Loading [MathJax]/extensions/TeX/boldsymbol.js
Research article

A new fuzzy decision support system approach; analysis and applications

  • Received: 22 February 2022 Revised: 21 May 2022 Accepted: 25 May 2022 Published: 08 June 2022
  • The current study proposes the idea of the N-cubic Pythagorean fuzzy set with their basic arithmetic operations to aggregate these sets. We define the score and accuracy functions for the comparison purpose. Finally, we discuss Chang's extent analysis of AHP under the environment of the N-cubic Pythagorean fuzzy set using the idea of triangular N-cubic Pythagorean fuzzy set. As an application, we discuss the reason for the downfall of international airlines using the developed approach.

    Citation: Hifza, Muhammad Gulistan, Zahid Khan, Mohammed M. Al-Shamiri, Muhammad Azhar, Asad Ali, Joseph David Madasi. A new fuzzy decision support system approach; analysis and applications[J]. AIMS Mathematics, 2022, 7(8): 14785-14825. doi: 10.3934/math.2022812

    Related Papers:

    [1] Esmail Hassan Abdullatif Al-Sabri, Muhammad Rahim, Fazli Amin, Rashad Ismail, Salma Khan, Agaeb Mahal Alanzi, Hamiden Abd El-Wahed Khalifa . Multi-criteria decision-making based on Pythagorean cubic fuzzy Einstein aggregation operators for investment management. AIMS Mathematics, 2023, 8(7): 16961-16988. doi: 10.3934/math.2023866
    [2] Saleem Abdullah, Muhammad Qiyas, Muhammad Naeem, Mamona, Yi Liu . Pythagorean Cubic fuzzy Hamacher aggregation operators and their application in green supply selection problem. AIMS Mathematics, 2022, 7(3): 4735-4766. doi: 10.3934/math.2022263
    [3] Akarachai Satirad, Ronnason Chinram, Aiyared Iampan . Pythagorean fuzzy sets in UP-algebras and approximations. AIMS Mathematics, 2021, 6(6): 6002-6032. doi: 10.3934/math.2021354
    [4] Abdul Razaq, Ghaliah Alhamzi . On Pythagorean fuzzy ideals of a classical ring. AIMS Mathematics, 2023, 8(2): 4280-4303. doi: 10.3934/math.2023213
    [5] Wei Lu, Yuangang Li, Yixiu Kong, Liangli Yang . Generalized triangular Pythagorean fuzzy weighted Bonferroni operators and their application in multi-attribute decision-making. AIMS Mathematics, 2023, 8(12): 28376-28397. doi: 10.3934/math.20231452
    [6] Supriya Bhunia, Ganesh Ghorai, Qin Xin . On the fuzzification of Lagrange's theorem in (α,β)-Pythagorean fuzzy environment. AIMS Mathematics, 2021, 6(9): 9290-9308. doi: 10.3934/math.2021540
    [7] Nasser Aedh Alreshidi, Muhammad Rahim, Fazli Amin, Abdulaziz Alenazi . Trapezoidal type-2 Pythagorean fuzzy TODIM approach for sensible decision-making with unknown weights in the presence of hesitancy. AIMS Mathematics, 2023, 8(12): 30462-30486. doi: 10.3934/math.20231556
    [8] Jun Hu, Jie Wu, Mengzhe Wang . Research on VIKOR group decision making using WOWA operator based on interval Pythagorean triangular fuzzy numbers. AIMS Mathematics, 2023, 8(11): 26237-26259. doi: 10.3934/math.20231338
    [9] Li Li, Mengjing Hao . Interval-valued Pythagorean fuzzy entropy and its application to multi-criterion group decision-making. AIMS Mathematics, 2024, 9(5): 12511-12528. doi: 10.3934/math.2024612
    [10] Misbah Rasheed, ElSayed Tag-Eldin, Nivin A. Ghamry, Muntazim Abbas Hashmi, Muhammad Kamran, Umber Rana . Decision-making algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set and Choquet integral. AIMS Mathematics, 2023, 8(5): 12422-12455. doi: 10.3934/math.2023624
  • The current study proposes the idea of the N-cubic Pythagorean fuzzy set with their basic arithmetic operations to aggregate these sets. We define the score and accuracy functions for the comparison purpose. Finally, we discuss Chang's extent analysis of AHP under the environment of the N-cubic Pythagorean fuzzy set using the idea of triangular N-cubic Pythagorean fuzzy set. As an application, we discuss the reason for the downfall of international airlines using the developed approach.



