of IVPFHSNs, and ωi and νj be the weights for specialists and multi sub-attributes, disparately, with certain circumstances ωi>0,∑ni=1ωi=1;νj>0,∑mj=1νj=1. Then, the IVPFHSIWA operator is defined as IVPFHSIWA:Ψn⟶Ψ
IVPFHSIWA(Mˇd11,Mˇd12,………,Mˇdnm)=⊕mj=1νj(⊕ni=1ωiMˇdij). |
Theorem 3.1. Let Mˇdij=([κlˇdij,κuˇdij],[δlˇdij,δuˇdij]) be a collection of IVPFHSNs, and the aggregated value is also an IVPFHSN, such as
IVPFHSIWA(Mˇd11,Mˇd12,………,Mˇdnm)=(√1−∏mj=1(∏ni=1(1−[κlˇdij,κuˇdij]2)ωi)νj,√∏mj=1(∏ni=1(1−[κlˇdij,κuˇdij]2)ωi)νj−∏mj=1(∏ni=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj). |
ωi and νj be the weights for experts and parameters disparately, with assumed conditions ωi>0,∑ni=1ωi=1;νj>0,∑mj=1νj=1.
Proof. We shall prove the IVPFHSIWA operator by employing the principle of mathematical induction:
For n=1, we get ω1=1. Then, we have
IVPFHSIWA(Mˇd11,Mˇd12,………,Mˇd1m)=⊕mj=1νjMˇd1j=(√1−∏mj=1(1−[κlˇd1j,κuˇd1j]2)νj,√∏mj=1(1−[κlˇd1j,κuˇd1j]2)νj−∏mj=1(1−([κlˇd1j,κuˇd1j]2+[δlˇd1j,δuˇd1j]2))νj)=(√1−∏mj=1(∏1i=1(1−[κlˇdij,κuˇdij]2)ωi)νj,√∏mj=1(∏1i=1(1−[κlˇdij,κuˇdij]2)ωi)νj−∏mj=1(∏1i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj). |
For m=1, we get ν1=1. Then, we have
IVPFHSIWA(Mˇd11,Mˇd21,………,Mˇdn1)=⊕ni=1ωiMˇdi1=(√1−n∏i=1(1−[κlˇdi1,κuˇdi1]2)ωi,√n∏i=1(1−[κlˇdi1,κuˇdi1]2)ωi−n∏i=1(1−([κlˇdi1,κuˇdi1]2+[δlˇdi1,δuˇdi1]2))ωi) |
=(√1−∏1j=1(∏ni=1(1−[κlˇdij,κuˇdij]2)ωi)νj,√∏1j=1(∏ni=1(1−[κlˇdij,κuˇdij]2)ωi)νj−∏1j=1(∏ni=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj). |
This demonstrates that the overhead statement holds for n=1 and m=1. Suppose it also holds for m=α1+1,n=α2 and m=α1,n=α2+1, such as
⊕α1+1j=1νj(⊕α2i=1ωiMˇdij)=(√1−α1+1∏j=1(α2∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj,√α1+1∏j=1(α2∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj−α1+1∏j=1(α2∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj) |
⊕α1j=1νj(⊕α2+1i=1ωiMˇdij)=(√1−α1∏j=1(α2+1∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj,√α1∏j=1(α2+1∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj−α1∏j=1(α2+1∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj). |
For m=α1+1 and n=α2+1, we have
⊕α1+1j=1νj(⊕α2+1i=1ωiMˇdij)=⊕α1+1j=1νj(⊕α2i=1ωiMˇdij⊕ωα2+1Mˇd(α2+1)j) |
=⊕α1+1j=1⊕α2i=1νjωiMˇdij⊕α1+1j=1νjωα2+1Mˇd(α2+1)j |
=(√1−α1+1∏j=1(α2∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj⨁√1−α1+1∏j=1((1−[κlˇd(α2+1)j,κuˇd(α2+1)j]2)ωα2+1)νj,√α1+1∏j=1(α2∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj−α1+1∏j=1(α2∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj⨁√α1+1∏j=1((1−[κlˇd(α2+1)j,κuˇd(α2+1)j]2)ωα2+1)νj−α1+1∏j=1((1−([κlˇd(α2+1)j,κuˇd(α2+1)j]2+[δlˇd(α2+1)j,δuˇd(α2+1)j]2)ωα2+1)νj) |
=(√1−α1+1∏j=1(α2+1∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj,√α1+1∏j=1(α2+1∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj−α1+1∏j=1(α2+1∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj). |
Therefore, it holds for m=α1+1 and n=α2+1. So, we can say that it holds ∀ m, n.
Example 3.1. Let R={R1,R2,R3,R4} be a team of experts with the assumed weights ωi=(0.1,0.2,0.4,0.3)T. The team of specialists designates the good looks of a community under contemplated features A={e1=Parkland,e2=safetyarrangement} with their compatible sub-parameters, Parkland = e1 = {e11=withgrass,e12=withoutgrass} Safety arrangement = e2 = {e21=guards,e22=cameras}. Let A = e1 × e2 be a set of sub-attributes
A=e1×e2={e11,e12}×{e21,e22}={(e11,e21),(e11,e22),(e12,e21),(e12,e22)}. |
A = {ˇd1,ˇd2,ˇd3,ˇd4} be a collection of multi sub-parameters with their weights νj=(0.3,0.1,0.2,0.4)T. The assessment standards for each substitute in terms of IVPFHSN (M,A)=([κlˇdij,κuˇdij],[δlˇdij,δuˇdij])3×4 given as:
(M,A)=[([0.4,0.5],[0.2,0.5])([0.5,0.6],[0.7,0.8])([0.4,0.6],[0.2,0.5])([0.2,0.4],[0.2,0.6])([0.2,0.7],[0.2,0.6])([0.4,0.5],[0.1,0.6])([0.2,0.3],[0.4,0.8])([0.2,0.5],[0.4,0.7])([0.3,0.5],[0.1,0.4])([0.2,0.7],[0.4,0.6])([0.4,0.7],[0.3,0.7])([0.5,0.7],[0.2,0.4])([0.4,0.6],[0.1,0.7])([0.3,0.7],[0.4,0.5])([0.3,0.6],[0.3,0.5])([0.3,0.6],[0.3,0.5])] |
By using the above theorem, we have
IVPFHSIWA(Mˇd11,Mˇd12,………,Mˇd34)=(√1−4∏j=1(4∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj,√4∏j=1(4∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj−4∏j=1(4∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj) |
=(√1−({[0.75,0.84]0.1[0.51,0.96]0.2[0.75,0.91]0.4[0.64,0.84]0.3}0.3{[0.64,0.75]0.1[0.75,0.84]0.2[0.51,0.96]0.4[0.51,0.91]0.3}0.1{[0.64,0.84]0.1[0.91,0.96]0.2[0.51,0.84]0.4[0.64,0.91]0.3}0.2{[0.84,0.96]0.1[0.75,0.96]0.2[0.51,0.75]0.4[0.64,0.91]0.3}0.4),√({[0.75,0.84]0.1[0.51,0.96]0.2[0.75,0.91]0.4[0.64,0.84]0.3}0.3{[0.64,0.75]0.1[0.75,0.84]0.2[0.51,0.96]0.4[0.51,0.91]0.3}0.1{[0.64,0.84]0.1[0.91,0.96]0.2[0.51,0.84]0.4[0.64,0.91]0.3}0.2{[0.84,0.96]0.1[0.75,0.96]0.2[0.51,0.75]0.4[0.64,0.91]0.3}0.4)−({(1−[0.2,0.5])0.1(1−[0.08,0.85])0.2(1−[0.1,0.41])0.4(1−[0.25,0.85])0.3}0.3{(1−[0.74,1])0.1(1−[0.17,0.61])0.2(1−[0.2,0.85])0.4(1−[0.25,0.74])0.3}0.1{(1−[0.2,0.61])0.1(1−[0.2,0.73])0.2(1−[0.25,0.98])0.4(1−[0.18,0.61])0.3}0.2{(1−[0.08,0.52])0.1(1−[0.2,0.74])0.2(1−[0.29,0.65])0.4(1−[0.18,0.61])0.3}0.4)) |
=(√1−({[0.9716,0.9827][0.8740,0.9919][0.913,0.9630][0.8747,0.9490]}0.3{[0.9564,0.9716][0.9441,0.9657][0.7639,0.9838][0.8171,0.9721]}0.1{[0.9564,0.9827][0.9813,0.9919][0.7639,0.9326][0.8747,0.9721]}0.2{[0.9827,0.9959][0.9441,0.9919][0.7639,0.8913][0.8747,0.9721]}0.4),√({[0.9716,0.9827][0.8740,0.9919][0.8670,0.9630][0.8747,0.9490]}0.3{[0.9564,0.9716][0.9441,0.9657][0.7639,0.9838][0.8187,0.9721]}0.1{[0.9564,0.9827][0.9813,0.9919][0.7639,0.9326][0.8747,0.9721]}0.2{[0.9827,0.9959][0.9441,0.9919][0.7639,0.8913][0.8747,0.9721]}0.4)−({[0.9330,0.9779][0.6843,0.9835][0.8097,0.9587][0.5660,0.9173]}0.3{[0,0.8740][0.8283,0.9634][0.4682,0.9146][0.6676,0.9173]}0.1{[0.9101,0.9779][0.7696,0.9564][0.2091,0.8913][0.7539,0.9422]}0.2{[0.9292,0.9917][0.7638,0.9564][0.6571,0.8720][0.8539,0.9422]}0.4)) |
=([0.3523,0.6102],[0.7923,0.2895]). |
If Mˇdij=Mˇdk=([κlˇdij,κuˇdij],[δlˇdij,δuˇdij])∀i,j,then,
IVPFHSIWA(Mˇd11,Mˇd12,………,Mˇdnm)=Mˇdk. |
Proof. As we know that all Mˇdij=Mˇdk=([κlˇdij,κuˇdij],[δlˇdij,δuˇdij]). Then, we have
IVPFHSIWA(Mˇd11,Mˇd12,………,Mˇdnm)=(√1−m∏j=1(n∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj,√m∏j=1(n∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj−m∏j=1(n∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj) |
=(√1−((1−[κlˇdij,κuˇdij]2)∑ni=1ωi)∑mj=1νj,√((1−[κlˇdij,κuˇdij]2)∑ni=1ωi)∑mj=1νj−((1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))∑ni=1ωi)∑mj=1νj). |
As ∑mj=1νj=1 and ∑ni=1ωi=1, then
=(√1−(1−[κlˇdij,κuˇdij]2),√1−[κlˇdij,κuˇdij]2−(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))) |
=([κlˇdij,κuˇdij],[δlˇdij,δuˇdij]) |
=Mˇdk. |
Let Mˇdij be a collection of IVPFHSNs where M−ˇdij=(minjmini{[κlˇdij,κuˇdij]},maxjmaxi{[δlˇdij,δuˇdij]}) and M+ˇdij=(maxjmaxi{[κlˇdij,κuˇdij]},minjmini{[δlˇdij,δuˇdij]}).
Then
M−ˇdij≤IVPFHSIWA(Mˇd11,Mˇd12,………,Mˇdnm)≤M+ˇdij. |
Proof. As we know that Mˇdij=⟨[κlˇdij,κuˇdij],[δlˇdij,δuˇdij]⟩ be an IVPFHSN, then
minjmini{[κlˇdij,κuˇdij]2}≤[κlˇdij,κuˇdij]2≤maxjmaxi{[κlˇdij,κuˇdij]2} |
⇒1−maxjmaxi{[κlˇdij,κuˇdij]2}≤1−[κlˇdij,κuˇdij]2≤1−minjmini{[κlˇdij,κuˇdij]2} |
⟺(1−maxjmaxi{[κlˇdij,κuˇdij]2})ωi≤(1−[κlˇdij,κuˇdij]2)ωi≤(1−minjmini{[κlˇdij,κuˇdij]2})ωi |
⟺(1−maxjmaxi{[κlˇdij,κuˇdij]2})∑ni=1ωi≤n∏i=1(1−[κlˇdij,κuˇdij]2)ωi≤(1−minjmini{[κlˇdij,κuˇdij]2})∑ni=1ωi |
⟺(1−maxjmaxi{[κlˇdij,κuˇdij]2})∑nj=1νj≤m∏j=1(n∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj≤(1−minjmini{[κlˇdij,κuˇdij]2})∑nj=1νj |
⟺1−maxjmaxi{[κlˇdij,κuˇdij]2}≤m∏j=1(n∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj≤1−minjmini{[κlˇdij,κuˇdij]2} |
⟺minjmini{[κlˇdij,κuˇdij]2}≤1−∏mj=1(∏ni=1(1−[κlˇdij,κuˇdij]2)ωi)νj≤maxjmaxi{[κlˇdij,κuˇdij]2}. | (3.1) |
⟺minjmini{[κlˇdij,κuˇdij]}≤√1−∏mj=1(∏ni=1(1−[κlˇdij,κuˇdij]2)ωi)νj≤maxjmaxi{[κlˇdij,κuˇdij]}. | (3.2) |
Similarly,
minjmini{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2}≤[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2≤maxjmaxi{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2} |
⇒1−maxjmaxi{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2}≤1−([κlˇdij,κuˇdij]2+[δlˇdij,δuij]2)≤1−minjmini{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2} |
⟺(1−maxjmaxi{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2})ωi≤(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi≤(1−minjmini{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2})ωi |
⟺(1−maxjmaxi{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2})∑ni=1ωi≤n∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi≤(1−minjmini{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2})∑ni=1ωi |
⟺(1−maxjmaxi{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2})∑nj=1νj≤m∏j=1(n∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj≤(1−minjmini{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2})∑nj=1νj |
⟺1−maxjmaxi{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2}≤m∏j=1(n∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj≤1−minjmini{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2} |
⟺minjmini{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2}≤1−∏mj=1(∏ni=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj≤maxjmaxi{[κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2} | (3.3) |
Subtracting inequality (3.3) from (3.1).
⟺minjmini{[δlˇdij,δuˇdij]2}≤m∏j=1(n∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj−m∏j=1(n∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2)))ωi)νj≤maxjmaxi{[δlˇdij,δuˇdij]2} |
⟺minjmini{[δlˇdij,δuˇdij]}≤ |
√m∏j=1(n∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj−m∏j=1(n∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj |
≤maxjmaxi{[δlˇdij,δuˇdij]} | (3.4) |
Let IVPFHSIWA (Mˇd11,Mˇd12,………,Mˇdnm)=⟨[κlˇdk,κuˇdk],[δlˇdk,δuˇdk]⟩=Mˇdk, from(3.2) and (3.4):
minjmini{[κlˇdij,κuˇdij]}≤Mˇdk≤maxjmaxi{[κlˇdij,κuˇdij]} and minjmini{[δlˇdij,δuˇdij]}≤Mˇdk≤maxjmaxi{[δlˇdij,δuˇdij]} correspondingly.
Using Eq (2.1).
S(Mˇdk)=(κlˇdk)2+(κuˇdk)2−(δlˇdk)2−(δuˇdk)22≤maxjmaxi{[κlˇdij,κuˇdij]}−minjmini{[δlˇdij,δuˇdij]} |
=S(M−ˇdk) |
S(Mˇdk)=(κlˇdk)2+(κuˇdk)2−(δlˇdk)2−(δuˇdk)22≥minjmini{[κlˇdij,κuˇdij]}−maxjmaxi{[δlˇdij,δuˇdij]}=S(M+ˇdk). |
Then, by order relation between two IVPFHSNs, we have
M−ˇdij≤IVPFHSIWA(Mˇd11,Mˇd12,………,Mˇdnm)≤M+ˇdij. |
Prove that IVPFHSIWA(βMˇd11,βMˇd12,………,βMˇdnm)=βIVPFHSIWA(Mˇd11,Mˇd12,………,Mˇdnm) for any β>0.
Proof. Let Mˇdij be an IVPFHSN and β>0, then
βMˇdij= |
((√1−(1−[κlˇdij,κuˇdij]2)β,√(1−[κlˇdij,κuˇdij]2)β−[1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2)β)). |
So,
βMˇd11,βMˇd12,………,βMˇdnm |
=(√1−m∏j=1(n∏i=1(1−[κlˇdij,κuˇdij]2)βωi)νj,√m∏j=1(n∏i=1(1−[κlˇdij,κuˇdij]2)βωi)νj−m∏j=1(n∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))βωi)νj) |
=(√1−(m∏j=1(n∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj)β,√(m∏j=1(n∏i=1(1−[κlˇdij,κuˇdij]2)ωi)νj)β−(m∏j=1(n∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj)β) |
=βIVPFHSIWA(Mˇd11,Mˇd12,………,Mˇdnm). |
Also, the geometric interactional aggregation operator with some important results and properties for IVPFHSS using the interactional operational laws for IVPFHSNs is given as follows.
Definition 3.3. Let Mˇdk=([κlˇdk,κuˇdk],[δlˇdk,δuˇdk]) be a collection of IVPFHSNs, and ωi and νj be the weights for specialists and multi sub-attributes, disparately, with certain circumstances ωi>0,∑ni=1ωi=1;νj>0,∑mj=1νj=1. Then, the IVPFHSIWA operator is defined as IVPFHSIWG: Ψn⟶Ψ
IVPFHSIWG(Mˇd11,Mˇd12,………,Mˇdnm)=⊗mj=1(⊗ni=1(Mˇdij)ωi)νj. |
Theorem 3.2. Let Mˇdij=([κlˇdij,κuˇdij],[δlˇdij,δuˇdij]) is a set of IVPFHSNs, and the resulting value after aggregation is also an IVPFHSN.
IVPFHSIWG(Mˇd11,Mˇd12,………,Mˇdnm) |
=(√∏mj=1(∏ni=1(1−[δlˇdij,δuˇdij]2)ωi)νj−∏mj=1(∏ni=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj,√1−∏mj=1(∏ni=1(1−[δlˇdij,δuˇdij]2)ωi)νj). |
ωi and νj be the weights for experts and attributes disparately, with assumed conditions ωi>0,∑ni=1ωi=1;νj>0,∑mj=1νj=1.
Proof. The IVPFHSIWG operator can be demonstrated through the mathematical induction principle outlined below.
For n=1, we get ω1=1. Then, we have
IVPFHSIWG(Mˇd11,Mˇd12,………,Mˇd1m)=⊗mj=1(Mˇd1j)νj |
IVPFHSIWG(Mˇd11,Mˇd12,………,Mˇdnm) |
=(√m∏j=1(1−[δlˇd1j,δuˇd1j]2)νj−m∏j=1(1−([κlˇd1j,κuˇd1j]2+[δlˇd1j,δuˇd1j]2))νj,√1−m∏j=1(1−[δlˇd1j,δuˇd1j]2)νj) |
=(√∏mj=1(∏1i=1(1−[δlˇdij,δuˇdij]2)ωi)νj−∏mj=1(∏1i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj,√1−∏mj=1(∏1i=1(1−[δlˇdij,δuˇdij]2)ωi)νj). |
For m=1, we get ν1=1. Then, we have
IVPFHSIWG(Mˇd11,Mˇd21,………,Mˇdn1)=⊗ni=1(Mˇdi1)ωi |
=(√n∏i=1(1−[δlˇdi1,δuˇdi1]2)ωi−n∏i=1(1−([κlˇdi1,κuˇdi1]2+[δlˇdi1,δuˇdi1]2))ωi,√1−n∏i=1(1−[δlˇdi1,δuˇdi1]2)ωi) |
=(√∏1j=1(∏ni=1(1−[δlˇdij,δuˇdij]2)ωi)νj−∏1j=1(∏ni=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj,√1−∏1j=1(∏ni=1(1−[δlˇdij,δuˇdij]2)ωi)νj). |
The preceding theorem has been demonstrated to hold for the cases where n=1 and m=1.
To demonstrate that it also holds true for m=α1+1,n=α2 and m=α1,n=α2+1, the following is considered.
⊗α1+1j=1(⊗α2i=1(Mˇdij)ωi)νj |
=(√α1+1∏j=1(α2∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj−α1+1∏j=1(α2∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj,√1−α1+1∏j=1(α2∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj) |
⊗α1j=1(⊗α2+1i=1(Mˇdij)ωi)νj |
=(√α1∏j=1(α2+1∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj−α1∏j=1(α2+1∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj,√1−α1∏j=1(α2+1∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj). |
For m=α1+1 and n=α2+1, we have
⊗α1+1j=1(⊗α2+1i=1(Mˇdij)ωi)νj=⊗α1+1j=1((⊗α2i=1(Mˇdij)ωi⊗(Mˇd(α2+1)j)ωα2+1))νj |
=⊗α1+1j=1(⊗α2i=1(Mˇdij)ωi)νj⊗α1+1j=1(Mˇd(α2+1)j)νjωα2+1 |
=(√∏α1+1j=1(∏α2i=1(1−[δlˇdij,δuˇdij]2)ωi)νj−∏α1+1j=1(∏α2i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj⊗√∏α1+1j=1((1−[δlˇd(α2+1)j,δuˇd(α2+1)j]2)ωα2+1)νj−∏α1+1j=1((1−([κlˇd(α2+1)j,κuˇd(α2+1)j]2+[δlˇd(α2+1)j,δuˇd(α2+1)j]2))ωα2+1)νj,√1−∏α1+1j=1(∏α2i=1(1−[δlˇdij,δuˇdij]2)ωi)νj⊗√1−∏α1+1j=1((1−[δlˇd(α2+1)j,δuˇd(α2+1)j]2)ωα2+1)νj) |
=(√α1+1∏j=1(α2+1∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj−α1+1∏j=1(α2+1∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj,√1−α1+1∏j=1(α2+1∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj). |
It holds for m=α1+1 and n=α2+1. So, it also holds ∀ m, n.
Example 3.2. Let R={R1,R2,R3,R4} be a team of experts with the assumed weights ωi=(0.1,0.2,0.4,0.3)T. The team of specialists designates the good looks of a community under contemplated features A={e1=Parkland,e2=safetyarrangement} with their compatible sub-parameters, Parkland = e1 = {e11=withgrass,e12=withoutgrass} Safety arrangement = e2 = {e21=guards,e22=cameras}. Let A = e1 × e2 be a set of sub-attributes
A=e1×e2={e11,e12}×{e21,e22}={(e11,e21),(e11,e22),(e12,e21),(e12,e22)} |
A = {ˇd1,ˇd2,ˇd3,ˇd4} be a collection of multi sub-parameters with their weights νj=(0.3,0.1,0.2,0.4)T. The assessment standards for each substitute in terms of IVPFHSN (M,A)=([κlˇdij,κuˇdij],[δlˇdij,δuˇdij])3×4 given as:
(M,A)=[([0.3,0.8],[0.4,0.5])([0.4,0.6],[0.3,0.7])([0.5,0.8],[0.5,0.6])([0.4,0.9],[0.3,0.7])([0.1,0.5],[0.2,0.3])([0.3,0.8],[0.5,0.7])([0.2,0.4],[0.2,0.3])([0.3,0.8],[0.6,0.7])([0.2,0.9],[0.2,0.3])([0.5,0.7],[0.2,0.6])([0.2,0.4],[0.2,0.8])([0.3,0.8],[0.5,0.8])] |
By using the above theorem, we have
IVPFHSIWG(Mˇd11,Mˇd12,………,Mˇdnm)=(√4∏j=1(3∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj−4∏j=1(3∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj,√1−4∏j=1(3∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj) |
(√({[0.75,0.96]0.1[0.64,0.96]0.2[0.84,0.99]0.4[0.51,0.91]0.3}0.3{[0.36,0.51]0.1[0.64,0.99]0.2[0.64,0.84]0.4[0.75,0.84]0.3}0.1{[0.75,0.96]0.1[0.36,0.84]0.2[0.51,0.91]0.4[0.75,0.91]0.3}0.2{[0.64,0.96]0.1[0.51,0.84]0.2[0.84,0.96]0.4[0.75,0.91]0.3}0.4)−({(1−[0.2,0.5])0.1(1−[0.08,0.85])0.2(1−[0.1,0.41])0.4(1−[0.25,0.85])0.3}0.3{(1−[0.74,1])0.1(1−[0.17,0.61])0.2(1−[0.2,0.85])0.4(1−[0.25,0.74])0.3}0.1{(1−[0.2,0.61])0.1(1−[0.2,0.73])0.2(1−[0.25,0.98])0.4(1−[0.18,0.61])0.3}0.2{(1−[0.08,0.52])0.1(1−[0.2,0.74])0.2(1−[0.29,0.65])0.4(1−[0.18,0.61])0.3}0.4),√1−({[0.75,0.96]0.1[0.64,0.96]0.2[0.84,0.99]0.4[0.51,0.91]0.3}0.3{[0.36,0.51]0.1[0.64,0.99]0.2[0.64,0.84]0.4[0.75,0.84]0.3}0.1{[0.75,0.96]0.1[0.36,0.84]0.2[0.51,0.91]0.4[0.75,0.91]0.3}0.2{[0.64,0.96]0.1[0.51,0.84]0.2[0.84,0.96]0.4[0.75,0.91]0.3}0.4)) |
=(√([0.6772,0.9564]0.3[0.6337,0.8258]0.1[0.5550,0.9004]0.2[0.7151,0.9198]0.4)−([0.2926,0.8458]0.3[0,0.7064]0.1[0.1104,0.7854]0.2[0.3516,0.7793]0.4),√1−([0.6772,0.9564]0.3[0.6337,0.8258]0.1[0.5550,0.9004]0.2[0.7151,0.9198]0.4)) |
=([0.8128,0.3530],[0.2886,0.5825]). |
Now, we will debate the anticipated properties for the IVPFHSIWG operator.
If Mˇdij=Mˇdk=([κlˇdij,κuˇdij],[δlˇdij,δuˇdij])∀i,j,then,
IVPFHSIWG(Mˇd11,Mˇd12,………,Mˇdnm)=Mˇdk. |
Proof. As we know that all Mˇdij=Mˇdk=([κlˇdij,κuˇdij],[δlˇdij,δuˇdij]), then, we have
IVPFHSIWG(Mˇd11,Mˇd12,………,Mˇdnm)=(√m∏j=1(n∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj−m∏j=1(n∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj,√1−m∏j=1(n∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj) |
=(√((1−[δlˇdij,δuˇdij]2)∑ni=1ωi)∑mj=1νj−((1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))∑ni=1ωi)∑mj=1νj,√1−((1−[δlˇdij,δuˇdij]2)∑ni=1ωi)∑mj=1νj). |
As ∑mj=1νj=1 and ∑ni=1ωi=1, then we have
=(√(1−[δlˇdij,δuˇdij]2)−(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2)),√1−(1−[δlˇdij,δuˇdij]2)) |
=([κlˇdij,κuˇdij],[δlˇdij,δuˇdij]) |
=Mˇdk. |
Let Mˇdij be a collection of IVPFHSNs where M−ˇdij=(minjmini{[κlˇdij,κuˇdij]},maxjmaxi{[δlˇdij,δuˇdij]}) and M+ˇdij=(maxjmaxi{[κlˇdij,κuˇdij]},minjmini{[δlˇdij,δuˇdij]}), then
M−ˇdij≤IVPFHSIWG(Mˇd11,Mˇd12,………,Mˇdnm)≤M+ˇdij. |
Proof. As we know that Mˇdij=([κlˇdij,κuˇdij],[δlˇdij,δuˇdij]) be an IVPFHSN, then
minjmini{[δlˇdij,δuˇdij]2}≤[δlˇdij,δuˇdij]2≤maxjmaxi{[δlˇdij,δuˇdij]2} |
⇒1−maxjmaxi{[δlˇdij,δuˇdij]2}≤1−[δlˇdij,δuˇdij]2≤1−minjmini{[δlˇdij,δuˇdij]2} |
⟺(1−maxjmaxi{[δlˇdij,δuˇdij]2})ωi≤(1−[δlˇdij,δuˇdij]2)ωi≤(1−minjmini{[δlˇdij,δuˇdij]2})ωi |
⟺(1−maxjmaxi{[δlˇdij,δuˇdij]2})∑ni=1ωi≤n∏i=1(1−[δlˇdij,δuˇdij]2)ωi≤(1−minjmini{[δlˇdij,δuˇdij]2})∑ni=1ωi |
⟺(1−maxjmaxi{[δlˇdij,δuˇdij]2})∑nj=1νj≤m∏j=1(n∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj≤(1−minjmini{[δlˇdij,δuˇdij]2})∑nj=1νj |
⟺1−maxjmaxi{[δlˇdij,δuˇdij]2}≤m∏j=1(n∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj≤1−minjmini{[δlˇdij,δuˇdij]2} |
⟺minjmini{[δlˇdij,δuˇdij]2}≤1−m∏j=1(n∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj≤maxjmaxi{[δlˇdij,δuˇdij]2} |
⟺minjmini{[δlˇdij,δuˇdij]}≤√1−m∏j=1(n∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj≤maxjmaxi{[δlˇdij,δuˇdij]} | (3.5) |
Similarly, we can prove that
minjmini{[κlˇdij,κuˇdij]}≤ |
√m∏j=1(n∏i=1(1−[δlˇdij,δuˇdij]2)ωi)νj−m∏j=1(n∏i=1(1−([κlˇdij,κuˇdij]2+[δlˇdij,δuˇdij]2))ωi)νj≤ |
maxjmaxi{[κlˇdij,κuˇdij]}. | (3.6) |
Let IVPFHSIWG(Mˇd11,Mˇd12,………,Mˇdnm)=⟨[κlˇdk,κuˇdk],[δlˇdk,δuˇdk]⟩=Mˇdk, then (3.5) and (3.6) can be arranged as follows:
minjmini{[κlˇdij,κuˇdij]}≤Mˇdk≤maxjmaxi{[κlˇdij,κuˇdij]} and \begin{array}{c}{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}\\ {\mathrm{j}}\end{array}\begin{array}{c}{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}\\ {\mathrm{i}}\end{array}\left\{\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}}, {{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]\right\}\le {\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{k}}}}\le \begin{array}{c}{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}\\ {\mathrm{j}}\end{array}\begin{array}{c}{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}\\ {\mathrm{i}}\end{array}\left\{\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}}, {{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]\right\} respectively.
Using Eq (2.1).
{\mathrm{S}}\left({\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{k}}}}\right) = \frac{{\left({{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{k}}}}^{{\mathrm{l}}}\right)}^{2}+{\left({{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{k}}}}^{{\mathrm{u}}}\right)}^{2}-{\left({{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{k}}}}^{{\mathrm{l}}}\right)}^{2}-{\left({{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{k}}}}^{{\mathrm{u}}}\right)}^{2}}{2}\le \begin{array}{c}{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}\\ {\mathrm{j}}\end{array}\begin{array}{c}{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}\\ {\mathrm{i}}\end{array}\left\{\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]\right\}-\begin{array}{c}{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}\\ {\mathrm{j}}\end{array}\begin{array}{c}{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}\\ {\mathrm{i}}\end{array}\left\{\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]\right\} = {\mathrm{S}}\left({\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{-}\right) |
{\mathrm{S}}\left({\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{k}}}}\right) = \frac{{\left({{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{k}}}}^{{\mathrm{l}}}\right)}^{2}+{\left({{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{k}}}}^{{\mathrm{u}}}\right)}^{2}-{\left({{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{k}}}}^{{\mathrm{l}}}\right)}^{2}-{\left({{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{k}}}}^{{\mathrm{u}}}\right)}^{2}}{2}\ge \begin{array}{c}{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}\\ {\mathrm{j}}\end{array}\begin{array}{c}{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}\\ {\mathrm{i}}\end{array}\left\{\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]\right\}-\begin{array}{c}{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}\\ {\mathrm{j}}\end{array}\begin{array}{c}{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}\\ {\mathrm{i}}\end{array}\left\{\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]\right\} = {\mathrm{S}}\left({\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{+}\right) . |
Then, by order relation between two IVPFHSNs, we have
{\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{-}\le {\mathrm{I}}{\mathrm{V}}{\mathrm{P}}{\mathrm{F}}{\mathrm{H}}{\mathrm{S}}{\mathrm{I}}{\mathrm{W}}{\mathrm{G}}\left({\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{11}},{\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{12}},\dots \dots \dots ,{\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}{\mathrm{m}}}}\right)\le {\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{+}. |
Prove that {\mathrm{I}}{\mathrm{V}}{\mathrm{P}}{\mathrm{F}}{\mathrm{H}}{\mathrm{S}}{\mathrm{I}}{\mathrm{W}}{\mathrm{G}}\; ({\mathtt{β}}{\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{11}}, {{\mathtt{β}}\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{12}}, \dots \dots \dots, {{\mathtt{β}}\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}{\mathrm{m}}}}) = {\mathtt{β}}\; {\mathrm{I}}{\mathrm{V}}{\mathrm{P}}{\mathrm{F}}{\mathrm{H}}{\mathrm{S}}{\mathrm{I}}{\mathrm{W}}{\mathrm{G}}\left({\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{11}}, {\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{12}}, \dots \dots \dots, {\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}{\mathrm{m}}}}\right) {\mathtt{β}} > 0.