    The idea of a fuzzy set was initiated by Zadeh [1] to measure ambiguity and vagueness. Fuzzy sets use only membership values for the estimation of uncertainty. But it's difficult for experts to use crisp values for their decision purpose thus Zadeh [8,9,10,11] proposed the idea of interval-valued fuzzy sets. Atanassov [2,3] provided the further generalization of fuzzy sets by adding non-membership grades with the membership grades known as intuitionistic fuzzy sets. Yager [4,5,6,7,33,34,35] further extended the idea of intuitionistic fuzzy sets to Pythagorean fuzzy sets which are further extended to Q-rung orthopair fuzzy sets. The idea of interval-valued intuitionistic fuzzy sets [12,13,14] and interval-valued Pythagorean fuzzy sets [15,16,17,18] was also a very valuable addition. More details can be seen in [33,34,35] about applications of Pythagorean fuzzy sets. The idea of cubic sets (combination of interval-valued fuzzy sets and fuzzy sets) given by Jun [19,20,21] uses interval-valued fuzzy data as well as the crisp term of fuzzy set. Detailed about the applications of cubic sets can be seen in [36,37,38,39,40,41,42,43,44]. On the same lines, the idea of cubic Pythagorean fuzzy sets [22] and neutrosophic cubic set [23,24,25] was developed. For the applications of neutrosophic cubic sets we refer the reader [45,46,47]. Chang's extent analysis of the analytical hierarchy process, [27,28,29,30] used hierarchy form of data in terms of a fuzzy environment instead of crisp data. For more applications of AHP we refer the reader [50]. Jun et al. [31] extends the idea of Zadeh's fuzzy sets and introduced a new approach which is called negative-valued function, and constructed N-structures. Further, they applied N-structure theory to subtraction algebra and BCK/BCI-algebra and study their related properties. They also discussed N-ideals of subtraction algebra and used N-fuzzy sets which is the extension of fuzzy sets where they used [-1, 0] instead of [0, 1]. In 2013, [32] William and Saeid further gave the concept of generalized N-ideals of subtraction algebras. Rashid et al. [26] applied N-structure on cubic fuzzy set as N-cubic fuzzy set. Applications of N-structures can be seen in [48,49]. The following are some examples of applications that deal with the negative aspects of objects or their effects.

    (1) Due to the lack of any approved treatment, health workers propose some possible treatment (Clinical Management Protocol 2020) to cure the unexpected virus infection, where the choice of drugs has a significant impact on the patients' recovery rate. A few researchers have experimented with the selection of drugs for COVID-19 affected patients, according to the literature. The recommended drugs for treating COVID-19 patients have a variety of functions, including effectiveness, adverse effects, and some unknown consequences. As a result, we use these sets to look for drugs that have a detrimental influence on COVID-19 or other disorders.

    (2) Another example is that this set might be used to assess the drawbacks of utilizing social media, such as Facebook, which can lead to addiction and privacy issues.

    It has already been studied that after crisp sets, the need for fuzzy sets was felt where true membership was discussed due to its imprecise and vague properties. Moreover, sets for false membership were defined and investigated. Many other fuzzy sets were defined in a way rather than a negative side to describe the positive behavior that is used in many real-life problems, but another thing is that these sets only illustrate positive behavior of things to show only positive features. Obviously, in exact decision-making, we observe the limitations of these things and keep them in mind.

    So how do make any decision based on only the positive side?

    Is it possible for anything that has the specialty of good quality features only?

    These things show negative features as well as a positive behavior.

    To notice this side, we define N-cubic Pythagorean fuzzy set (NCPFNs), which apply to real-life problems to describe the drawbacks that are precisely used in decision making in a better way. This paper is organizes as follows: In Section 1, we discussed brief history of different sets and motivation about our work. In Section 2, we recall some basic definitions. In Section 3, we introduce the novel concept of N-cubic Pythagorean fuzzy set (NCPFNs) with some interesting properties. In Section 4, we develop triangular N-cubic Pythagorean fuzzy set. Further application of the proposed work is discussed in Section 5 using AHP method. Section 6, discussed comparison analysis and conclusions are providing in Section 7.

    We recall some basic definitions as:

    Definition: [4] Suppose G be the non-empty universal set, then Pythagorean fuzzy set is defined as:

    {<g,μG(g),ηG(g)>gG}, For μG(g):G[0,1] and ηG(g):G[0,1] be the membership and non-membership values of g in G.

    Also, 0μG(g)2+ηG(g)2}1 and πP(g)=1μG(g)2ηG(g)2 is the degree of indeterminacy.

    Definition: [20] Suppose X be the set; cubic sets are the structure given as:

    C(X)={x,μX(x),ηX(x)}

    where μX(x)be the interval valued fuzzy set and ηX(x) be the fuzzy set.

    Definition: [22] Let X be a fixed non-empty set. By a cubic Pythagorean fuzzy set, we mean a structure of the form

    C(P)={<x,μC(x),ηC(x))>/xX}

    where μC(x) is an interval valued Pythagorean fuzzy set in X and ηC(x) is Pythagorean fuzzy set in X. Let πCP(x)=<[πCP(x),π+C(P)(x)],πCP(x)>, then πCP(x) is said to be cubic Pythagorean fuzzy index of element x ∈ X to set C(P), where

    πCP(x)=1(μ+1)2(μ+2)2,π+C(P)(x)=1(μ1)2(μ2)2,πCP(x)=1η21η22

    and also, [0,0][μ1(x),μ1(x)+]2+[μ2(x),μ2(x)+]2[1,1],0η1(x)2+η2(x)21.

    In this section we initiated the study of N-cubic Pythagorean fuzzy sets (NCPFN). As cubic sets consist of two sets, i.e., interval valued fuzzy sets and fuzzy sets. For achieving NCPFN, we must first define N-Pythagorean fuzzy sets (NPFS) and N-interval valued Pythagorean fuzzy sets (NIVPFS). We discuss some basic operations and properties of N-cubic Pythagorean fuzzy sets (NCPFN).