Proof. Let {\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}} be an IVPFHSN and {\mathtt{β}} > 0 , then
{\mathtt{β}}{\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}} = \left(\sqrt{1-{\left(1-{\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]}^{2}\right)}^{{\mathtt{β}}}},\sqrt{{\left(1-[{{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}]}^{2}\right)}^{{\mathtt{β}}}-{[1-\left([{{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}]}^{2}+[{{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}]}^{2}\right)}^{{\mathtt{β}}}}\right) . |
So,
{\mathrm{I}}{\mathrm{V}}{\mathrm{P}}{\mathrm{F}}{\mathrm{H}}{\mathrm{S}}{\mathrm{I}}{\mathrm{W}}{\mathrm{G}}\left({\mathtt{β}}{\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{11}},{{\mathtt{β}}\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{12}},\dots \dots \dots ,{{\mathtt{β}}\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}{\mathrm{m}}}}\right) |
= \left(\begin{array}{c}\sqrt{\prod\limits _{{\mathrm{j}} = 1}^{{\mathrm{m}}}{\left(\prod\limits _{{\mathrm{i}} = 1}^{{\mathrm{n}}}{\left(1-{\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]}^{2}\right)}^{{{\mathtt{β}}{\mathtt{ω}}}_{{\mathrm{i}}}}\right)}^{{{\mathtt{ν}}}_{{\mathrm{j}}}}-\prod\limits _{{\mathrm{j}} = 1}^{{\mathrm{m}}}{\left(\prod\limits _{{\mathrm{i}} = 1}^{{\mathrm{n}}}{\left(1-\left({\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]}^{2}+{\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]}^{2}\right)\right)}^{{{\mathtt{β}}{\mathtt{ω}}}_{{\mathrm{i}}}}\right)}^{{{\mathtt{ν}}}_{{\mathrm{j}}}}},\\ \sqrt{1-\prod\limits _{{\mathrm{j}} = 1}^{{\mathrm{m}}}{\left(\prod\limits _{{\mathrm{i}} = 1}^{{\mathrm{n}}}{\left(1-{\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]}^{2}\right)}^{{{\mathtt{β}}{\mathtt{ω}}}_{{\mathrm{i}}}}\right)}^{{{\mathtt{ν}}}_{{\mathrm{j}}}}}\end{array}\right) |
= \left(\begin{array}{c}\sqrt{{\left(\prod\limits _{{\mathrm{j}} = 1}^{{\mathrm{m}}}{\left(\prod\limits _{{\mathrm{i}} = 1}^{{\mathrm{n}}}{\left(1-{\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]}^{2}\right)}^{{{\mathtt{ω}}}_{{\mathrm{i}}}}\right)}^{{{\mathtt{ν}}}_{{\mathrm{j}}}}\right)}^{{\mathtt{β}}}-{\left(\prod\limits _{{\mathrm{j}} = 1}^{{\mathrm{m}}}{\left(\prod\limits _{{\mathrm{i}} = 1}^{{\mathrm{n}}}{\left(1-\left({\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]}^{2}+{\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]}^{2}\right)\right)}^{{{\mathtt{ω}}}_{{\mathrm{i}}}}\right)}^{{{\mathtt{ν}}}_{{\mathrm{j}}}}\right)}^{{\mathtt{β}}}},\\ \sqrt{1-{\left(\prod\limits _{{\mathrm{j}} = 1}^{{\mathrm{m}}}{\left(\prod\limits _{{\mathrm{i}} = 1}^{{\mathrm{n}}}{\left(1-{\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right]}^{2}\right)}^{{{\mathtt{ω}}}_{{\mathrm{i}}}}\right)}^{{{\mathtt{ν}}}_{{\mathrm{j}}}}\right)}^{{\mathtt{β}}}}\end{array}\right) |
= {\mathtt{β}}\;\;\;\;{\mathrm{I}}{\mathrm{V}}{\mathrm{P}}{\mathrm{F}}{\mathrm{H}}{\mathrm{S}}{\mathrm{I}}{\mathrm{W}}{\mathrm{G}}\left({\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{11}},{\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{12}},\dots \dots \dots ,{\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}{\mathrm{m}}}}\right) . |
To verify the effectiveness of the proposed interaction AOs, a DM technique has been proposed to solve the MCGDM problems. Additionally, a statistical analysis will be conducted to demonstrate the practicality of the proposed methodology.
Suppose we have a set of s alternatives \mathfrak{I} = \left\{{\mathfrak{I}}^{1}, {\mathfrak{I}}^{2}, {\mathfrak{I}}^{3}, \dots, {\mathfrak{I}}^{{\mathrm{s}}}\right\} and a set of r decision-makers \mathcal{U} = \left\{{\mathcal{U}}_{1}, {\mathcal{U}}_{2}, {\mathcal{U}}_{3}, \dots, {\mathcal{U}}_{{\mathrm{r}}}\right\} . The specialists' weights are denoted by {{\mathtt{ω}}}_{{\mathrm{i}}} = {\left({{\mathtt{ω}}}_{1}, {{\mathtt{ω}}}_{2}, {{\mathtt{ω}}}_{3}, \dots, {{\mathtt{ω}}}_{{\mathrm{n}}}\right)}^{{\mathrm{T}}} , where {{\mathtt{ω}}}_{{\mathrm{i}}} > 0 , \sum _{{\mathrm{i}} = 1}^{{\mathrm{n}}}{{\mathtt{ω}}}_{{\mathrm{i}}} = 1 . Let \mathfrak{L} = \left\{{e}_{1}, {e}_{2}, {e}_{3}, \dots, {e}_{m}\right\} be a set of parameters, and {\mathfrak{L}}^{\mathfrak{\text{'}}} = \left\{\left({{\mathrm{e}}}_{1{\mathrm{\rho }}}\times {{\mathrm{e}}}_{2{\mathrm{\rho }}}\times \dots \times {{\mathrm{e}}}_{{\mathrm{m}}{\mathrm{\rho }}}\right)\forall \; {\mathrm{\rho }}\in \left\{1, \; 2, \dots, \; {\mathrm{t}}\right\}\right\} be a set of multi sub-attributes with weights \nu = {\left({\nu }_{1}, {\nu }_{2}, {\nu }_{3}, \dots, {\nu }_{n}\right)}^{T} , where {\nu }_{i} > 0 , \sum _{i = 1}^{n}{\nu }_{i} = 1 , known as {\mathfrak{L}}^{\mathfrak{\text{'}}} = \left\{{\stackrel{ˇ}{{\mathrm{d}}}}_{\partial }:\partial \in \left\{1, \; 2, \; \dots, {\mathrm{m}}\right\}\right\} . The team of experts \left\{{\kappa }^{i}:i = 1, 2, \dots, n\right\} evaluate the substitutes \left\{{\mathfrak{H}}^{\left({\mathrm{z}}\right)}:\; {\mathrm{z}}\; = \; 1, \; \; \; \; \; \; 2, \; \dots, \; {\mathrm{s}}\right\} under the selected sub-attributes \left\{{\stackrel{ˇ}{d}}_{\partial }:\partial = 1, 2, \dots, k\right\} as IVPFHSNs. We denote this as {\left({\mathfrak{I}}_{{\stackrel{ˇ}{d}}_{ik}}^{\left(z\right)}\right)}_{n\times m} = {\left(\left[{\kappa }_{{\stackrel{ˇ}{d}}_{ik}}^{l}, {\kappa }_{{\stackrel{ˇ}{d}}_{ik}}^{u}\right], \left[{\delta }_{{\stackrel{ˇ}{d}}_{ik}}^{l}, {\delta }_{{\stackrel{ˇ}{d}}_{ik}}^{u}\right]\right)}_{n*m} , where 0\le {\kappa }_{{\stackrel{ˇ}{d}}_{ik}}^{l}, {\kappa }_{{\stackrel{ˇ}{d}}_{ik}}^{u}, {\delta }_{{\stackrel{ˇ}{d}}_{ik}}^{l}, {\delta }_{{\stackrel{ˇ}{d}}_{ik}}^{u}\le 1 and 0\le {\left({{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{u}}}\right)}^{2}+{\left({{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{u}}}\right)}^{2}\le 1 \forall i , k . and 0\le {\kappa }_{{\stackrel{ˇ}{d}}_{ik}}^{l}, {\kappa }_{{\stackrel{ˇ}{d}}_{ik}}^{u}, {\delta }_{{\stackrel{ˇ}{d}}_{ik}}^{l}, {\delta }_{{\stackrel{ˇ}{d}}_{ik}}^{u}\le 1 \forall i , k . The decision-makers deliver their judgments in the form of IVPFHSNs {\Theta }_{k} for each substitute. The stepwise algorithm involves established operators given as follows:
Step 1. According to the expert's opinion, obtain a decision matrix in IVPFHSNs for each alternative.
{\left({\mathfrak{I}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{\left({\mathrm{z}}\right)}\right)}_{{\mathrm{n}}\times {\mathrm{m}}} = {\left(\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{u}}}\right],\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{u}}}\right]\right)}_{{\mathrm{n}}{\mathrm{*}}{\mathrm{m}}} |
= \left[\begin{array}{ccc}\begin{array}{cc}\begin{array}{c}\left(\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{11}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{11}}^{{\mathrm{u}}}\right],\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{11}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{11}}^{{\mathrm{u}}}\right]\right)\\ \left(\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{21}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{21}}^{{\mathrm{u}}}\right],\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{21}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{21}}^{{\mathrm{u}}}\right]\right)\end{array}& \begin{array}{c}\left(\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{12}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{12}}^{{\mathrm{u}}}\right],\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{12}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{12}}^{{\mathrm{u}}}\right]\right)\\ \left(\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{22}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{22}}^{{\mathrm{u}}}\right],\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{22}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{22}}^{{\mathrm{u}}}\right]\right)\end{array}\end{array}& \cdots & \begin{array}{c}\left(\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{1{\mathrm{m}}}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{1{\mathrm{m}}}}^{{\mathrm{u}}}\right],\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{1{\mathrm{m}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{1{\mathrm{m}}}}^{{\mathrm{u}}}\right]\right)\\ \left(\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{2{\mathrm{n}}}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{2{\mathrm{n}}}}^{{\mathrm{u}}}\right],\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{2{\mathrm{m}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{2{\mathrm{m}}}}^{{\mathrm{u}}}\right]\right)\end{array}\\ ⋮& \ddots & ⋮\\ \begin{array}{cc}\left(\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}1}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}1}}^{{\mathrm{u}}}\right],\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}1}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}1}}^{{\mathrm{u}}}\right]\right)& \left(\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}2}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}2}}^{{\mathrm{u}}}\right],\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}2}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}2}}^{{\mathrm{u}}}\right]\right)\end{array}& \cdots & \left(\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}{\mathrm{m}}}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}{\mathrm{m}}}}^{{\mathrm{u}}}\right],\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}{\mathrm{m}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{n}}{\mathrm{m}}}}^{{\mathrm{u}}}\right]\right)\end{array}\right] . |
Step 2. Use normalization rules to convert cost-type characteristics into benefit types and establish normalization decision metrics.
{\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}} = \left\{\begin{array}{c}{\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{c}}} = {\left(\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{u}}}\right],\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{u}}}\right]\right)}_{{\mathrm{n}}\times {\mathrm{m}}}\;{\rm{cost\; type \;parameter}}\\ {\mathcal{M}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}} = {\left(\left[{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{l}}},{{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{u}}}\right],\left[{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{l}}},{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{k}}}}^{{\mathrm{u}}}\right]\right)}_{{\mathrm{n}}\times {\mathrm{m}}}\;{\rm{benefit \;type \;parameter}}\end{array}\right. . |
Step 3. Calculate the aggregated values for each alternative via developed IVPFHSIWA and IVPFHSIWG.
Step 4. Compute the score values for each alternative.
Step 5. Examine the ranking of the alternatives.
Sustainable thermal power equipment supplier selection can significantly impact the environmental performance of thermal power plants. By working with suppliers who prioritize sustainability, power plant operators can reduce the environmental impact of their operations and create a more sustainable supply chain. The following are some environmental impacts of sustainable thermal power equipment supplier selection:
❖ Energy efficiency: Sustainable thermal power equipment suppliers can provide equipment that is designed to be more energy-efficient. This can help reduce the energy needed to operate the power plant, reducing greenhouse gas emissions and lowering the plant's environmental impact.
❖ Emissions reduction: Sustainable thermal power equipment suppliers can provide equipment designed to emit lower levels of greenhouse gases and other pollutants. This might involve using cleaner fuels, improved combustion systems, or advanced emission control technologies.
❖ Waste reduction and management: Sustainable thermal power equipment suppliers can provide equipment designed to generate less waste or recycle or reuse waste generated by the power plant. This can help to reduce the environmental impact of the plant's waste management practices.
❖ Water usage reduction: Sustainable thermal power equipment suppliers can provide equipment designed to minimize the water needed for cooling. This might involve using closed-loop cooling systems, water-efficient equipment designs, or water-saving technologies.
❖ Social and environmental responsibility: Sustainable thermal power equipment suppliers can demonstrate social and environmental commitment. This might involve implementing sustainable business practices, ethical sourcing, and responsible waste management.
Sustainable thermal power equipment supplier selection is critical to creating a more sustainable thermal power industry. By considering factors such as energy efficiency, emissions reduction, waste reduction and management, water usage reduction, and social and environmental responsibility, power plant operators can select suppliers who prioritize sustainability and reduce the environmental impact of their operations. It benefits the environment and helps improve the power plant's efficiency, sustainability, and reputation.
The question of sustainable supplier selection (SSS) is both logical and authentic. Key issues include top supplier supply chain mobility, large-scale, low-cost production, and initiative. The inclusion of environmentally friendly prototypes and other sustainable and modern structures in the SSS development indicates that proper SSS is multifaceted and multifaceted. SSS refers to various beneficial achievements to the atmosphere or the people and is frequently mentioned in the literature as "sustainable supplier selection". This is a complicated, multidimensional topic with unpredictable morals, and the assessment procedure desires to consider many observations. From these facts, vendor assortment is frequently referred to as an "orientation" subject in the works, where multidisciplinary DM approaches are broadly used. With Pakistan's improvement and opening up, numerous power plant tasks have been constructed to see the mandate for electricity for community and commercial growth. To come across the prerequisite of this construction, a structure of community proposals and tenders has been used since 1985 to purchase thermal power generation apparatus. The assortment of thermal power equipment (TPE) suppliers is a significant part of the trying and order administration of thermal power apparatus. It is also a primary state for thermal power plants (TPP) steady and continuing growth. Figure 1 displays the portion of the energy produced from dissimilar cradles. With the massive escalation in the usage of fossil fuels and growing environment trash, the expressions "green growth" and "sustainable development" have grown into leading in the universal dissertation.
The water is mainly intense in a TPP; the hot water produces condensation, the steam turbine is exchanged, and the generator is activated. The high temperature and pressure condensation are liable for the spin of the turbine and then transmitted to the generator to produce electricity. The condenser summarizes the suspension through the organization cycle and returns it to a formerly warm point. TPP is separated into two classifications permitting their fuel: fossil fuel (FF) power plants and biomass fuel power plants. Fossil fuel TPP produces energy by sweltering FF, such as coal, natural gas, or oil. They are manufactured on balance and can precede indeterminately. The power plant practices steam turbines, while natural gas-fired services use gas turbines. Numerous biomass power generation amenities burn the surplus of firewood, farming, or structure wood. Biomass fuel is openly used in burning power plant reservoirs to deliver energy for comparable kinds of FF steam generators. According to a prime mover, TPP is separated into steam, gas, and combined cycle power plants.
The vibrant density produced by the growing steam enterprises at the turbine edges of the steam power plant. Practically all non-hydroelectric power plants use this technique. Around 80% of the sphere's energy is produced done steam turbines. A gas turbine power plant contains three leading portions: compressor, combustion system, and turbine: mutual cycle power plants use gas and steam machines to produce energy. The new gas turbine heat is focused on the adjacent steam turbine, which creates extra energy. Most of Pakistan's energy originates from TPP, which uses possessions such as oil, gas, and coal. Selected are mutual cycles, although others are steam and gas turbines. There are 49 thermal power plants in Punjab, Sindh, and Balochistan. Thermal power interpretations for 61% of Pakistan's energy. Pakistan can install 16,599 MW of energy. Guddu has an ability of 2402 MW, TPS Muzaffargarh has a capability of 1350 MW, Kot Addu has a power of 1638 MW, and Hubco Balochistan has an aptitude of 1200 MW. Accomplished in 1960 with a volume of 195 MW, NGPS Multan is the oldest. Pakistan has finalized three biomass-driven power generation amenities with a whole ability of 67 MW [52]. The nominal power of several thermal power places is exposed in Figure 2. Thermal power is the crucial cradle of energy in Pakistan, and the choice of green suppliers of TPE is serious for the charming and long-term improvement of TPP. Therefore, choosing the right green supplier of TPE with green fabrication attentiveness in an atmosphere of energy maintenance and discharge bargain and indorsing sustainable growth is of extreme prominence for the long-term development of the corporation and the usefulness of Pakistan's power business. What are the elementary ideologies of SCM? In 1997, Anderson et al. [53] circulated an article titled "Seven Principles of Supply Chain Management". SCM was a comparatively novel thought then, but this article makes an exceptional contract of assigning the basics of SCM in one curved. After over 20 years, the exertion was acknowledged as "classic" research and republished in 2010. The script has acknowledged over 300 certifications in academic works and trade journals.
The study of SSS can be separated into expressive and methodical models. Descriptive study aspects at the significant parameters of supplier valuation and assortment. Selecting an ecological supplier is an imperative MCDM delinquent [54]. The MCDM approach categorizes probable substitutes and chooses the finest replacement using an explicit method built on proven DM facts derived from different factors. This assessment is gradually becoming an exciting subject in science, systems science, and management science. Selecting a supplier is MCGDM anxiety that needs several deliberate features comprising cost, delivery time, ecological influence, etc. Enlightening a corporation's ecological influence must be a significant feature of its organization configuration and corporate intentions in mandate to be prosperous. Dickson [55] acknowledged 23 features contractors consider it connected to problems in choosing dissimilar suppliers. They initiated that the most meaningful metrics were time, efficacy, budget, and distribution. Wind et al. [56] discussed numerous facets elaborate in the enactment assessment of other suppliers. Ho et al. [57] introduced multi-criterion selection criteria of international journals from 2000 to 2008, revised all skills and committed that the maximum mutual geographies used to extend supplier productivity were delivery, worth, budget, etc. Weber et al. [58] studied 74 magazines on SSS in investigational study models and acknowledged numerous approaches that have appeared in the investigation over the past 25 years. They determined that record approaches are linear weighting, regression models, and some optimization algorithms. A modern summary of the supplier employment and assortment procedure can originate here. Amid et al. [59] studied vague parameters in the supplier assessment hypothesis. Jolai et al. [60] proposed a fuzzy MCDM technique to obtain cumulative scores from various dealers and then planned the best proper mechanism employing subordinate impartial development methods. Sevkli et al. [61] confirmed the weight of their fuzzy linear program design by an investigational arrangement technique for dealer assortment. Environmental contests are more applicable in industrial zones due to environmental variation and global warming [62]. In recent epochs, green supply chain management study has expected more and more consideration to diminish air contamination, educate sentience and protect the atmosphere [63]. Classifying and choosing related low-carbon suppliers is necessary to generate a sustainable supply chain and consequential conservational interferences.