    (Note that the superscript 2(2) denotes the even power of membership values and non-membership value, while 2(2)+1 be the odd power of (-1) that are used in the whole manuscript.)

    Definition: Let A be a fixed set. Then N-Pythagorean fuzzy set is a structure of the form

    X={μX(x),ηX(x)>xX},

    where μX(x):X[1,0] and ηX(x):X[1,0] be the N-valued fuzzy membership and N-valued fuzzy non-membership of x ∈ X with the condition that

    1(1)2(2)+1{μX(x)2(2)+ηX(x)2(2)}0

    and

    πX(x)=(1)2(2)+11μX(x)2(2)ηX(x)2(2)

    are the N- Pythagorean degree of indeterminacy. The spacing graph of N-Pythagorean fuzzy set can be demonstrated by Figure 1.

    Figure 1.  Spacing chart of N-Pythagorean fuzzy set.

    Remark: In general, for N-q rung ortho pair fuzzy set -1 ≤ (-1)2q+1X (x)2q + ηX(x)2q} ≤ 0 for q ≥ 1 and πp(x) = (-1)2q+1qμX(x)2q+ηX(x)2qμX(x)2qηX(x)2q for q ≥ 3.

    Definition: Let X be a fixed set. Then N-interval valued Pythagorean fuzzy set is a structure of the form

    A(x)={x,μA(x)=[μA(x),μA(x)+],ηA(x)=[ηA(x),ηA(x)+]}

    where μA(x)D[1,0],ηA(x)D[1,0] be the N-interval valued fuzzy membership and N-interval valued fuzzy non-membership of x ∈ X with the condition that

    1(1)2(2)+1{(μA(x))2(2)+(ηA(x))2(2)}0.

    Also,

    πA(x)=[πA(x),πA(x)+],

    where

    πA(x)=(1)2(2)+1(1(μA(x)+)2(2)(ηA(x)+)2(2),
    πA(x)+=(1)2(2)+1(1(μA(x))2(2)(ηA(x))2(2)

    be the N- interval valued Pythagorean degree of indeterminacy. The spacing graph of N-interval valued Pythagorean fuzzy set can be demonstrated by Figure 2.

    Figure 2.  Spacing chart of N-interval valued Pythagorean fuzzy set.

    Definition: Let X is a fixed nonempty set. By an N-cubic Pythagorean fuzzy set we mean a structure of the form

    NP(x)={<x,μNP(x),ηNP(x)>/xX}

    Where μNP(x) is an N-interval valued Pythagorean fuzzy set in X and ηNP(x) is N-Pythagorean fuzzy set in X.

    Let πNP(x)=<[πNP(x),π+NP(x)],πNP(x)>.

    Then πNP(x) is said to be N-cubic Pythagorean fuzzy index of element x ∈ X to set NCP(x), where

    πNP(x)=(1)2(2)+11(μ+1)2(2)(μ+2)2(2),
    π+NP(x)=(1)2(2)+11(μ1)2(2)(μ2)2(2),
    πNP(x)=(1)2(2)+11η2(2)1η2(2)2.

    Also,

    μNP(x)=((μ2(x),μ2(x))

    where,

    μ1(x)=[μ1(x),μ1(x)+],μ2(x)=[μ2(x),μ2(x)+],ηNP(x)=(η1(x),η2(x))

    and,

    [1,1](1)2(2)+1{[μ1(x),μ1(x)+]2+[μ2(x),μ2(x)+]2}[0,0],
    1(1)2(2)+1{η2(2)1+η2(2)2}0.

    We denote N-cubic Pythagorean fuzzy set as NCPFs = < N-IVPFs, N-PFs > . The spacing graph of N-cubic Pythagorean fuzzy set can be demonstrated by Figure 3.

    Figure 3.  Spacing chart of N-cubic Pythagorean fuzzy set.

    Some arithmetic operations on N-cubic Pythagorean fuzzy sets

    Definition: Let A and B be two N-cubic Pythagorean fuzzy sets then, we define:

    (1)(NA)+(NB)=<[(1)2(2)+1μA(x)2(2)+μB(x)2(2)μA(x)2(2)μB(x)2(2),
    (1)2(2)+1μ+A(x)2(2)+μ+B(x)2(2)μ+A(x)2(2)μ+B(x)2(2)],
    (1)2(2)+1(ηAηB,η+Aη+B),((1)2(2)+1μ2(2)NA+μ2(2)NBμ2(2)NAμ2(2)NB)

    (2)

    (NA)(NB)=<(1)2(2)+1[μA(x)μB(x),μ+A(x)μ+B(x)],
    (1)2(2)+1ηA(x)2(2)+ηB(x)2(2)ηA(x)2(2)ηB(x)2(2),(1)2(2)+1η+A(x)2(2)+η+B(x)2(2)η+A(x)2(2)η+B(x)2(2),(1)2(2)+1(μNAμNB),(1)2(2)+1η2(2)NA+η2(2)NBη2(2)NAη2(2)NB>

    (3)

    NCA=<[1,1]μNP,1ηNP>

    (4)

    NA=<[(1)2(2)+11(1μA(x)2(2)),(1)2(2)+11(1μ+A(x)2(2))],(1)2(2)+1
    [μA(x)2,μ+A(x)2],[(1)2(2)+11(1μ2(2)NA),(1)2(2)+1η2NA>

    (5)

    NA=<(1)2(2)+1[(μA)2,(μ+A)2],[(1)2(2)+11(1ηA(x)2(2)),
    (1)2(2)+11(1η+A(x)2(2)), (1)2(2)+1μ2NA, (1)2(2)+11(1η2(2)NA)>where>0.