As mentioned earlier, the MCDM delinquent denotes a supplier assessment procedure since, at the DM phase, rigor and several factors need to be investigated and certified [64]. The MCDM method has been used to assess and achieve low-carbon suppliers but also undertakes that feature information is convincing and precise [65]. Luckily, fast financial development and an energetic corporate environment mark it challenging for decision-makers to deliver consistent exploration or a priori facts that contain conflicts of social perceptive. Tong and Wang [66] recently used encouragement IF operators to resolve the problem of selecting a low-carbon supplier. The parable that greenery will lead to lower sales and sophisticated operating costs is over. Many companies now feel the need to combine their customers' environmental protection strategies with their SSCM and will not be able to fulfill the desire to convert to current income. In a healthy environment, there is a link between sustainability and economic incentives for the growth of different companies. The business development concept inspires SSCM and has identified areas where work can be changed to increase profits. Green logistics can sustain much lower production, such as CO2 and CO. Consumption, including non-fossil energy, reduces smog, affecting our environment and stimulating respiration. Due to rapid growth, many fossil fuels are destroying the environment. For marine life, for example, air travel also affects the mix due to the use of diesel. The literature looks for aspects that identify sustainable suppliers for TPE compatible with altered researchers.
Supplier selection is a critical process in thermal power equipment, as the choice of supplier can significantly impact the power plant's environmental performance and efficiency. The following are some important factors to consider when selecting a supplier for thermal power equipment:
❖ Reliability and quality: The reliability and quality of the supplier's equipment are crucial factors to consider. Power plant operators should look for suppliers with a proven track record of providing reliable, high-quality equipment that meets the plant's specifications and requirements.
❖ Cost-effectiveness: The cost-effectiveness of the supplier's equipment is an important consideration. Power plant operators should look for suppliers that offer competitive pricing without compromising on the quality and performance of the equipment.
❖ Technical expertise: The supplier's technical expertise is an important factor to consider. Power plant operators should look for suppliers that have a deep understanding of the equipment and the specific needs of the power plant and can provide expert advice and support throughout the equipment's life cycle.
❖ Environmental performance: The environmental performance of the supplier's equipment is a crucial consideration. Power plant operators should look for suppliers that prioritize sustainability, offer energy-efficient equipment, low emissions, and minimize waste and water usage.
❖ Customer service and support: The supplier's customer service and support level is an important factors to consider. Power plant operators should look for suppliers that offer comprehensive support services, including maintenance, repair, and replacement services, to certify the reliable and efficient procedure of the equipment.
❖ Supply chain sustainability: The sustainability of the supplier's supply chain is an important consideration. Power plant operators should look for suppliers that prioritize ethical and sustainable sourcing practices and have transparent supply chains that minimize environmental impacts.
❖ Performance: The performance of supplier selection in the thermal equipment plant industry can have a significant impact on the environmental and financial performance of the power plant. Choosing the right suppliers can help power plant operators to reduce their environmental impact, improve efficiency, and reduce operating costs. On the other hand, choosing the wrong suppliers can lead to equipment failures, environmental violations, and other costly and time-consuming problems.
❖ Equipment efficiency: The efficiency of thermal power equipment is typically measured using the heat rate, the fuel required to generate a unit of electricity. A lower heat rate indicates higher efficiency, as less fuel is required to produce the same amount of electricity. The efficiency of thermal power equipment can be improved through various means, including upgrading existing equipment, optimizing operations, and operating thermal power equipment at its optimal performance level can help improve efficiency. This can include reducing excess air in the combustion process, maintaining proper fuel-to-air ratios, optimizing steam pressure and temperature and using cleaner fuels, implementing energy recovery systems, and incorporating advanced technologies.
❖ Quality: Quality can be an important factor in selecting suppliers for thermal power equipment. High-quality equipment can help to ensure the efficient and reliable operation of the power plant, while low-quality equipment can lead to equipment failures, downtime, and costly repairs. When selecting suppliers for thermal power equipment, they must consider the quality of the equipment they offer and their quality management systems and processes. Suppliers with a proven track record of providing high-quality equipment and certifications, such as ISO 9001 or other quality standards, can help ensure that the equipment meets the required quality standards. In addition, it is important to consider the supplier's quality control processes and testing procedures. Suppliers that conduct thorough testing of their equipment and have robust quality control processes in place can help to ensure that the equipment is of high quality and meets the required performance standards. Overall, selecting suppliers prioritizing quality can help ensure the efficient and reliable operation of thermal power equipment, minimize equipment failures and downtime, and reduce the risk of costly repairs.
In summary, selecting the right supplier for thermal power equipment involves considering factors such as reliability and quality, cost-effectiveness, technical expertise, environmental performance, customer service and support, supply chain sustainability, performance, equipment efficiency, and quality. By prioritizing these factors, power plant operators can ensure that they choose a supplier that can provide high-quality, reliable, and environmentally-friendly equipment that meets the plant's specific needs. In this article, Table 1 presents ranking values for sustainable suppliers. Zeng et al. [67] established PF-confident AOs to address low-carbon supplier choices. As shown in the introduction, the easing of IVPFHSS MD and NMD boundaries consents for broader possibility, constructing IVPFHSS superior to IVIFS, IVPFS, IVIFSS, IVPFSS, and IVIFHSS in the description of unpredictable and confusing facts. In the context of IVPFHSS, it is essential and suitable to systematically examine the substance of an assortment of suppliers of TPE.
Criteria | Sub-criteria | |
{\bf{d}}_{1} | Performance | Actual production time, scheduled time |
{\bf{d}}_{2} | Equipment efficiency | 75% < OEE < 85% (acceptable), 85% < OEE < 95% (good). |
{\bf{d}}_{3} | Quality | Good |
Suppose {\mathfrak{I}}^{1} , {\mathfrak{I}}^{2} , {\mathfrak{I}}^{3} and {\mathfrak{I}}^{4} be a collection of alternatives. The characteristic of supplier selection is listed as follows: 𝔏 = \left\{{{\mathrm{d}}}_{1} = {\mathrm{P}}{\mathrm{e}}{\mathrm{r}}{\mathrm{f}}{\mathrm{o}}{\mathrm{r}}{\mathrm{m}}{\mathrm{a}}{\mathrm{n}}{\mathrm{c}}{\mathrm{e}}, {{\mathrm{d}}}_{2} = {\mathrm{E}}{\mathrm{q}}{\mathrm{u}}{\mathrm{i}}{\mathrm{p}}{\mathrm{m}}{\mathrm{e}}{\mathrm{n}}{\mathrm{t}}\; {\mathrm{e}}{\mathrm{f}}{\mathrm{f}}{\mathrm{i}}{\mathrm{c}}{\mathrm{i}}{\mathrm{e}}{\mathrm{n}}{\mathrm{c}}{\mathrm{y}}, {{\mathrm{d}}}_{3} = {\mathrm{Q}}{\mathrm{u}}{\mathrm{a}}{\mathrm{l}}{\mathrm{i}}{\mathrm{t}}{\mathrm{y}}\right\} . The conforming sub-attributes of the deliberated parameters, {\mathrm{P}}{\mathrm{e}}{\mathrm{r}}{\mathrm{f}}{\mathrm{o}}{\mathrm{r}}{\mathrm{m}}{\mathrm{a}}{\mathrm{n}}{\mathrm{c}}{\mathrm{e}} = {{\mathrm{d}}}_{1} = \left\{{{\mathrm{d}}}_{11} = {\mathrm{A}}{\mathrm{c}}{\mathrm{t}}{\mathrm{u}}{\mathrm{a}}{\mathrm{l}}\; {\mathrm{p}}{\mathrm{r}}{\mathrm{o}}{\mathrm{d}}{\mathrm{u}}{\mathrm{c}}{\mathrm{t}}{\mathrm{i}}{\mathrm{o}}{\mathrm{n}}\; {\mathrm{t}}{\mathrm{i}}{\mathrm{m}}{\mathrm{e}}, {{\mathrm{d}}}_{12} = {\mathrm{s}}{\mathrm{c}}{\mathrm{h}}{\mathrm{e}}{\mathrm{d}}{\mathrm{u}}{\mathrm{l}}{\mathrm{e}}{\mathrm{d}}\; {\mathrm{t}}{\mathrm{i}}{\mathrm{m}}{\mathrm{e}}\right\} , Equipment efficiency = {{\mathrm{d}}}_{2} = \left\{{{\mathrm{d}}}_{21} = 75{\mathrm{\%}}\; < \; {\mathrm{O}}{\mathrm{E}}{\mathrm{E}}\; < \; 85{\mathrm{\%}}\; \left({\mathrm{a}}{\mathrm{c}}{\mathrm{c}}{\mathrm{e}}{\mathrm{p}}{\mathrm{t}}{\mathrm{a}}{\mathrm{b}}{\mathrm{l}}{\mathrm{e}}\right), {{\mathrm{d}}}_{22} = 85{\mathrm{\%}}\; < \; {\mathrm{O}}{\mathrm{E}}{\mathrm{E}}\; < \; 95{\mathrm{\%}}\; \left({\mathrm{g}}{\mathrm{o}}{\mathrm{o}}{\mathrm{d}}\right)\right\} , Quality = {{\mathrm{d}}}_{3} = \left\{{{\mathrm{d}}}_{31} = {\mathrm{G}}{\mathrm{o}}{\mathrm{o}}{\mathrm{d}}\right\} . Let {\mathfrak{L}}^{\mathfrak{\text{'}}} = {{\mathrm{d}}}_{1} × {{\mathrm{d}}}_{2} × {{\mathrm{d}}}_{3} be a set of sub-attributes. {\mathfrak{L}}^{\mathfrak{\text{'}}} = {{\mathrm{d}}}_{1} × {{\mathrm{d}}}_{2} × {{\mathrm{d}}}_{3} = \left\{{{\mathrm{d}}}_{11}, {{\mathrm{d}}}_{12}\right\} \times \left\{{{\mathrm{d}}}_{21}, {{\mathrm{d}}}_{22}\right\} \times \left\{{{\mathrm{d}}}_{31}\right\} = \left\{\begin{array}{c}\left({{\mathrm{d}}}_{11}, {{\mathrm{d}}}_{21}, {{\mathrm{d}}}_{31}\right), \left({{\mathrm{d}}}_{11}, {{\mathrm{d}}}_{21}, {{\mathrm{d}}}_{32}\right), \\ \left({{\mathrm{d}}}_{12}, {{\mathrm{d}}}_{21}, {{\mathrm{d}}}_{31}\right), \left({{\mathrm{d}}}_{12}, {{\mathrm{d}}}_{21}, {{\mathrm{d}}}_{32}\right)\end{array}\right\} , {\mathfrak{L}}^{\mathfrak{\text{'}}} = \left\{{\stackrel{ˇ}{{\mathrm{d}}}}_{1}, {\stackrel{ˇ}{{\mathrm{d}}}}_{2}, {\stackrel{ˇ}{{\mathrm{d}}}}_{3}, {\stackrel{ˇ}{{\mathrm{d}}}}_{4}\right\} be a set of all sub-attributes with weights {\left(0.3, \; 0.1, \; 0.2, \; 0.4\right)}^{{\mathrm{T}}} . Let \left\{{\mathcal{U}}_{1}, {\mathcal{U}}_{2}, {\mathcal{U}}_{3}, {\mathcal{U}}_{4}\right\} be a team of specialists with weights {\left(0.1, \; 0.2, \; 0.4, \; 0.3\right)}^{{\mathrm{T}}} . To assess the finest substitute, specialists make available their predilections in IVPFHSNs. The flowchart of the proposed model is presented in Figure 3.
Step 1. The decision-makers opinion on IVPFHSNs is given in Tables 2–5.
{\stackrel{ˇ}{\bf{d}}}_{1} | {\stackrel{ˇ}{\bf{d}}}_{2} | {\stackrel{ˇ}{\bf{d}}}_{3} | {\stackrel{ˇ}{\bf{d}}}_{4} | |
{\mathcal{U}}_{1} | \left(\left[0.4, \; 0.5\right], \left[0.2, \; 0.5\right]\right) | \left(\left[0.7, \; 0.8\right], \left[0.5, \; 0.6\right]\right) | \left(\left[0.4, \; 0.6\right], \left[0.2, \; 0.5\right]\right) | \left(\left[0.2, \; 0.4\right], \left[0.2, \; 0.6\right]\right) |
{\mathcal{U}}_{2} | \left(\left[0.2, \; 0.7\right], \left[0.2, \; 0.6\right]\right) | \left(\left[0.1, \; 0.6\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.2, \; 0.3\right], \left[0.4, \; 0.8\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.4, \; 0.7\right]\right) |
{\mathcal{U}}_{3} | \left(\left[0.3, \; 0.5\right], \left[0.1, \; 0.4\right]\right) | \left(\left[0.4, \; 0.6\right], \left[0.2, \; 0.7\right]\right) | \left(\left[0.4, \; 0.7\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.5, \; 0.7\right], \left[0.2, \; 0.4\right]\right) |
{\mathcal{U}}_{4} | \left(\left[0.4, \; 0.6\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.4, \; 0.5\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.3, \; 0.6\right], \left[0.3, \; 0.5\right]\right) | \left(\left[0.3, \; 0.6\right], \left[0.3, \; 0.5\right]\right) |
{\stackrel{ˇ}{\bf{d}}}_{1} | {\stackrel{ˇ}{\bf{d}}}_{2} | {\stackrel{ˇ}{\bf{d}}}_{3} | {\stackrel{ˇ}{\bf{d}}}_{4} | |
{\mathcal{U}}_{1} | \left(\left[0.3, \; 0.6\right], \left[0.5, \; 0.6\right]\right) | \left(\left[0.2, \; 0.7\right], \left[0.5, \; 0.7\right]\right) | \left(\left[0.2, \; 0.7\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.6, \; 0.7\right], \left[0.5, \; 0.8\right]\right) |
{\mathcal{U}}_{2} | \left(\left[0.3, \; 0.5\right], \left[0.5, \; 0.8\right]\right) | \left(\left[0.1, \; 0.4\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.1, \; 0.5\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.4, \; 0.5\right], \left[0.3, \; 0.6\right]\right) |
{\mathcal{U}}_{3} | \left(\left[0.2, \; 0.6\right], \left[0.1, \; 0.4\right]\right) | \left(\left[0.1, \; 0.2\right], \left[0.2, \; 0.9\right]\right) | \left(\left[0.4, \; 0.7\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.5, \; 0.8\right], \left[0.2, \; 0.6\right]\right) |
{\mathcal{U}}_{4} | \left(\left[0.2, \; 0.3\right], \left[0.3, \; 0.8\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.2, \; 0.8\right]\right) | \left(\left[0.3, \; 0.7\right], \left[0.2, \; 0.6\right]\right) | \left(\left[0.1, \; 0.7\right], \left[0.3, \; 0.6\right]\right) |
{\stackrel{ˇ}{\bf{d}}}_{1} | {\stackrel{ˇ}{\bf{d}}}_{2} | {\stackrel{ˇ}{\bf{d}}}_{3} | {\stackrel{ˇ}{\bf{d}}}_{4} | |
{\mathcal{U}}_{1} | \left(\left[0.3, \; 0.4\right], \left[0.2, \; 0.7\right]\right) | \left(\left[0.3, \; 0.4\right], \left[0.4, \; 0.6\right]\right) | \left(\left[0.5, \; 0.6\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.3, \; 0.4\right], \left[0.3, \; 0.6\right]\right) |
{\mathcal{U}}_{2} | \left(\left[0.4, \; 0.6\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.2, \; 0.3\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.5, \; 0.8\right]\right) | \left(\left[0.2, \; 0.6\right], \left[0.2, \; 0.4\right]\right) |
{\mathcal{U}}_{3} | \left(\left[0.2, \; 0.4\right], \left[0.3, \; 0.4\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.3, \; 0.7\right], \left[0.3, \; 0.8\right]\right) | \left(\left[0.1, \; 0.3\right], \left[0.5, \; 0.6\right]\right) |
{\mathcal{U}}_{4} | \left(\left[0.3, \; 0.7\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.2, \; 0.4\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.3, \; 0.6\right]\right) | \left(\left[0.3, \; 0.4\right], \left[0.3, \; 0.7\right]\right) |
{\stackrel{ˇ}{\bf{d}}}_{1} | {\stackrel{ˇ}{\bf{d}}}_{2} | {\stackrel{ˇ}{\bf{d}}}_{3} | {\stackrel{ˇ}{\bf{d}}}_{4} | |
{\mathcal{U}}_{1} | \left(\left[0.3, \; 0.5\right], \left[0.2, \; 0.6\right]\right) | \left(\left[0.2, \; 0.6\right], \left[0.4, \; 0.7\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.3, \; 0.6\right]\right) | \left(\left[0.5, \; 0.7\right], \left[0.6, \; 0.8\right]\right) |
{\mathcal{U}}_{2} | \left(\left[0.2, \; 0.7\right], \left[0.3, \; 0.8\right]\right) | \left(\left[0.1, \; 0.5\right], \left[0.4, \; 0.7\right]\right) | \left(\left[0.5, \; 0.7\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.3, \; 0.4\right]\right) |
{\mathcal{U}}_{3} | \left(\left[0.2, \; 0.5\right], \left[0.1, \; 0.6\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.1, \; 0.5\right]\right) | \left(\left[0.2, \; 0.4\right], \left[0.2, \; 0.7\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.1, \; 0.5\right]\right) |
{\mathcal{U}}_{4} | \left(\left[0.2, \; 0.4\right], \left[0.5, \; 0.8\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.5, \; 0.8\right]\right) | \left(\left[0.2, \; 0.7\right], \left[0.3, \; 0.6\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.4, \; 0.5\right]\right) |
Step 2. Use the normalization rule to convert the cost type parameters to benefit type parameters and obtain the normalized Pythagorean fuzzy hypersoft decision matrices in Tables 6–9.