    In this section we define the concept of N-cubic Pythagorean fuzzy number. We define some basic properties of proposed NCPFN's.

    Definition: The set NCPFs = < N-IVPFs, N-PFs > is said to be N-cubic Pythagorean fuzzy number, if following conditions fulfilled.

    (1) N-Cubic Pythagorean subset of real lines.

    (2) Normal, their exist x ∈ R such that <μNP(x)>=[1,1],<ηNP(x)>=0.

    (3) Concave for the membership, i.e.,

    μNP(αx+(1α)y)max{p(x),p(y)}α[1,0],x,yR.

    (4) Convex for non-membership, i.e.,

    ηNP(αx+(1α)y)min{Np(x),Np(y)}α[1,0],x,yR.

    Theorem: For any two NCPFN's NA and NB, and ∂, ∂1, ∂2 > 0 then

    (1)NA+NB=NB+NA,

    (2)NANB=NBNA,

    (3)(NA+NB)=NA+NB,>0,

    (4)(1+2)NA=1NA+2NA,1,2>0,

    (5)(NANB)=NANB,>0,

    (6)N1+2A=N1AN2A,1,2>0.

    Proof: Easy to prove.

    The accuracy and score functions play an important role in decision-making. We introduce a novel accuracy and scoring function for this set, which will be used to compare two N-cubic Pythagorean fuzzy sets.

    Definition: Let N= < ˊNP(x), NP(x) > be the NCPFN then we define the score function of N as follows:

    S(N) = 1/2 < S(ˊNP(x)), S(NP(x)) > where S(ˊNP(x))=½ {(-1)2(2)+1 [μ3(x)2(2)+ μ+3(x)2(2)

    η3(x)2(2)η+3(x)2(2)] }, and S(NP(x) = (-1)2(2)+1 { μN(x)2(2)ηN(x)2(2)}

    S(N)=1/2 (-1)2(2)+1{1/2 [μ3(x)2(2) + μ+3(x)2(2)η3(x)2(2)η+3(x)2(2)] + (μN(x)2(2)ηN(x)2(2))},

    where S (ˊNP(x)) ∈ [-1, 1], S(NP(x)) ∈ [-1, 1] and S(N) ∈ [-1, 1].

    Definition: Let NA,NB ∈ NCPFN's, then NANB, if and

    μA(x)μB(x),μ+A(x)(μ+B(x),ηA(x)ηB(x),η+A(x)η+B(x),

    and

    {μA(x)μB(x),ηA(x)ηB(x)ORμA(x)μB(x),ηA(x)ηB(x)} ∀ x ∈ X.

    Definition: Let NA= < ˊNAP(x), NAP(x) > and NB= < ˊNBP(x), NBP(x) > be two NCPFN. Then if

    (1) S (NA) > S (NB) NA > NB,

    (2) If we have S (NA) = S (NB). Then there is no difference disagreement, indicating that such a score function cannot achieve NCPFN's rating.

    Due to the score function's inadequacy, the accuracy function was added in the following sense, which has two requirements.

    (1) If a(NA)=a(NB)NA = NB.

    (2) If a(NA)>a(NB)NA > NB.

    To proceed with this scoring function based on the inability to compare sets due to certain situations, we develop the following accuracy function for the implications of the provided condition:

    Definition: Let N= < ˊNP(x), NP(x) > then we define the accuracy function as follows:

    a (N)=1/2 < a(ˊNP(x)), a(NP(x)) > ,

    where

    a (ˊNP(x)) =1/2 {(-1)2(2)+1 [μ3(x)2(2) + μ+3(x)2(2) + η3(x)2(2) + η+3(x)2(2)] },

    and

    a (NP(x)) = (-1)2(2)+1 { μN(x)2(2)+ηN(x)2(2)} then, a(N)=1/2 (-1)2(2)+1{1/2 [μ3(x)2(2) + μ+3(x)2(2) + η3(x)2(2) + η+3(x)2(2)] + (μN(x)2(2)+ηN(x)2(2))},

    Where a (ˊNP(x)) ∈ [-1, 0], a (NP(x)) ∈ [-1, 0] and a (N) ∈ [-1, 0].

    Definition: Let S (NA) be the score of NA, S (NB) be the score of NB. Then

    S (NA) < S (NB) if S (ˊNAP(x)) ≤ S (ˊNBP(x)), S (NAP(x)) ≤ S (NBP(x)), or S (NAP(x)) ≥ S (NBP(x)) ∀ x ∈ X.