{\bf{e}}_{1} | {\bf{e}}_{2} | {\bf{e}}_{3} | {\bf{e}}_{4} | |
{\bf{x}}_{1} | \left(\left[.4, \; .5\right], \left[.2, \; .5\right]\right) | \left(\left[.5, \; .6\right], \left[.7, \; .8\right]\right) | \left(\left[.4, \; .6\right], \left[.2, \; .5\right]\right) | \left(\left[.2, \; .4\right], \left[.2, \; .6\right]\right) |
{\bf{x}}_{2} | \left(\left[.2, \; .7\right], \left[.2, \; .6\right]\right) | \left(\left[.4, \; .5\right], \left[.1, \; .6\right]\right) | \left(\left[.2, \; .3\right], \left[.4, \; .8\right]\right) | \left(\left[.2, \; .5\right], \left[.4, \; .7\right]\right) |
{\bf{x}}_{3} | \left(\left[.3, \; .5\right], \left[.1, \; .4\right]\right) | \left(\left[.2, \; .7\right], \left[.4, \; .6\right]\right) | \left(\left[.4, \; .7\right], \left[.3, \; .7\right]\right) | \left(\left[.5, \; .7\right], \left[.2, \; .4\right]\right) |
{\bf{x}}_{4} | \left(\left[.4, \; .6\right], \left[.3, \; .7\right]\right) | \left(\left[.3, \; .7\right], \left[.4, \; .5\right]\right) | \left(\left[.3, \; .6\right], \left[.3, \; .5\right]\right) | \left(\left[.3, \; .6\right], \left[.3, \; .5\right]\right) |
{\bf{e}}_{1} | {\bf{e}}_{2} | {\bf{e}}_{3} | {\bf{e}}_{4} | |
{\bf{x}}_{1} | \left(\left[.3, \; .6\right], \left[.5, \; .6\right]\right) | \left(\left[.5, \; .7\right], \left[.2, \; .7\right]\right) | \left(\left[.2, \; .7\right], \left[.4, \; .5\right]\right) | \left(\left[.6, \; .7\right], \left[.5, \; .8\right]\right) |
{\bf{x}}_{2} | \left(\left[.3, \; .5\right], \left[.5, \; .8\right]\right) | \left(\left[.4, \; .5\right], \left[.1, \; .4\right]\right) | \left(\left[.1, \; .5\right], \left[.3, \; .7\right]\right) | \left(\left[.4, \; .5\right], \left[.3, \; .6\right]\right) |
{\bf{x}}_{3} | \left(\left[.2, \; .6\right], \left[.1, \; .4\right]\right) | \left(\left[.2, \; .9\right], \left[.1, \; .2\right]\right) | \left(\left[.4, \; .7\right], \left[.3, \; .7\right]\right) | \left(\left[.5, \; .8\right], \left[.2, \; .6\right]\right) |
{\bf{x}}_{4} | \left(\left[.2, \; .3\right], \left[.3, \; .8\right]\right) | \left(\left[.2, \; .8\right], \left[.3, \; .5\right]\right) | \left(\left[.3, \; .7\right], \left[.2, \; .6\right]\right) | \left(\left[.1, \; .7\right], \left[.3, \; .6\right]\right) |
{\bf{e}}_{1} | {\bf{e}}_{2} | {\bf{e}}_{3} | {\bf{e}}_{4} | |
{\bf{x}}_{1} | \left(\left[.3, \; .4\right], \left[.2, \; .7\right]\right) | \left(\left[.4, \; .6\right], \left[.3, \; .4\right]\right) | \left(\left[.5, \; .6\right], \left[.4, \; .5\right]\right) | \left(\left[.3, \; .4\right], \left[.3, \; .6\right]\right) |
{\bf{x}}_{2} | \left(\left[.4, \; .6\right], \left[.3, \; .7\right]\right) | \left(\left[.2, \; .3\right], \left[.3, \; .5\right]\right) | \left(\left[.3, \; .5\right], \left[.5, \; .8\right]\right) | \left(\left[.2, \; .6\right], \left[.2, \; .4\right]\right) |
{\bf{x}}_{3} | \left(\left[.2, \; .4\right], \left[.3, \; .4\right]\right) | \left(\left[.3, \; .7\right], \left[.3, \; .5\right]\right) | \left(\left[.3, \; .7\right], \left[.3, \; .8\right]\right) | \left(\left[.1, \; .3\right], \left[.5, \; .6\right]\right) |
{\bf{x}}_{4} | \left(\left[.3, \; .7\right], \left[.3, \; .7\right]\right) | \left(\left[.2, \; .4\right], \left[.3, \; .5\right]\right) | \left(\left[.2, \; .5\right], \left[.3, \; .6\right]\right) | \left(\left[.3, \; .4\right], \left[.3, \; .7\right]\right) |
{\bf{e}}_{1} | {\bf{e}}_{2} | {\bf{e}}_{3} | {\bf{e}}_{4} | |
{\bf{x}}_{1} | \left(\left[.3, \; .5\right], \left[.2, \; .6\right]\right) | \left(\left[.4, \; .7\right], \left[.2, \; .6\right]\right) | \left(\left[.2, \; .5\right], \left[.3, \; .6\right]\right) | \left(\left[.5, \; .7\right], \left[.6, \; .8\right]\right) |
{\bf{x}}_{2} | \left(\left[.2, \; .7\right], \left[.3, \; .8\right]\right) | \left(\left[.4, \; .7\right], \left[.1, \; .5\right]\right) | \left(\left[.5, \; .7\right], \left[.4, \; .5\right]\right) | \left(\left[.2, \; .5\right], \left[.3, \; .4\right]\right) |
{\bf{x}}_{3} | \left(\left[.2, \; .5\right], \left[.1, \; .6\right]\right) | \left(\left[.1, \; .5\right], \left[.2, \; .5\right]\right) | \left(\left[.2, \; .4\right], \left[.2, \; .7\right]\right) | \left(\left[.3, \; .5\right], \left[.1, \; .5\right]\right) |
{\bf{x}}_{4} | \left(\left[.2, \; .4\right], \left[.5, \; .8\right]\right) | \left(\left[.5, \; .8\right], \left[.2, \; .6\right]\right) | \left(\left[.2, \; .7\right], \left[.3, \; .6\right]\right) | \left(\left[.2, \; .5\right], \left[.4, \; .5\right]\right) |
Step 3. Communicate the planned IVPFHSIWA operator to the attained information. We will attain the opinion of the decision-makers such as: {{\mathtt{Θ}}}_{1} = \left(\left[0.3523, \; 0.6102\right], \left[0.7923, \; 0.2895\right]\right) , {{\mathtt{Θ}}}_{2} = \left(\left[0.3442, \; 0.6781\right], \left[0.7350, \; 0.3050\right]\right) , {{\mathtt{Θ}}}_{3} = \left(\right[0.2665, \; \; \; \; 0.5249], [{\mathrm{0.8512, 0.3470}}\left]\right) , {{\mathtt{Θ}}}_{4} = \left(\right[0.3018, \; \; \; \; 0.5618], [{\mathrm{0.8273, 0.2851}}\left]\right) .
Step 4. Use the score function {\mathrm{S}} = \frac{{\left({{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}}\right)}^{2}+{\left({{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right)}^{2}-{\left({{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}}\right)}^{2}-{\left({{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right)}^{2}}{2} for the IVPFHSS to estimate the score values for all alternatives. {\mathrm{S}}\left({{\mathtt{Θ}}}_{1}\right) = -0.1028 , {\mathrm{S}}\left({{\mathtt{Θ}}}_{2}\right) = -0.0275 , {\mathrm{S}}\left({{\mathtt{Θ}}}_{3}\right) = -0.2492 , and {\mathrm{S}}\left({{\mathtt{Θ}}}_{4}\right) = -0.1795 .
Step 5. Alternatives ranking; {\mathrm{S}}\left({{\mathtt{Θ}}}_{2}\right) > \; {\mathrm{S}}\left({{\mathtt{Θ}}}_{1}\right) > \; {\mathrm{S}}\left({{\mathtt{Θ}}}_{4}\right) > \; {\mathrm{S}}\left({{\mathtt{Θ}}}_{3}\right) . Which displays that {\mathfrak{I}}^{2} is the finest alternate. So, {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} .
Step 1. Obtain IVPFHS decision matrices (Tables 2–5).
Step 2. Normalize the IVPFHS decision matrices (Tables 6–9).
Step 3. Communicate the planned IVPFHSIWG operator to the taught information. We will acquire the opinion of the decision-makers, such as: {{\mathtt{Θ}}}_{1} = \left(\left[0.8128, \; 0.3530\right], \left[0.2886, \; 0.5825\right]\right) , {{\mathtt{Θ}}}_{2} = \left(\left[0.7909, \; 0.3494\right], \left[0.2990, \; 0.6119\right]\right) , {{\mathtt{Θ}}}_{3} = \left(\left[0.7670, \; 0.2709\right], \left[0.3476, \; 0.6416\right]\right) , {{\mathtt{Θ}}}_{4} = \left(\left[0.8049, \; 0.2830\right], \left[0.3038, \; 0.5935\right]\right) .
Step 4. Use the score function {\mathrm{S}} = \frac{{\left({{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}}\right)}^{2}+{\left({{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right)}^{2}-{\left({{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{l}}}\right)}^{2}-{\left({{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\right)}^{2}}{2} IVPFHSS to compute the score values for all substitutes, such as {\mathrm{S}}\left({{\mathtt{Θ}}}_{1}\right) = 0.1419 , {\mathrm{S}}\left({{\mathtt{Θ}}}_{2}\right) = 0.1813 , {\mathrm{S}}\left({{\mathtt{Θ}}}_{3}\right) = 0.0646 , and {\mathrm{S}}\left({{\mathtt{Θ}}}_{4}\right) = 0.1417 .
Step 5. Alternatives ranking; {\mathrm{S}}\left({{\mathtt{Θ}}}_{2}\right) > {\mathrm{S}}\left({{\mathtt{Θ}}}_{1}\right) > {\mathrm{S}}\left({{\mathtt{Θ}}}_{4}\right) > \; {\mathrm{S}}\left({{\mathtt{Θ}}}_{3}\right) . Which displays that {\mathfrak{I}}^{2} is the best substitute. So, {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} .
To authenticate the proposed scheme's efficacy, an assessment of the projected model and prevalent approaches is scheduled in the consequent section.
The scheduled approach is both effective and persuasive. A novel MCGDM model based on IVPFHSIWA and IVPFHSIWG operators is developed in the IVPFHSS framework. Our proposed model is more sophisticated than existing methods and can significantly improve MCGDM problems. The developed model is versatile and adaptable, allowing it to handle inconsistencies, obligations, and changing outputs. Different models have distinct classification methods, and the proposed technique can adjust rankings and probabilities directly. Systematic studies and evaluations determined that the current method's consequences are more reliable than prevailing techniques. The emergence of several hybrid structures of FS, including IVFS, IVIFS, IVPFS, IVIFSS, IVIFHSS, and IVPFSS, is attributed to the promising settings of IVPFHSS. It is easier to integrate incomplete and uncertain data in the DM process and present the constituent information more logically. False and misleading data are often mixed in the DM process. Therefore, our proposed methodology is expected to be more effective, significant, advanced, and refined than many hybrid FS configurations. A feature analysis comparing the proposed approach and some prevailing models is presented in Table 10.
Fuzzy information | Aggregated attributes information | Aggregated information in intervals form | Interaction aggregated information | |
IVFS [3] | √ | × | √ | × |
IVIFWA [50] | √ | × | √ | × |
IVIFWG [51] | √ | × | √ | × |
IVPFWA [25] | √ | × | √ | × |
IVPFWG [27] | √ | × | √ | × |
IFSWA [33] | √ | √ | × | × |
IFSWG [33] | √ | √ | × | × |
IVIFSWA [36] | √ | √ | √ | × |
IVIFSWG [36] | √ | √ | √ | × |
IFHSWA [43] | √ | √ | × | × |
IFHSWG [43] | √ | √ | × | × |
IVPFSWA [38] | √ | √ | √ | × |
IVPFSWG [38] | √ | √ | √ | × |
IVPFHSWA [45] | √ | √ | √ | × |
IVPFHSWG [45] | √ | √ | √ | × |
Proposed IVPFHSIWA | √ | √ | √ | √ |
Proposed IVPFHSIWG | √ | √ | √ | √ |
To demonstrate the efficacy of the planned technique, we compared its outcomes with prevailing approaches for IVPFS, IVIFSS, and IVPFSS. The findings of this comparison are displayed in Table 11. Wang and Liu [50] introduced the IVIFWA approach in their previous research, while Xu and Chen [51] proposed the IVIFWG operators. However, these approaches have certain limitations in determining alternative parameter values. These operators are also unsuitable when MD+NMD > 1 , as determined by experts. Similarly, Zulqarnain et al. [36] proved that AOs for IVIFSS could not support the decision-makers assortment when {\mathrm{M}}{\mathrm{D}}+{\mathrm{N}}{\mathrm{M}}{\mathrm{D}} > 1 . The IVPFWA operator proposed by Peng and Yang [25] and the IVPFWG operator introduced by Rahman et al. [27] cannot handle the parametric values of alternatives. Zulqarnain et al. [38] developed the IVPFSWA and IVPFSWG operators to address this issue by dealing with the parameterized values of alternatives in interval form. Additionally, if {{\mathtt{κ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}+{{\mathtt{δ}}}_{{\stackrel{ˇ}{{\mathrm{d}}}}_{{\mathrm{i}}{\mathrm{j}}}}^{{\mathrm{u}}}\le 1 , the IVPFSS can be condensed to IVIFSS. Zulqarnain et al. [45] presented AOs for IVPFHSS and utilized them to solve MCDM problems involving the parameterized values of sub-attributes. However, in some cases, standing AOs may produce unattractive outcomes. To report these composite concerns, we developed interactive AOs for IVPFHSS capable of handling multi-sub attributes consistent with the standing AOs. The IVPFHSS is a generalization of IVPFSS and an extension of IVIFHSS. Thus, based on the above details, the operators proposed in this article are highly substantial, stable, and effective. Table 11 equates the proposed model with the predominant models.
AO | {\mathfrak{I}}^{1} | {\mathfrak{I}}^{2} | {\mathfrak{I}}^{3} | {\mathfrak{I}}^{4} | Alternatives ranking | Optimal choice |
IVIFWA[50] | 0.3681 | 0.4573 | 0.3509 | 0.2146 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVIFWG [51] | 0.3104 | 0.3952 | 0.2914 | 0.2753 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVPFWA [25] | 0.0154 | 0.0251 | 0.0198 | 0.0247 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{1} | {\mathfrak{I}}^{2} |
IVPFWG [27] | 0.0364 | 0.0856 | 0.0786 | 0.0475 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVIFSWA [36] | 0.0235 | 0.0723 | 0.0584 | 0.0253 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVIFSWG [36] | 0.2365 | 0.7234 | 0.5840 | 0.6525 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{1} | {\mathfrak{I}}^{2} |
IVPFSWA [38] | 0.0377 | 0.0834 | 0.0113 | 0.0141 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} | {\mathfrak{I}}^{2} |
IVPFSWG [38] | 0.0524 | 0.0754 | 0.0241 | 0/0114 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVPFHSWA [45] | 0.0578 | 0.0599 | 0.0266 | –0.0382 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVPFHSWG [45] | 0.0654 | 0.0752 | 0.0241 | 0.0114 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVPFHSIWA | –0.1028 | –0.0275 | –0.2492 | –0.1795 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} | {\mathfrak{I}}^{2} |
IVPFHSIWG | 0.1419 | 0.1813 | 0.0646 | 0.1417 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} | {\mathfrak{I}}^{2} |
So, we have the right to be startled by the manipulation and unpredictability of the DM process for the predominant operators. Planned supplies for this technique-associated exploit have a minor impact on contrary causes. In this way, it reduces the association of unpredictable and presumed particulars in the magnification of DM. Figure 4 spectacles the graphical demo of the comparison analysis.
The assessment of alternatives advocated by DMs is habitually conveyed by stringent checks disturbing DM exploration. An IVPFHSS is a robust mathematical structure for communicating indefinite and unreliable data in real-life surroundings to improve these boundaries. Also, DM is a robust system that expands the ventures of classifying the most helpful alternative. It takes seriously how much existent approach is needed to isolate statistical decision-makers. The most operative methodology in DM is to pay close devotion and attention to your objectives. This research endorses a novel approach for selecting sustainable suppliers under the IVPFHSS setting. A structure that reports on the complication of sustainable suppliers specified in real life. Lack of consideration for interactions and complex scenarios between attributes can impede some challenging implications in MCGDM. Mathematical modeling for supplier selection can overlook certain effects when integrating objectives under financial, superior, and welfare constraints. Surveys should be limited to optimal decisions and assessing decision requirements. In flexible DM, the expert's evaluation of alternative data provided by the expert is often uncertain, irregular, and imprudent, which can be accommodated by using an IVPFHSS to handle this uncertain information. The primary aim of this study is to introduce operational laws for the interactive IVPFHSS setting. Based on the established operational laws, we propose the IVPFHSIWA and IVPFHSIWG operators for IVPFHSS with their desired properties. Furthermore, based on the validated operators, a DM approach has been premeditated to address MCGDM obstacles. The anticipated methodology allows evaluating and selecting green thermal power equipment suppliers with limited or scarce computational data, and IVPFHSN can overwhelm hesitation. A mathematical example is presented to verify that the operator advocating for solving DM agendas has a more representative system. An in-depth examination of several existing techniques is provided. Based on the results achieved, it can be resolute that the scheme anticipated in this study is the most robust and operative approach to address the challenges of MCGDM. Future studies will emphasize defining Einstein AOs, Einstein-ordered AOs, distance, and similarity measures with compatible features. Also, it can be prolonged to interval-valued q-rung orthopair fuzzy hypersoft sets with essential operations and several AOs with their DM approaches. We can also integrate interval-valued q-rung orthopair fuzzy hypersoft numbers with other MCGDM techniques and further engage in practical application in problems of medical diagnosis, material selection, pattern recognition, information fusion, supply chain management, etc. Moreover, several topological, algebraic, and ordered structures can be extant for interval-valued q-rung orthopair fuzzy hypersoft sets with their DM approaches.