    And, let a (NA) be the accuracy of NA, a (NB) be the accuracy of NBthen

    a (NA) ≤ a (NB) if, a (ˊNAP(x)) ≤ a (ˊNBP(x)), a (NAP(x)) ≤ a (NAP(x)),

    or a (NAP(x)) ≥ a (NAP(x)) ∀ x ∈ X.

    Example: Suppose NA = < [-0.8, -0.6], [-0.5, -0.2], (-0.6, -0.2) > , NB = < [-0.8, -0.7], [-0.6, -0.4], (-0.8, -0.4) > , be two NCPFN's. Then

    S(NA) = 1/2 < S(ˊNAP(x)), S (NAP(x)) > S(NA) = -0.28.

    Also,

    S(NB) = 1/2 < S(ˊNBP(x)), S (NBP(x)) > = -0.22 S(NB)>S(NA)NB>NA.

    Now if we have,

    NA = [-0.6, -0.4], [-0.6, -0.4], (-0.4, -0.4), NB = [-0.7, -0.6], [-0.7, -0.6], (-0.6, -0.6)S(NA) = 0, S(NB) = 0 (NA) = (NB).

    Then, a (NA) = -0.08 also, a (NB) = -0.24 a (NA) > a (NB) (NA) > (NB).

    Remark:

    (1) If NIVPF membership is greater than non-membership, then score must be positive.

    (2) If non-membership is greater than membership, then score must be negative.

    (3) Similarly, if membership of NCPFN, s is greater than non-membership of NCPFN's, then score must be positive.

    (4) Similarly, if non-membership of NCPFN, s is greater than membership, then score must be negative; similarly, if membership of NCPFN, s is greater than non-member.

    In this section we initiated the concept of triangular N-cubic Pythagorean fuzzy numbers to discuss AHP method.

    Definition: The set T = < (a, b, c), 3p(x), Np(x) > is said to be triangular NCPFN, s defined as:

    M(Ǹp(x)) = {xaba(Ǹp(x)),ax<bxbcb(Ǹp(x)),b<xc0,x<a,x>c

    Also,

    M(Np(x)) = {xaba(Np(x)),ax<bxbcb(Np(x)),b<xc1,x<a,x>c

    Where -1 ≤ a≤ b≤ c ≤ 0 and a represent lower value, b represents middle and c represent upper value of triangular NCPFN, s and M (ˊNp(x)) and M (Np(x)) be the membership and non-membership of NCPFN. The graphical representation is given by Figure 4.

    Figure 4.  Triangular N-cubic Pythagorean fuzzy sets.

    The region between lower value and upper value of the function demonstrates us that this is the membership region of triangular N-cubic Pythagorean fuzzy set, whereas grey shade form of triangle represents the non-membership value of the function. We formulate the three parametric functions in order to specify the triangular N-cubic Pythagorean fuzzy set.

    Definition: Let T1=<(a1,a2,a3),μP1(x),ηP1(x)>, T2=<(b1,b2,b3),μP2(x),ηP2(x)> be two triangular NCPFNs. Then,

    (1) T1 + T2 = < (a1+a2,b1+b2,c1+c2), max[μp1(x),μp2(x)], max[μ+p1(x),μ+p2(x)],

    min [ηNp1,ηNp2] for p', p'' ∈ µp1(x), q', q'' ∈ ηp1(x)

    (2) T1T2 = < (a1a2,b1b2,c1c2), max [μp1(x),μp2(x)], max [μ+p1(x),μ+p2(x)],

    min [ηNp1,ηNp2] for p, p ∈ µp1(x), q', q'' ∈ ηp1(x)

    (3) ∂T = < (a∂, b∂, c∂),

    (4) T1 = < (1c,1b,1a), µp1(x), ηp1(x) >

    (5) T1 - T2 = < (a1a2,b1b2,c1c2), max[μp1(x),μp2(x)], max[μ+p1(x),μ+p2(x)],

    min [ηNp1,ηNp2] for p', p'' ∈ µp1(x), q', q'' ∈ ηp1(x) >

    Definition: A function ῶ for N-interval valued Pythagorean fuzzy sets are given below,

    ˜ω=([μ1p(x)+μ+1p(x)])(1ß)+ß(2(μ2p(x)+μ+2p(x) If ß = 0(pessimistic value),

    ˜ω=(μ1p(x)+μ+1p(x))/2,ifß=1 (Optimistic value),

    ˜ω=(2μ2p(x)μ+2p))/2), and if ß = (1/2),

    ˜ω=(2+μ1p(x)+μ+1p(x)+μ2p(x)μ+2p(x))/4), generally used.

    Also, ß is a real number between 0 and 1 (always positive) that can never be negative used as a variable based on the contribution of each once.

    Definition: Let η = < a,b > be the N-Pythagorean fuzzy sets then,

    ˜v(η)=0.5(1π)(1+a), for π = (1)2(2)+11μX(x)2(2)ηX(x)2(2)

    and,

    η = 1- ṽ(η) where, 0(η),1

    to find weight, we define a function for this set: Y=0.5{(2+μ1p(x)+μ+1p(x)μ2p(x)μ+2p(x))/4)+(1˜v(η))},

    where, 0(η),1 and ṽ (η) already defined.

    Investigation of downfall of IA (international airlines) using analytical hierarchy process under N-cubic Pythagorean fuzzy sets

    The analytical hierarchy technique, first proposed by Thomas L. Saaty in 1970, was used to analyze difficult decisions and rank alternatives using mathematics and human reasoning in a hierarchy framework, however it failed to measure uncertainty. Following that, a fuzzy analytical hierarchy approach was established, although it is difficult to cover many challenges in decision-making. To put it another way, we're starting an NCPF analytical hierarchical process for complex decision-making. Our key goal is to determine what is causing international airlines to fall. To do so, we must first identify the essential key elements (both external and internal) that are related with airlines.

    Following are the key factors that affect airline companies given in Table 1 with brief explanation.

    Table 1.  Factors that affect airline companies.
    S. no Factor category Category code Factors
    1 Operational Factors OF1 Load factor
    (OP) OF2 Average number of passengers carried per departure
    OF3 Average Number of hours flown per pilot
    OF4 Number of departures per aircraft
    OF5 Number of pilots per aircraft
    OF6 The average age of the aircraft fleet
    OF7 Number of different brands of aircraft operated
    OP8 International operations
    2 Economic/Government Factors (EF) EF1 Annual inflation
    EF2 GDP Growth Rate
    EF3 Aviation Fuel price (INR per liter)
    EF4 Average Growth in Value of Passengers carried in country
    3 Performance Related Factors (PF) PF1 Available Seat Kilometer (ASK)
    PF2 Revenue per Kilometer (RPK)
    PF3 Available Seat KM per employee
    PF4 Average stage length flown in kilometer
    PF5 Fuel Efficiency (liters per KM flown)
    PF6 Breakeven load factor
    PF7 Labor cost per KM flown
    4 Financial Factors (FF) FF1 Operating revenues/operating cost
    FF2 Operating Profit/ Total Assets
    FF3 Retained earnings/total assets
    FF4 Market Value of Equity/Total Book value of debt
    FF5 Current assets/current liabilities
    FF6 Earnings before interest and taxes/ operating revenues
    FF7 Interest/total liabilities or debt service
    FF8 Operating revenues per air kilometer
    FF9 Earnings stability (the deviation around
    a 10-year trend line of return on assets)
    FF10 Firm size (measured by the log of the firm's total assets).
    5 Market-Related Factors MF1 Number of airlines operating
    (MRF) MF2 Company Passenger growth (%)/Industry growth (%)
    MF3 Market share
    MF4 Govt. policies regarding slot allocation
    MF5 Airport preference of airlines
    6 External Factors (EX) ExF1 Environment or weather conditions
    ExF2 Geographical location
    ExF3 Threats to national security
    ExF4 Political influence (hiring & benefits)

     | Show Table
    DownLoad: CSV

    These steps are followed to determine the perspective approach.

    Assessment scale given by Saaty in 1970, by this we define linguistic triangular scale under NCPFN is given in Table 2.

    Table 2.  Linguistic Triangular scale under NCPFN.
    Saaty scale Credit Linguistic term set under NCPFN's
    1 Equally significant 1*= < (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) >
    3 Slightly significant 3* = < (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) >
    5 Strongly significant 5*= < (4, 5, 6), [-0.8, -0.5], [-0.2, -0.1], (-0.9, -0.1) >
    7 Very strongly significant 7*= < (6, 7, 8), [-0.6, -0.3], [-0.6, -0.4], (-0.7, -0.6) >
    9 Absolutely significant 9*= < (9, 9, 9), [-0.9, -0.7], [-0.2, 0], (-0.8, -0.1) >
    2 2*= < (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) >
    4 In-between values 4*= < (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) >
    6 6* = < (5, 6, 7), [-0.8, -0.5], [-0.6, -0.2], (-0.7, -0.6) >
    8 8* = < (7, 8, 9), [-0.9, -0.4], [-0.3, -0.1], (-0.9, -0.4) >

     | Show Table
    DownLoad: CSV

    Following are the steps of method (Chang's extent analysis of AHP under NCPFN's) are given by:

    Step (a): the NCPF (QK) extent value of kth criterion is given by, \sum _{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}{\left[\sum _{k}^{n}\sum _{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}\right]}^{-1} , where l, m and n represent lower, middle, and upper values of fuzzy relation.

    Step(b): Degree of possibility can be analyzed by v\left({Q}_{1}\le {Q}_{2}\right) = {inf}_{r\le t}[\mathrm{max}(\left({{\grave{U}} }_{R!}\left(r\right)\right), {({\grave{U}} }_{R2}\left(t\right))\left)\right], {sup}_{r\le t}[\mathrm{m}\mathrm{i}\mathrm{n}(\left({\eta }_{S1}\left(r\right), \left({\eta }_{S2}\left(t\right)\right)\right]. Where,