Research Supporting Project number (RSP2023R167), King Saud University, Riyadh, Saudi Arabia.
The authors declare no competing interests.
[1] |
L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[2] |
F. Xiao, CaFtR: A fuzzy complex event processing method, Int. J. Fuzzy Syst., 24 (2022), 1098–1111. https://doi.org/10.1007/s40815-021-01118-6 doi: 10.1007/s40815-021-01118-6
![]() |
[3] |
I. B. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Set. Syst., 20 (1986), 191–210. https://doi.org/10.1016/0165-0114(86)90077-1 doi: 10.1016/0165-0114(86)90077-1
![]() |
[4] |
K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set.. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
![]() |
[5] |
W. Wang, X. Liu, Intuitionistic fuzzy geometric aggregation operators based on Einstein operations, Int. J. Intell. Syst., 26 (2011), 1049–1075. https://doi.org/10.1002/int.20498 doi: 10.1002/int.20498
![]() |
[6] |
F. Xiao, A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, IEEE T. Syst. Man Cy.-S., 51 (2019), 3980–3992. https://doi.org/10.1109/TSMC.2019.2958635 doi: 10.1109/TSMC.2019.2958635
![]() |
[7] | K. T. Atanassov, Interval-valued intuitionistic fuzzy sets, In: Intuitionistic Fuzzy Sets, Physica, Heidelberg, 35 (1999). https://doi.org/10.1007/978-3-7908-1870-3_2 |
[8] |
F. Xiao, EFMCDM: Evidential fuzzy multicriteria decision making based on belief entropy, IEEE T. Fuzzy Syst., 28 (2019), 1477–1491. https://doi.org/10.1109/TFUZZ.2019.2936368 doi: 10.1109/TFUZZ.2019.2936368
![]() |
[9] |
R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE T. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
![]() |
[10] |
M. J. Khan, M. I. Ali, P. Kumam, W. Kumam, M. Aslam, J. C. R. Alcantud, Improved generalized dissimilarity measure‐based VIKOR method for Pythagorean fuzzy sets, Int. J. Intell. Syst., 37 (2022), 1807–1845. https://doi.org/10.1002/int.22757 doi: 10.1002/int.22757
![]() |
[11] |
K. Rahman, S. Abdullah, R. Ahmed, M. Ullah, Pythagorean fuzzy Einstein weighted geometric aggregation operator and their application to multiple attribute group decision making, J. Intell. Fuzzy Syst., 33 (2017), 635–647. https://doi.org/10.3233/JIFS-16797 doi: 10.3233/JIFS-16797
![]() |
[12] |
C. Huang, M. Lin, Z. Xu, Pythagorean fuzzy MULTIMOORA method based on distance measure and score function: Its application in multicriteria decision making process, Knowl. Inform. Syst., 62 (2020), 4373–4406. https://doi.org/10.1007/s10115-020-01491-y doi: 10.1007/s10115-020-01491-y
![]() |
[13] |
X. Zhang, Z. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 29 (2014), 1061–1078. https://doi.org/10.1002/int.21676 doi: 10.1002/int.21676
![]() |
[14] |
M. Lin, C. Huang, R. Chen, H. Fujita, X. Wang, Directional correlation coefficient measures for Pythagorean fuzzy sets: Their applications to medical diagnosis and cluster analysis, Complex Intell. Syst., 7 (2021), 1025–1043. https://doi.org/10.1007/s40747-020-00261-1 doi: 10.1007/s40747-020-00261-1
![]() |
[15] |
G. Wei, M. Lu, Pythagorean fuzzy power aggregation operators in multiple attribute decision making, Int. J. Intell. Syst., 33 (2018), 169–186. https://doi.org/10.1002/int.21946 doi: 10.1002/int.21946
![]() |
[16] |
M. Akram, K. Zahid, J.C. R. Alcantud, A new outranking method for multicriteria decision making with complex Pythagorean fuzzy information, Neural Comput. Appl., 34 (2022), 8069–8102. https://doi.org/10.1007/s00521-021-06847-1 doi: 10.1007/s00521-021-06847-1
![]() |
[17] |
F. Xiao, W. Ding, Divergence measure of Pythagorean fuzzy sets and its application in medical diagnosis, Appl. Soft Comput., 79 (2019), 254–267. https://doi.org/10.1016/j.asoc.2019.03.043 doi: 10.1016/j.asoc.2019.03.043
![]() |
[18] |
L. Wang, N. Li, Pythagorean fuzzy interaction power Bonferroni means aggregation operators in multiple attribute decision making, Int. J. Intell. Syst., 35 (2020), 150–183. https://doi.org/10.1002/int.22204 doi: 10.1002/int.22204
![]() |
[19] |
M. Lin, J. Wei, Z. Xu, R. Chen, Multiattribute group decision-making based on linguistic Pythagorean fuzzy interaction partitioned bonferroni mean aggregation operators, Complexity, 2018 (2018). https://doi.org/10.1155/2018/9531064 doi: 10.1155/2018/9531064
![]() |
[20] |
M. R. Khan, K. Ullah, Q. Khan, Multi-attribute decision-making using Archimedean aggregation operator in T-spherical fuzzy environment, Rep. Mech. Eng., 4 (2023), 18–38. https://doi.org/10.31181/rme20031012023k doi: 10.31181/rme20031012023k
![]() |
[21] |
M. Akram, F. Wasim, J. C. R. Alcantud, A. N. Al-Kenani, Multi-criteria optimization technique with complex Pythagorean fuzzy n-soft information, Int. J. Comput. Intell. Syst., 14 (2021), 1–24. https://doi.org/10.1007/s44196-021-00008-x doi: 10.1007/s44196-021-00008-x
![]() |
[22] |
X. Zhang, A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making, Int. J. Intell. Syst., 31 (2016), 593–611. https://doi.org/10.1002/int.21796 doi: 10.1002/int.21796
![]() |
[23] |
M. Riaz, H. M. A. Farid, Picture fuzzy aggregation approach with application to third-party logistic provider selection process, Rep. Mech. Eng., 3 (2022), 227–236. https://doi.org/10.31181/rme20023062022r doi: 10.31181/rme20023062022r
![]() |
[24] |
M. Lin, X. Li, R. Chen, H. Fujita, J. Lin, Picture fuzzy interactional partitioned Heronian mean aggregation operators: an application to MADM process, Artif. Intell. Rev., 55 (2022), 1171–1208. https://doi.org/10.1007/s10462-021-09953-7 doi: 10.1007/s10462-021-09953-7
![]() |
[25] |
X. Peng, Y. Yang, Fundamental properties of interval‐valued Pythagorean fuzzy aggregation operators, Int. J. Intell. Syst., 31 (2016), 444–487. https://doi.org/10.1002/int.21790 doi: 10.1002/int.21790
![]() |
[26] |
M. Lin, C. Huang, Z. Xu, R. Chen, Evaluating IoT platforms using integrated probabilistic linguistic MCDM method, IEEE Internet Things, 7 (2020), 11195–11208. https://doi.org/10.1109/JIOT.2020.2997133 doi: 10.1109/JIOT.2020.2997133
![]() |
[27] |
K. Rahman, S. Abdullah, M. Shakeel, M. S. Ali Khan, M. Ullah, Interval-valued Pythagorean fuzzy geometric aggregation operators and their application to group decision making problem, Cogent Math., 4 (2017), 1338638. https://doi.org/10.1080/23311835.2017.1338638 doi: 10.1080/23311835.2017.1338638
![]() |
[28] |
M. Lin, X. Li, L. Chen, Linguistic q‐rung orthopair fuzzy sets and their interactional partitioned Heronian mean aggregation operators, Int. J. Intell. Syst., 35 (2020), 217–249. https://doi.org/10.1002/int.22136 doi: 10.1002/int.22136
![]() |
[29] |
D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
![]() |
[30] |
P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6
![]() |
[31] | P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602. |
[32] | P. K. Maji, R. Biswas, A. R. Roy, Intuitionistic fuzzy soft sets, J. Fuzzy Math., 9 (2001), 677–692. |
[33] | R. Arora, H. Garg, A robust aggregation operators for multi-criteria decision-making with intuitionistic fuzzy soft set environment, Sci. Iran., 25 (2018), 931–942. |
[34] |
A. K. Das, FP-intuitionistic multi fuzzy N-soft set and its induced FP-hesitant N soft set in decision-making, Decis. Mak. Appl. Manag. Eng., 5 (2022), 67–89. https://doi.org/10.31181/dmame181221045d doi: 10.31181/dmame181221045d
![]() |
[35] |
Y. Jiang, Y. Tang, Q. Chen, H. Liu, J. Tang, Interval-valued intuitionistic fuzzy soft sets and their properties, Comput. Math. Appl., 60 (2010), 906–918. https://doi.org/10.1016/j.camwa.2010.05.036 doi: 10.1016/j.camwa.2010.05.036
![]() |
[36] |
R. M. Zulqarnain, X. L. Xin, M. Saqlain, W. A. Khan, TOPSIS method based on the correlation coefficient of interval-valued intuitionistic fuzzy soft sets and aggregation operators with their application in decision-making, J. Math., 2021 (2021), 1–16. https://doi.org/10.1155/2021/6656858 doi: 10.1155/2021/6656858
![]() |
[37] | X. D. Peng, Y. Yang, J. Song, Y. Jiang, Pythagorean fuzzy soft set and its application, Comput. Eng., 41 (2015), 224–229. |
[38] |
R. M. Zulqarnain, I. Siddique, A. Iampan, D. Baleanu, Aggregation operators for interval-valued Pythagorean fuzzy soft set with their application to solve multi-attribute group decision making problem, CMES-Comput. Model. Eng. Sci., 131 (2022), 1717–1750. https://doi.org/10.32604/cmes.2022.019408 doi: 10.32604/cmes.2022.019408
![]() |
[39] | F. Smarandache, Extension of soft set to hypersoft set, and then to plithogenic hypersoft set, Neutrosophic Sets Sy., 22 (2018), 168–170. |
[40] |
A. U. Rahman, M. Saeed, H. A. E. W. Khalifa, W. A. Afifi, Decision making algorithmic techniques based on aggregation operations and similarity measures of possibility intuitionistic fuzzy hypersoft sets, AIMS Math., 7 (2022), 3866–3895. https://doi.org/10.3934/math.2022214 doi: 10.3934/math.2022214
![]() |
[41] |
A. U. Rahman, M. Saeed, S. S. Alodhaibi, H. Abd, Decision making algorithmic approaches based on parameterization of neutrosophic set under hypersoft set environment with fuzzy, intuitionistic fuzzy and neutrosophic settings, CMES-Comput. Model. Eng. Sci., 12 (2021), 743–777. https://doi.org/10.32604/cmes.2021.016736 doi: 10.32604/cmes.2021.016736
![]() |
[42] |
M. Saeed, M. Ahsan, A. U. Rahman, M. H. Saeed, A. Mehmood, An application of neutrosophic hypersoft mapping to diagnose brain tumor and propose appropriate treatment, J. Intell. Fuzzy Syst., 41 (2021), 1677–1699. https://doi.org/10.3233/JIFS-210482 doi: 10.3233/JIFS-210482
![]() |
[43] |
R. M. Zulqarnain, I. Siddique, R. Ali, D. Pamucar, D. Marinkovic, D. Bozanic, Robust aggregation operators for intuitionistic fuzzy hypersoft set with their application to solve MCDM problem, Entropy, 23 (2021), 688. https://doi.org/10.3390/e23060688 doi: 10.3390/e23060688
![]() |
[44] | R. M. Zulqarnain, X. L. Xin, M. Saeed, A development of Pythagorean fuzzy hypersoft set with basic operations and decision-making approach based on the correlation coefficient, In: Theory and Application of Hypersoft Set, Pons Publishing House Brussels., 2021 (2021), 85–106. |
[45] |
R. M. Zulqarnain, I. Siddique, R. Ali, F. Jarad, A. Iampan, Aggregation operators for interval-valued Pythagorean fuzzy hypersoft set with their application to solve MCDM problem, CMES-Comput. Model. Eng. Sci., 135 (2022), 619–651. https://doi.org/10.32604/cmes.2022.022767 doi: 10.32604/cmes.2022.022767
![]() |
[46] |
K. Chatterjee, D. Pamucar, E. K. Zavadskas, Evaluating the performance of suppliers based on using the R'AMATELMAIRCA method for green supply chain implementation in electronics industry, J. Clean. Prod., 184 (2018), 101–129. https://doi.org/10.1016/j.jclepro.2018.02.186 doi: 10.1016/j.jclepro.2018.02.186
![]() |
[47] |
Z. Stevic, D. Pamucar, M. Vasiljevic, G. Stojic, S. Korica, Novel integrated multicriteria model for supplier selection: Case study construction company, Symmetry, 9 (2017), 279. https://doi.org/10.3390/sym9110279 doi: 10.3390/sym9110279
![]() |
[48] |
G. Stojic, Z. Stevic, J. Antucheviciene, D. Pamucar, M. Vasiljevic, A novel rough WASPAS approach for supplier selection in a company manufacturing PVC carpentry products, Information, 9 (2018), 121. https://doi.org/10.3390/info9050121 doi: 10.3390/info9050121
![]() |
[49] |
Z. Stevic, D. Pamucar, A. Puska, P. Chatterjee, Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS), Comput. Ind. Eng., 140 (2020), 106231. https://doi.org/10.1016/j.cie.2019.106231 doi: 10.1016/j.cie.2019.106231
![]() |
[50] |
W. Wang, X. Liu, Y. Qin, Interval-valued intuitionistic fuzzy aggregation operators, J. Syst. Eng. Electron., 23 (2012), 574–580. https://doi.org/10.1109/JSEE.2012.00071 doi: 10.1109/JSEE.2012.00071
![]() |
[51] | Z. Xu, J. Chen, On geometric aggregation over interval-valued intuitionistic fuzzy information, In: Fourth international conference on fuzzy systems and knowledge discovery (FSKD 2007), Haikou, China, 2007,466–471. https://doi.org/10.1109/FSKD.2007.427 |
[52] | S. Khan, H. F. Ashraf, Analysis of Pakistan's electric power sector, In: Blekinge Institute of Technology, Department of Electrical Engineering, 2015. Available from: https://www.diva-portal.org/smash/get/diva2: 917526/FULLTEXT01.pdf. |
[53] | D. Anderson, F. Britt, D. Favre, The seven principles of supply chain management, Supply Chain Manag. Rev., 1 (1997), 21–31. |
[54] |
X. Y. Deng, Y. Hu, Y. Deng, S. Mahadevan, Supplier selection using AHP methodology extended by D numbers, Expert Syst. Appl., 41 (2014), 156–167. https://doi.org/10.1016/j.eswa.2013.07.018 doi: 10.1016/j.eswa.2013.07.018
![]() |
[55] |
G. W. Dickson, An analysis of vendor selection: Aystems and decisions, J. Purch., 1 (1966), 5–17. https://doi.org/10.1111/j.1745-493X.1966.tb00818.x doi: 10.1111/j.1745-493X.1966.tb00818.x
![]() |
[56] |
Y. Wind, P. E. Green, P. J. Robinson, The determinants of vendor selection: The evaluation function approach, J. Purch., 8 (1968), 29–41. https://doi.org/10.1111/j.1745-493X.1968.tb00592.x doi: 10.1111/j.1745-493X.1968.tb00592.x
![]() |
[57] |
W. Ho, X. Xu, P. K. Dey, Multi-criteria decision making approaches for supplier evaluation and selection: A literature review, Eur. J.. Oper. Res., 202 (2010), 16–24. https://doi.org/10.1016/j.ejor.2009.05.009 doi: 10.1016/j.ejor.2009.05.009
![]() |
[58] |
C. A. Weber, J. R. Current, W. C. Benton, Vendor selection criteria and methods, Eur. J.. Oper. Res., 50 (1991), 2–18. https://doi.org/10.1016/0377-2217(91)90033-R doi: 10.1016/0377-2217(91)90033-R
![]() |
[59] |
A. Amid, S. H. Ghodsypour, C. Brien, A weighted max-min model for fuzzy multiobjective supplier selection in a supply chain, Int. J. Prod. Econ., 131 (2011), 139–145. https://doi.org/10.1016/j.ijpe.2010.04.044 doi: 10.1016/j.ijpe.2010.04.044
![]() |
[60] |
F. Jolai, S. A. Yazdian, K. Shahanaghi, M. A. Khojasteh, Integrating fuzzy TOPSIS and multiperiod goal programming for purchasing multiple products from multiple suppliers, J. Purch. Supply Manag., 17 (2011), 42–53. https://doi.org/10.1016/j.pursup.2010.06.004 doi: 10.1016/j.pursup.2010.06.004
![]() |
[61] |
M. Sevkli, S. C. L. Koh, S. Zaim, M. Demirbag, E. Tatoglu, Hybrid analytical hierarchy process model for supplier selection, Ind. Manage. Data Syst., 108 (2008), 122–142. https://doi.org/10.1108/02635570810844124 doi: 10.1108/02635570810844124
![]() |
[62] |
A. Anastasiadis, S. Konstantinopoulos, G. Kondylis, G. A. Vokas, M. J. Salame, Carbon tax, system marginal price and environmental policies on smart microgrid operation, Manag. Environ. Qual., 29 (2018), 76–88. https://doi.org/10.1108/MEQ-11-2016-0086 doi: 10.1108/MEQ-11-2016-0086
![]() |
[63] |
K. Govindan, R. Sivakumar, Green supplier selection and order allocation in a low-carbon paper industry: Integrated multi-criteria heterogeneous decision-making and multiobjective linear programming approaches, Ann. Oper. Res., 238 (2016), 243–276. https://doi.org/10.1007/s10479-015-2004-4 doi: 10.1007/s10479-015-2004-4
![]() |
[64] |
J. D. Qin, X. W. Liu, W. Pedrycz, An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment, Eur. J. Oper. Res., 258 (2017), 626–638. https://doi.org/10.1016/j.ejor.2016.09.059 doi: 10.1016/j.ejor.2016.09.059
![]() |
[65] |
M. Davood, H. G. Seyed, H. Ashkan, A game theoretic analysis in capacity-constrained supplier selection and cooperation by considering the total supply chain inventory costs, Int. J. Prod. Econ., 181 (2016), 87–97. https://doi.org/10.1016/j.ijpe.2015.11.016 doi: 10.1016/j.ijpe.2015.11.016
![]() |
[66] |
X. Tong, Z. J. Wang, A group decision framework with intuitionistic preference relations and its application to low carbon supplier selection, Int. J. Environ. Res. Pub. He., 13 (2016), 923. https://doi.org/10.3390/ijerph13090923 doi: 10.3390/ijerph13090923
![]() |
[67] |
S. Zeng, X. Peng, T. Baležentis, D. Streimikiene, Prioritization of low-carbon suppliers based on Pythagorean fuzzy group decision making with self-confidence level, Econ. Res.-Ekon. Istraaz., 32 (2019), 1073–1087. https://doi.org/10.1080/1331677X.2019.1615971 doi: 10.1080/1331677X.2019.1615971
![]() |
1. | Muhammad Saqlain, Poom Kumam, Wiyada Kumam, Supak Phiangsungnoen, Proportional Distribution Based Pythagorean Fuzzy Fairly Aggregation Operators With Multi-Criteria Decision-Making, 2023, 11, 2169-3536, 72209, 10.1109/ACCESS.2023.3292273 | |
2. | Saraj Khan, Muhammad Imran Asjad, Muhammad Bilal Riaz, Abdul Wahab, Hira Ashaq, Taseer Muhammad, Innovative player evaluation: Dual-possibility Pythagorean fuzzy hypersoft sets for accurate international football rankings, 2024, 10, 24058440, e36993, 10.1016/j.heliyon.2024.e36993 | |
3. | Dongsheng Xu, Lagrange-enhanced GRA framework for probabilistic simplified neutrosophic multiple-attributes decision-making and applications to painting teaching quality evaluation, 2024, 46, 10641246, 2147, 10.3233/JIFS-235975 | |
4. | Pairote Yiarayong, Decision making for renewable energy source selection using q-rung linear Diophantine fuzzy hypersoft aggregation operators, 2024, 0975-6809, 10.1007/s13198-024-02540-3 | |
5. | AN. Surya, J. Vimala, Nasreen Kausar, Željko Stević, Mohd Asif Shah, Entropy for q-rung linear diophantine fuzzy hypersoft set with its application in MADM, 2024, 14, 2045-2322, 10.1038/s41598-024-56252-6 | |
6. | Melike Nur Ince, Cagatay Tasdemir, Rado Gazo, Lean and Sustainable Supplier Selection in the Furniture Industry, 2023, 15, 2071-1050, 15891, 10.3390/su152215891 |
Criteria | Sub-criteria | |
{\bf{d}}_{1} | Performance | Actual production time, scheduled time |
{\bf{d}}_{2} | Equipment efficiency | 75% < OEE < 85% (acceptable), 85% < OEE < 95% (good). |
{\bf{d}}_{3} | Quality | Good |
{\stackrel{ˇ}{\bf{d}}}_{1} | {\stackrel{ˇ}{\bf{d}}}_{2} | {\stackrel{ˇ}{\bf{d}}}_{3} | {\stackrel{ˇ}{\bf{d}}}_{4} | |
{\mathcal{U}}_{1} | \left(\left[0.4, \; 0.5\right], \left[0.2, \; 0.5\right]\right) | \left(\left[0.7, \; 0.8\right], \left[0.5, \; 0.6\right]\right) | \left(\left[0.4, \; 0.6\right], \left[0.2, \; 0.5\right]\right) | \left(\left[0.2, \; 0.4\right], \left[0.2, \; 0.6\right]\right) |
{\mathcal{U}}_{2} | \left(\left[0.2, \; 0.7\right], \left[0.2, \; 0.6\right]\right) | \left(\left[0.1, \; 0.6\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.2, \; 0.3\right], \left[0.4, \; 0.8\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.4, \; 0.7\right]\right) |
{\mathcal{U}}_{3} | \left(\left[0.3, \; 0.5\right], \left[0.1, \; 0.4\right]\right) | \left(\left[0.4, \; 0.6\right], \left[0.2, \; 0.7\right]\right) | \left(\left[0.4, \; 0.7\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.5, \; 0.7\right], \left[0.2, \; 0.4\right]\right) |
{\mathcal{U}}_{4} | \left(\left[0.4, \; 0.6\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.4, \; 0.5\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.3, \; 0.6\right], \left[0.3, \; 0.5\right]\right) | \left(\left[0.3, \; 0.6\right], \left[0.3, \; 0.5\right]\right) |
{\stackrel{ˇ}{\bf{d}}}_{1} | {\stackrel{ˇ}{\bf{d}}}_{2} | {\stackrel{ˇ}{\bf{d}}}_{3} | {\stackrel{ˇ}{\bf{d}}}_{4} | |
{\mathcal{U}}_{1} | \left(\left[0.3, \; 0.6\right], \left[0.5, \; 0.6\right]\right) | \left(\left[0.2, \; 0.7\right], \left[0.5, \; 0.7\right]\right) | \left(\left[0.2, \; 0.7\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.6, \; 0.7\right], \left[0.5, \; 0.8\right]\right) |
{\mathcal{U}}_{2} | \left(\left[0.3, \; 0.5\right], \left[0.5, \; 0.8\right]\right) | \left(\left[0.1, \; 0.4\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.1, \; 0.5\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.4, \; 0.5\right], \left[0.3, \; 0.6\right]\right) |
{\mathcal{U}}_{3} | \left(\left[0.2, \; 0.6\right], \left[0.1, \; 0.4\right]\right) | \left(\left[0.1, \; 0.2\right], \left[0.2, \; 0.9\right]\right) | \left(\left[0.4, \; 0.7\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.5, \; 0.8\right], \left[0.2, \; 0.6\right]\right) |
{\mathcal{U}}_{4} | \left(\left[0.2, \; 0.3\right], \left[0.3, \; 0.8\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.2, \; 0.8\right]\right) | \left(\left[0.3, \; 0.7\right], \left[0.2, \; 0.6\right]\right) | \left(\left[0.1, \; 0.7\right], \left[0.3, \; 0.6\right]\right) |
{\stackrel{ˇ}{\bf{d}}}_{1} | {\stackrel{ˇ}{\bf{d}}}_{2} | {\stackrel{ˇ}{\bf{d}}}_{3} | {\stackrel{ˇ}{\bf{d}}}_{4} | |
{\mathcal{U}}_{1} | \left(\left[0.3, \; 0.4\right], \left[0.2, \; 0.7\right]\right) | \left(\left[0.3, \; 0.4\right], \left[0.4, \; 0.6\right]\right) | \left(\left[0.5, \; 0.6\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.3, \; 0.4\right], \left[0.3, \; 0.6\right]\right) |
{\mathcal{U}}_{2} | \left(\left[0.4, \; 0.6\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.2, \; 0.3\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.5, \; 0.8\right]\right) | \left(\left[0.2, \; 0.6\right], \left[0.2, \; 0.4\right]\right) |
{\mathcal{U}}_{3} | \left(\left[0.2, \; 0.4\right], \left[0.3, \; 0.4\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.3, \; 0.7\right], \left[0.3, \; 0.8\right]\right) | \left(\left[0.1, \; 0.3\right], \left[0.5, \; 0.6\right]\right) |
{\mathcal{U}}_{4} | \left(\left[0.3, \; 0.7\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.2, \; 0.4\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.3, \; 0.6\right]\right) | \left(\left[0.3, \; 0.4\right], \left[0.3, \; 0.7\right]\right) |
{\stackrel{ˇ}{\bf{d}}}_{1} | {\stackrel{ˇ}{\bf{d}}}_{2} | {\stackrel{ˇ}{\bf{d}}}_{3} | {\stackrel{ˇ}{\bf{d}}}_{4} | |
{\mathcal{U}}_{1} | \left(\left[0.3, \; 0.5\right], \left[0.2, \; 0.6\right]\right) | \left(\left[0.2, \; 0.6\right], \left[0.4, \; 0.7\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.3, \; 0.6\right]\right) | \left(\left[0.5, \; 0.7\right], \left[0.6, \; 0.8\right]\right) |
{\mathcal{U}}_{2} | \left(\left[0.2, \; 0.7\right], \left[0.3, \; 0.8\right]\right) | \left(\left[0.1, \; 0.5\right], \left[0.4, \; 0.7\right]\right) | \left(\left[0.5, \; 0.7\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.3, \; 0.4\right]\right) |
{\mathcal{U}}_{3} | \left(\left[0.2, \; 0.5\right], \left[0.1, \; 0.6\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.1, \; 0.5\right]\right) | \left(\left[0.2, \; 0.4\right], \left[0.2, \; 0.7\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.1, \; 0.5\right]\right) |
{\mathcal{U}}_{4} | \left(\left[0.2, \; 0.4\right], \left[0.5, \; 0.8\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.5, \; 0.8\right]\right) | \left(\left[0.2, \; 0.7\right], \left[0.3, \; 0.6\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.4, \; 0.5\right]\right) |
{\bf{e}}_{1} | {\bf{e}}_{2} | {\bf{e}}_{3} | {\bf{e}}_{4} | |
{\bf{x}}_{1} | \left(\left[.4, \; .5\right], \left[.2, \; .5\right]\right) | \left(\left[.5, \; .6\right], \left[.7, \; .8\right]\right) | \left(\left[.4, \; .6\right], \left[.2, \; .5\right]\right) | \left(\left[.2, \; .4\right], \left[.2, \; .6\right]\right) |
{\bf{x}}_{2} | \left(\left[.2, \; .7\right], \left[.2, \; .6\right]\right) | \left(\left[.4, \; .5\right], \left[.1, \; .6\right]\right) | \left(\left[.2, \; .3\right], \left[.4, \; .8\right]\right) | \left(\left[.2, \; .5\right], \left[.4, \; .7\right]\right) |
{\bf{x}}_{3} | \left(\left[.3, \; .5\right], \left[.1, \; .4\right]\right) | \left(\left[.2, \; .7\right], \left[.4, \; .6\right]\right) | \left(\left[.4, \; .7\right], \left[.3, \; .7\right]\right) | \left(\left[.5, \; .7\right], \left[.2, \; .4\right]\right) |
{\bf{x}}_{4} | \left(\left[.4, \; .6\right], \left[.3, \; .7\right]\right) | \left(\left[.3, \; .7\right], \left[.4, \; .5\right]\right) | \left(\left[.3, \; .6\right], \left[.3, \; .5\right]\right) | \left(\left[.3, \; .6\right], \left[.3, \; .5\right]\right) |
{\bf{e}}_{1} | {\bf{e}}_{2} | {\bf{e}}_{3} | {\bf{e}}_{4} | |
{\bf{x}}_{1} | \left(\left[.3, \; .6\right], \left[.5, \; .6\right]\right) | \left(\left[.5, \; .7\right], \left[.2, \; .7\right]\right) | \left(\left[.2, \; .7\right], \left[.4, \; .5\right]\right) | \left(\left[.6, \; .7\right], \left[.5, \; .8\right]\right) |
{\bf{x}}_{2} | \left(\left[.3, \; .5\right], \left[.5, \; .8\right]\right) | \left(\left[.4, \; .5\right], \left[.1, \; .4\right]\right) | \left(\left[.1, \; .5\right], \left[.3, \; .7\right]\right) | \left(\left[.4, \; .5\right], \left[.3, \; .6\right]\right) |
{\bf{x}}_{3} | \left(\left[.2, \; .6\right], \left[.1, \; .4\right]\right) | \left(\left[.2, \; .9\right], \left[.1, \; .2\right]\right) | \left(\left[.4, \; .7\right], \left[.3, \; .7\right]\right) | \left(\left[.5, \; .8\right], \left[.2, \; .6\right]\right) |
{\bf{x}}_{4} | \left(\left[.2, \; .3\right], \left[.3, \; .8\right]\right) | \left(\left[.2, \; .8\right], \left[.3, \; .5\right]\right) | \left(\left[.3, \; .7\right], \left[.2, \; .6\right]\right) | \left(\left[.1, \; .7\right], \left[.3, \; .6\right]\right) |
{\bf{e}}_{1} | {\bf{e}}_{2} | {\bf{e}}_{3} | {\bf{e}}_{4} | |
{\bf{x}}_{1} | \left(\left[.3, \; .4\right], \left[.2, \; .7\right]\right) | \left(\left[.4, \; .6\right], \left[.3, \; .4\right]\right) | \left(\left[.5, \; .6\right], \left[.4, \; .5\right]\right) | \left(\left[.3, \; .4\right], \left[.3, \; .6\right]\right) |
{\bf{x}}_{2} | \left(\left[.4, \; .6\right], \left[.3, \; .7\right]\right) | \left(\left[.2, \; .3\right], \left[.3, \; .5\right]\right) | \left(\left[.3, \; .5\right], \left[.5, \; .8\right]\right) | \left(\left[.2, \; .6\right], \left[.2, \; .4\right]\right) |
{\bf{x}}_{3} | \left(\left[.2, \; .4\right], \left[.3, \; .4\right]\right) | \left(\left[.3, \; .7\right], \left[.3, \; .5\right]\right) | \left(\left[.3, \; .7\right], \left[.3, \; .8\right]\right) | \left(\left[.1, \; .3\right], \left[.5, \; .6\right]\right) |
{\bf{x}}_{4} | \left(\left[.3, \; .7\right], \left[.3, \; .7\right]\right) | \left(\left[.2, \; .4\right], \left[.3, \; .5\right]\right) | \left(\left[.2, \; .5\right], \left[.3, \; .6\right]\right) | \left(\left[.3, \; .4\right], \left[.3, \; .7\right]\right) |
{\bf{e}}_{1} | {\bf{e}}_{2} | {\bf{e}}_{3} | {\bf{e}}_{4} | |
{\bf{x}}_{1} | \left(\left[.3, \; .5\right], \left[.2, \; .6\right]\right) | \left(\left[.4, \; .7\right], \left[.2, \; .6\right]\right) | \left(\left[.2, \; .5\right], \left[.3, \; .6\right]\right) | \left(\left[.5, \; .7\right], \left[.6, \; .8\right]\right) |
{\bf{x}}_{2} | \left(\left[.2, \; .7\right], \left[.3, \; .8\right]\right) | \left(\left[.4, \; .7\right], \left[.1, \; .5\right]\right) | \left(\left[.5, \; .7\right], \left[.4, \; .5\right]\right) | \left(\left[.2, \; .5\right], \left[.3, \; .4\right]\right) |
{\bf{x}}_{3} | \left(\left[.2, \; .5\right], \left[.1, \; .6\right]\right) | \left(\left[.1, \; .5\right], \left[.2, \; .5\right]\right) | \left(\left[.2, \; .4\right], \left[.2, \; .7\right]\right) | \left(\left[.3, \; .5\right], \left[.1, \; .5\right]\right) |
{\bf{x}}_{4} | \left(\left[.2, \; .4\right], \left[.5, \; .8\right]\right) | \left(\left[.5, \; .8\right], \left[.2, \; .6\right]\right) | \left(\left[.2, \; .7\right], \left[.3, \; .6\right]\right) | \left(\left[.2, \; .5\right], \left[.4, \; .5\right]\right) |
Fuzzy information | Aggregated attributes information | Aggregated information in intervals form | Interaction aggregated information | |
IVFS [3] | √ | × | √ | × |
IVIFWA [50] | √ | × | √ | × |
IVIFWG [51] | √ | × | √ | × |
IVPFWA [25] | √ | × | √ | × |
IVPFWG [27] | √ | × | √ | × |
IFSWA [33] | √ | √ | × | × |
IFSWG [33] | √ | √ | × | × |