    {v}_{{\grave{U}} }\left({R}_{1}\le {R}_{2}\right) = {inf}_{r\le t}[\mathrm{max}(\left({{\grave{U}} }_{R!}\left(r\right)\right), {({\grave{U}} }_{R2}\left(t\right))\left)\right] = {{\grave{U}} }_{(R1\cap R2)}\left[{d}^{-}, {d}^{+}\right] \\= \left\{\begin{array}{c}\mathrm{max}\left\{{P}_{1}^{-}, {P}_{2}^{-}\right\}, \mathrm{max}\left\{{P}_{1}^{+}, {P}_{2}^{+}\right\}, for\;{m}_{1}\ge {m}_{2}\\ 0, for\;{l}_{2}\ge {u}_{1}\\ \frac{({U}_{1}-{l}_{2}){P}_{1}^{-}{P}_{2}^{-}}{\left({U}_{1}-{m}_{1}\right){P}_{2}^{-}+({m}_{2}-{l}_{2}){P}_{1}^{-}}, \frac{({U}_{1}-{l}_{2}){P}_{1}^{+}{P}_{2}^{+}}{\left({U}_{1}-{m}_{1}\right){P}_{2}^{+}+({m}_{2}-{l}_{2}){P}_{1}^{+}}, otherwise\end{array}\right\}

    And for non-membership {v}_{\eta }\left({S}_{1}\ge {S}_{2}\right) = {sup}_{r\le t}[\mathrm{m}\mathrm{i}\mathrm{n}(\left({\eta }_{S1}\left(r\right), \left({\eta }_{S2}\left(t\right)\right)\right] = {\eta }_{S1\cap S2}\left(d\right) =

    \left\{\begin{array}{c}min\left\{{q}_{1, }{q}_{2}\right\}, for\;{m}_{1}\ge {m}_{2}\\ -1, for\;{l}_{2}\ge {u}_{1}\\ \frac{\left({m}_{2}-{l}_{2}{q}_{2}\right)\left(-1-{q}_{1}\right)+({u}_{1}{q}_{1}-{m}_{1})(-1-{q}_{2})}{\left({u}_{1}-{m}_{1}\right)\left(-1-{q}_{2}\right)+({m}_{2}-{l}_{2})\left(-1-{q}_{2}\right)}, otherwise\end{array}\right\} .

    Note: Another matter we discuss here is that this structure is a combination of interval valued Pythagorean fuzzy sets and Pythagorean fuzzy sets, so how do we find the weight of these two sets in a single term? (For both the cases)

    Step(c): R = Max { {R}_{5}\le {R}_{2}, {R}_{3}, {R}_{4}, {R}_{1}, {R}_{6} }, S = min { {S}_{5}\ge {S}_{2}, {S}_{3}, {S}_{4}, {S}_{1}, {S}_{6} }

    Step (d): Analyzation of weights:

    The weights of important elements can be determined for final ranking. The same scenario also determines the weights of sub criterion. Adding each sub-relative criterion's weight to the main criteria.

    Step (e):

    The primary criterion, sub criterion, and relative ranking are all ranked in this stage. Criteria are ranked, Ranking on the ground.

    Before performing Chang's study, we create a comparison matrix of key factors based on expert judgments.

    Table 3.  Comparison matrix of main factors.
    OP-F EC/G-F PR-F F-F MR-F EX-F
    OP-F (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1](-0.7, -0.6) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4)
    EC/G-F (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) ( \frac{1}{3}, \frac{1}{2} , 1), [0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    PR-F ( \frac{1}{3}, \frac{1}{2} , 1), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4)
    F-F ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4)
    MR-F (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{3}, \frac{1}{2} , 1), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    EX-F (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3)

     | Show Table
    DownLoad: CSV
    Table 4.  Comparison matrix of operational factors.
    Op-1 Op-2 Op-3 Op-4 Op-5 Op-6 Op-7 Op-8
    Op-1 (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (1/3, 1/2, 1), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1/5, 1/4, 1/3), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1/5, 1/4, 1/3), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3)
    Op-2 ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    Op-3 ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4)
    Op-4 (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3)
    Op-5 ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} )
    , [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4)
    Op-6 (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2}), ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3)
    Op-7 (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3)
    Op-8 ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3)

     | Show Table
    DownLoad: CSV
    Table 5.  Comparison matrix of economic and government factors.
    EF-1 EF-2 EF-3 EF-4
    EF-1 (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3)
    EF-2 ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    EF-3 ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    EF-4 (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3)

     | Show Table
    DownLoad: CSV
    Table 6.  Comparison matrix of performance related factor.
    PR-1 PR-2 PR-3 PR-4 PR-5 PR-6 PR-7
    PR-1 (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    PR-2 ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3)
    PR-3 (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4)
    PR-4 ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3)
    PR-5 ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    PR-6 (\frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4)
    PR-7 (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (\frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3)

     | Show Table
    DownLoad: CSV
    Table 7.  Comparison matrix of financial factor.
    FF-1 FF-2 FF-3 FF-4 FF-5 FF-6 FF-7 FF-8 FF-9 FF-10
    FF-1 (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} )
    ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3)
    (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    FF-2 ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} )
    ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} )
    , [-0.9, -0.4], [-0.7, -0.3], (-0.6, -0.3)
    (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3)
    FF-3 (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3)
    Continued on next page
    FF-4 (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    FF-5 ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} )
    , [-0.8, -0.5], [-0.7, -0.4], (-0.8, -0.5)
    (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4)
    FF-6 ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3)1 (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    FF-7 ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1)
    ), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3)
    ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    FF-8 (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1
    ), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3)
    (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    FF-9 ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3)1 (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4)
    FF-10 ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} )
    ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3)
    (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3)