IVIFSWA [36] | √ | √ | √ | × |
IVIFSWG [36] | √ | √ | √ | × |
IFHSWA [43] | √ | √ | × | × |
IFHSWG [43] | √ | √ | × | × |
IVPFSWA [38] | √ | √ | √ | × |
IVPFSWG [38] | √ | √ | √ | × |
IVPFHSWA [45] | √ | √ | √ | × |
IVPFHSWG [45] | √ | √ | √ | × |
Proposed IVPFHSIWA | √ | √ | √ | √ |
Proposed IVPFHSIWG | √ | √ | √ | √ |
AO | {\mathfrak{I}}^{1} | {\mathfrak{I}}^{2} | {\mathfrak{I}}^{3} | {\mathfrak{I}}^{4} | Alternatives ranking | Optimal choice |
IVIFWA[50] | 0.3681 | 0.4573 | 0.3509 | 0.2146 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVIFWG [51] | 0.3104 | 0.3952 | 0.2914 | 0.2753 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVPFWA [25] | 0.0154 | 0.0251 | 0.0198 | 0.0247 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{1} | {\mathfrak{I}}^{2} |
IVPFWG [27] | 0.0364 | 0.0856 | 0.0786 | 0.0475 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVIFSWA [36] | 0.0235 | 0.0723 | 0.0584 | 0.0253 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVIFSWG [36] | 0.2365 | 0.7234 | 0.5840 | 0.6525 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{1} | {\mathfrak{I}}^{2} |
IVPFSWA [38] | 0.0377 | 0.0834 | 0.0113 | 0.0141 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} | {\mathfrak{I}}^{2} |
IVPFSWG [38] | 0.0524 | 0.0754 | 0.0241 | 0/0114 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVPFHSWA [45] | 0.0578 | 0.0599 | 0.0266 | –0.0382 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVPFHSWG [45] | 0.0654 | 0.0752 | 0.0241 | 0.0114 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVPFHSIWA | –0.1028 | –0.0275 | –0.2492 | –0.1795 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} | {\mathfrak{I}}^{2} |
IVPFHSIWG | 0.1419 | 0.1813 | 0.0646 | 0.1417 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} | {\mathfrak{I}}^{2} |
Criteria | Sub-criteria | |
{\bf{d}}_{1} | Performance | Actual production time, scheduled time |
{\bf{d}}_{2} | Equipment efficiency | 75% < OEE < 85% (acceptable), 85% < OEE < 95% (good). |
{\bf{d}}_{3} | Quality | Good |
{\stackrel{ˇ}{\bf{d}}}_{1} | {\stackrel{ˇ}{\bf{d}}}_{2} | {\stackrel{ˇ}{\bf{d}}}_{3} | {\stackrel{ˇ}{\bf{d}}}_{4} | |
{\mathcal{U}}_{1} | \left(\left[0.4, \; 0.5\right], \left[0.2, \; 0.5\right]\right) | \left(\left[0.7, \; 0.8\right], \left[0.5, \; 0.6\right]\right) | \left(\left[0.4, \; 0.6\right], \left[0.2, \; 0.5\right]\right) | \left(\left[0.2, \; 0.4\right], \left[0.2, \; 0.6\right]\right) |
{\mathcal{U}}_{2} | \left(\left[0.2, \; 0.7\right], \left[0.2, \; 0.6\right]\right) | \left(\left[0.1, \; 0.6\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.2, \; 0.3\right], \left[0.4, \; 0.8\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.4, \; 0.7\right]\right) |
{\mathcal{U}}_{3} | \left(\left[0.3, \; 0.5\right], \left[0.1, \; 0.4\right]\right) | \left(\left[0.4, \; 0.6\right], \left[0.2, \; 0.7\right]\right) | \left(\left[0.4, \; 0.7\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.5, \; 0.7\right], \left[0.2, \; 0.4\right]\right) |
{\mathcal{U}}_{4} | \left(\left[0.4, \; 0.6\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.4, \; 0.5\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.3, \; 0.6\right], \left[0.3, \; 0.5\right]\right) | \left(\left[0.3, \; 0.6\right], \left[0.3, \; 0.5\right]\right) |
{\stackrel{ˇ}{\bf{d}}}_{1} | {\stackrel{ˇ}{\bf{d}}}_{2} | {\stackrel{ˇ}{\bf{d}}}_{3} | {\stackrel{ˇ}{\bf{d}}}_{4} | |
{\mathcal{U}}_{1} | \left(\left[0.3, \; 0.6\right], \left[0.5, \; 0.6\right]\right) | \left(\left[0.2, \; 0.7\right], \left[0.5, \; 0.7\right]\right) | \left(\left[0.2, \; 0.7\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.6, \; 0.7\right], \left[0.5, \; 0.8\right]\right) |
{\mathcal{U}}_{2} | \left(\left[0.3, \; 0.5\right], \left[0.5, \; 0.8\right]\right) | \left(\left[0.1, \; 0.4\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.1, \; 0.5\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.4, \; 0.5\right], \left[0.3, \; 0.6\right]\right) |
{\mathcal{U}}_{3} | \left(\left[0.2, \; 0.6\right], \left[0.1, \; 0.4\right]\right) | \left(\left[0.1, \; 0.2\right], \left[0.2, \; 0.9\right]\right) | \left(\left[0.4, \; 0.7\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.5, \; 0.8\right], \left[0.2, \; 0.6\right]\right) |
{\mathcal{U}}_{4} | \left(\left[0.2, \; 0.3\right], \left[0.3, \; 0.8\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.2, \; 0.8\right]\right) | \left(\left[0.3, \; 0.7\right], \left[0.2, \; 0.6\right]\right) | \left(\left[0.1, \; 0.7\right], \left[0.3, \; 0.6\right]\right) |
{\stackrel{ˇ}{\bf{d}}}_{1} | {\stackrel{ˇ}{\bf{d}}}_{2} | {\stackrel{ˇ}{\bf{d}}}_{3} | {\stackrel{ˇ}{\bf{d}}}_{4} | |
{\mathcal{U}}_{1} | \left(\left[0.3, \; 0.4\right], \left[0.2, \; 0.7\right]\right) | \left(\left[0.3, \; 0.4\right], \left[0.4, \; 0.6\right]\right) | \left(\left[0.5, \; 0.6\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.3, \; 0.4\right], \left[0.3, \; 0.6\right]\right) |
{\mathcal{U}}_{2} | \left(\left[0.4, \; 0.6\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.2, \; 0.3\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.5, \; 0.8\right]\right) | \left(\left[0.2, \; 0.6\right], \left[0.2, \; 0.4\right]\right) |
{\mathcal{U}}_{3} | \left(\left[0.2, \; 0.4\right], \left[0.3, \; 0.4\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.3, \; 0.7\right], \left[0.3, \; 0.8\right]\right) | \left(\left[0.1, \; 0.3\right], \left[0.5, \; 0.6\right]\right) |
{\mathcal{U}}_{4} | \left(\left[0.3, \; 0.7\right], \left[0.3, \; 0.7\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.2, \; 0.4\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.3, \; 0.6\right]\right) | \left(\left[0.3, \; 0.4\right], \left[0.3, \; 0.7\right]\right) |
{\stackrel{ˇ}{\bf{d}}}_{1} | {\stackrel{ˇ}{\bf{d}}}_{2} | {\stackrel{ˇ}{\bf{d}}}_{3} | {\stackrel{ˇ}{\bf{d}}}_{4} | |
{\mathcal{U}}_{1} | \left(\left[0.3, \; 0.5\right], \left[0.2, \; 0.6\right]\right) | \left(\left[0.2, \; 0.6\right], \left[0.4, \; 0.7\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.3, \; 0.6\right]\right) | \left(\left[0.5, \; 0.7\right], \left[0.6, \; 0.8\right]\right) |
{\mathcal{U}}_{2} | \left(\left[0.2, \; 0.7\right], \left[0.3, \; 0.8\right]\right) | \left(\left[0.1, \; 0.5\right], \left[0.4, \; 0.7\right]\right) | \left(\left[0.5, \; 0.7\right], \left[0.4, \; 0.5\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.3, \; 0.4\right]\right) |
{\mathcal{U}}_{3} | \left(\left[0.2, \; 0.5\right], \left[0.1, \; 0.6\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.1, \; 0.5\right]\right) | \left(\left[0.2, \; 0.4\right], \left[0.2, \; 0.7\right]\right) | \left(\left[0.3, \; 0.5\right], \left[0.1, \; 0.5\right]\right) |
{\mathcal{U}}_{4} | \left(\left[0.2, \; 0.4\right], \left[0.5, \; 0.8\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.5, \; 0.8\right]\right) | \left(\left[0.2, \; 0.7\right], \left[0.3, \; 0.6\right]\right) | \left(\left[0.2, \; 0.5\right], \left[0.4, \; 0.5\right]\right) |
{\bf{e}}_{1} | {\bf{e}}_{2} | {\bf{e}}_{3} | {\bf{e}}_{4} | |
{\bf{x}}_{1} | \left(\left[.4, \; .5\right], \left[.2, \; .5\right]\right) | \left(\left[.5, \; .6\right], \left[.7, \; .8\right]\right) | \left(\left[.4, \; .6\right], \left[.2, \; .5\right]\right) | \left(\left[.2, \; .4\right], \left[.2, \; .6\right]\right) |
{\bf{x}}_{2} | \left(\left[.2, \; .7\right], \left[.2, \; .6\right]\right) | \left(\left[.4, \; .5\right], \left[.1, \; .6\right]\right) | \left(\left[.2, \; .3\right], \left[.4, \; .8\right]\right) | \left(\left[.2, \; .5\right], \left[.4, \; .7\right]\right) |
{\bf{x}}_{3} | \left(\left[.3, \; .5\right], \left[.1, \; .4\right]\right) | \left(\left[.2, \; .7\right], \left[.4, \; .6\right]\right) | \left(\left[.4, \; .7\right], \left[.3, \; .7\right]\right) | \left(\left[.5, \; .7\right], \left[.2, \; .4\right]\right) |
{\bf{x}}_{4} | \left(\left[.4, \; .6\right], \left[.3, \; .7\right]\right) | \left(\left[.3, \; .7\right], \left[.4, \; .5\right]\right) | \left(\left[.3, \; .6\right], \left[.3, \; .5\right]\right) | \left(\left[.3, \; .6\right], \left[.3, \; .5\right]\right) |
{\bf{e}}_{1} | {\bf{e}}_{2} | {\bf{e}}_{3} | {\bf{e}}_{4} | |
{\bf{x}}_{1} | \left(\left[.3, \; .6\right], \left[.5, \; .6\right]\right) | \left(\left[.5, \; .7\right], \left[.2, \; .7\right]\right) | \left(\left[.2, \; .7\right], \left[.4, \; .5\right]\right) | \left(\left[.6, \; .7\right], \left[.5, \; .8\right]\right) |
{\bf{x}}_{2} | \left(\left[.3, \; .5\right], \left[.5, \; .8\right]\right) | \left(\left[.4, \; .5\right], \left[.1, \; .4\right]\right) | \left(\left[.1, \; .5\right], \left[.3, \; .7\right]\right) | \left(\left[.4, \; .5\right], \left[.3, \; .6\right]\right) |
{\bf{x}}_{3} | \left(\left[.2, \; .6\right], \left[.1, \; .4\right]\right) | \left(\left[.2, \; .9\right], \left[.1, \; .2\right]\right) | \left(\left[.4, \; .7\right], \left[.3, \; .7\right]\right) | \left(\left[.5, \; .8\right], \left[.2, \; .6\right]\right) |
{\bf{x}}_{4} | \left(\left[.2, \; .3\right], \left[.3, \; .8\right]\right) | \left(\left[.2, \; .8\right], \left[.3, \; .5\right]\right) | \left(\left[.3, \; .7\right], \left[.2, \; .6\right]\right) | \left(\left[.1, \; .7\right], \left[.3, \; .6\right]\right) |
{\bf{e}}_{1} | {\bf{e}}_{2} | {\bf{e}}_{3} | {\bf{e}}_{4} | |
{\bf{x}}_{1} | \left(\left[.3, \; .4\right], \left[.2, \; .7\right]\right) | \left(\left[.4, \; .6\right], \left[.3, \; .4\right]\right) | \left(\left[.5, \; .6\right], \left[.4, \; .5\right]\right) | \left(\left[.3, \; .4\right], \left[.3, \; .6\right]\right) |
{\bf{x}}_{2} | \left(\left[.4, \; .6\right], \left[.3, \; .7\right]\right) | \left(\left[.2, \; .3\right], \left[.3, \; .5\right]\right) | \left(\left[.3, \; .5\right], \left[.5, \; .8\right]\right) | \left(\left[.2, \; .6\right], \left[.2, \; .4\right]\right) |
{\bf{x}}_{3} | \left(\left[.2, \; .4\right], \left[.3, \; .4\right]\right) | \left(\left[.3, \; .7\right], \left[.3, \; .5\right]\right) | \left(\left[.3, \; .7\right], \left[.3, \; .8\right]\right) | \left(\left[.1, \; .3\right], \left[.5, \; .6\right]\right) |
{\bf{x}}_{4} | \left(\left[.3, \; .7\right], \left[.3, \; .7\right]\right) | \left(\left[.2, \; .4\right], \left[.3, \; .5\right]\right) | \left(\left[.2, \; .5\right], \left[.3, \; .6\right]\right) | \left(\left[.3, \; .4\right], \left[.3, \; .7\right]\right) |
{\bf{e}}_{1} | {\bf{e}}_{2} | {\bf{e}}_{3} | {\bf{e}}_{4} | |
{\bf{x}}_{1} | \left(\left[.3, \; .5\right], \left[.2, \; .6\right]\right) | \left(\left[.4, \; .7\right], \left[.2, \; .6\right]\right) | \left(\left[.2, \; .5\right], \left[.3, \; .6\right]\right) | \left(\left[.5, \; .7\right], \left[.6, \; .8\right]\right) |
{\bf{x}}_{2} | \left(\left[.2, \; .7\right], \left[.3, \; .8\right]\right) | \left(\left[.4, \; .7\right], \left[.1, \; .5\right]\right) | \left(\left[.5, \; .7\right], \left[.4, \; .5\right]\right) | \left(\left[.2, \; .5\right], \left[.3, \; .4\right]\right) |
{\bf{x}}_{3} | \left(\left[.2, \; .5\right], \left[.1, \; .6\right]\right) | \left(\left[.1, \; .5\right], \left[.2, \; .5\right]\right) | \left(\left[.2, \; .4\right], \left[.2, \; .7\right]\right) | \left(\left[.3, \; .5\right], \left[.1, \; .5\right]\right) |
{\bf{x}}_{4} | \left(\left[.2, \; .4\right], \left[.5, \; .8\right]\right) | \left(\left[.5, \; .8\right], \left[.2, \; .6\right]\right) | \left(\left[.2, \; .7\right], \left[.3, \; .6\right]\right) | \left(\left[.2, \; .5\right], \left[.4, \; .5\right]\right) |
Fuzzy information | Aggregated attributes information | Aggregated information in intervals form | Interaction aggregated information | |
IVFS [3] | √ | × | √ | × |
IVIFWA [50] | √ | × | √ | × |
IVIFWG [51] | √ | × | √ | × |
IVPFWA [25] | √ | × | √ | × |
IVPFWG [27] | √ | × | √ | × |
IFSWA [33] | √ | √ | × | × |
IFSWG [33] | √ | √ | × | × |
IVIFSWA [36] | √ | √ | √ | × |
IVIFSWG [36] | √ | √ | √ | × |
IFHSWA [43] | √ | √ | × | × |
IFHSWG [43] | √ | √ | × | × |
IVPFSWA [38] | √ | √ | √ | × |
IVPFSWG [38] | √ | √ | √ | × |
IVPFHSWA [45] | √ | √ | √ | × |
IVPFHSWG [45] | √ | √ | √ | × |
Proposed IVPFHSIWA | √ | √ | √ | √ |
Proposed IVPFHSIWG | √ | √ | √ | √ |
AO | {\mathfrak{I}}^{1} | {\mathfrak{I}}^{2} | {\mathfrak{I}}^{3} | {\mathfrak{I}}^{4} | Alternatives ranking | Optimal choice |
IVIFWA[50] | 0.3681 | 0.4573 | 0.3509 | 0.2146 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVIFWG [51] | 0.3104 | 0.3952 | 0.2914 | 0.2753 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVPFWA [25] | 0.0154 | 0.0251 | 0.0198 | 0.0247 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{1} | {\mathfrak{I}}^{2} |
IVPFWG [27] | 0.0364 | 0.0856 | 0.0786 | 0.0475 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVIFSWA [36] | 0.0235 | 0.0723 | 0.0584 | 0.0253 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVIFSWG [36] | 0.2365 | 0.7234 | 0.5840 | 0.6525 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{1} | {\mathfrak{I}}^{2} |
IVPFSWA [38] | 0.0377 | 0.0834 | 0.0113 | 0.0141 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} | {\mathfrak{I}}^{2} |
IVPFSWG [38] | 0.0524 | 0.0754 | 0.0241 | 0/0114 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVPFHSWA [45] | 0.0578 | 0.0599 | 0.0266 | –0.0382 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVPFHSWG [45] | 0.0654 | 0.0752 | 0.0241 | 0.0114 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{3} > {\mathfrak{I}}^{4} | {\mathfrak{I}}^{2} |
IVPFHSIWA | –0.1028 | –0.0275 | –0.2492 | –0.1795 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} | {\mathfrak{I}}^{2} |
IVPFHSIWG | 0.1419 | 0.1813 | 0.0646 | 0.1417 | {\mathfrak{I}}^{2} > {\mathfrak{I}}^{1} > {\mathfrak{I}}^{4} > {\mathfrak{I}}^{3} | {\mathfrak{I}}^{2} |