     | Show Table
    DownLoad: CSV
    Table 8.  Comparison matrix of market related factors.
    MR-1 MR-2 MR-3 MR-4 MR-5
    MR-1 (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4)
    MR-2 ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    MR-3 (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    MR-4 ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} )
    ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4)
    ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (1, 2, 3), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3)
    MR-5 ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{3}, \frac{1}{2}, \frac{1}{1} ), [-0.5, -0.3], [-0.4, -0.2], (-0.6, -0.3) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3)

     | Show Table
    DownLoad: CSV
    Table 9.  Comparison matrix of external factors.
    E1 E2 E3 E4
    E1 (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    E2 ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4)
    E3 (2, 3, 4), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3) (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6)
    E4 (3, 4, 5), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) ( \frac{1}{4}, \frac{1}{3}, \frac{1}{2} ), [-0.7, -0.4], [-0.6, -0.2], (-0.8, -0.4) ( \frac{1}{5}, \frac{1}{4}, \frac{1}{3} ), [-0.7, -0.3], [-0.5, -0.1], (-0.7, -0.6) (1, 1, 1), [-0.8, -0.5], [-0.6, -0.3], (-0.6, -0.3)

     | Show Table
    DownLoad: CSV

    According to Chang's extent analysis (1992), we define some steps given below: By given Chang's method, the value of criterion {h}_{k} can be evaluated by given scenario.

    {M}_{{h}_{k}}^{l} , (l = 1, 2, …, m), (k = 1, 2, …., n).

    Step 1: The NCPF ( {Q}_{K} ) extent value of kth criterion is given by \sum _{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}{\left[\sum _{k}^{n}\sum _{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}\right]}^{-1} ,

    Q (1) = (0.133, 0.23, 0.42), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)}, Q (2) = (0.08, 0.16, 0.30), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6), Q (3) = (0.06, 0.13, 0.27), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6), Q (4) = (0.12, 0.22, 0.39), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6), Q (5) = (0.08, 0.14, 0.25), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6), Q (6) = (0.05, 0.09, 0.16), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6).

    Step 2: Analyzation of probabilistic degree:

    Calculations for membership and non-membership

    {v}_{{\grave{U}} }\left({R}_{1}\le {R}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{1}\ge {S}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{1}\le {R}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{1}\ge {S}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{1}\le {R}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{1}\ge {S}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{1}\le {R}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{1}\ge {S}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{1}\le {R}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{1}\ge {S}_{2}\right) = (-0.8, -0.6)

    Max { {R}_{1}\le {R}_{2}, {R}_{3}, {R}_{4}, {R}_{5}, {R}_{6} } = [-0.5, -0.3], [-0.4, -0.1], min { {S}_{1}\ge {S}_{2}, {S}_{3}, {S}_{4}, {S}_{5}, {S}_{6} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{2}\le {R}_{1}\right) = [-0.36, -0.14], [-0.25, -0.06], {v}_{{\grave{U}} }\left({S}_{2}\ge {S}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{2}\le {R}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{2}\ge {S}_{3}\right) = (-0.20, -0.55)

    {v}_{{\grave{U}} }\left({R}_{2}\le {R}_{4}\right) = [-0.33, -0.22], [-0.2, -0.07], {v}_{{\grave{U}} }\left({S}_{2}\ge {S}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{2}\le {R}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{2}\ge {S}_{5}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{2}\le {R}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{2}\ge {S}_{6}\right) = (-0.19, -0.54)

    Max { {R}_{2}\le {R}_{1}, {R}_{3}, {R}_{4}, {R}_{5}, {R}_{6} } = [-0.33, -0.14], [-0.2, -0.06], min { {S}_{2}\ge {S}_{1}, {S}_{3}, {S}_{4}, {S}_{5}, {S}_{6} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{3}\le {R}_{1}\right) = [-0.27, -0.16], [-0.25, -0.1], {v}_{{\grave{U}} }\left({S}_{3}\ge {S}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{3}\le {R}_{2}\right) = [-0.16, -0.08], [-0.13, -0.03], {v}_{{\grave{U}} }\left({S}_{3}\ge {S}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{3}\le {R}_{4}\right) = [-0.25, -0.14], [-0.22, -0.04], {v}_{{\grave{U}} }\left({S}_{3}\ge {S}_{4}\right) = (-0.18, -0.50)

    {v}_{{\grave{U}} }\left({R}_{3}\le {R}_{5}\right) = [-0.4, -0.2], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{3}\ge {S}_{5}\right) = (-0.15, -0.44)

    {v}_{{\grave{U}} }\left({R}_{3}\le {R}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{3}\ge {S}_{6}\right) = (-0.8, -0.6)

    Max { {R}_{3}\le {R}_{1}, {R}_{2}, {R}_{4}, {R}_{5}, {R}_{6} } = [-0.16, -0.08], [-0.13, -0.03], min { {S}_{3}\ge {S}_{1}, {S}_{2}, {S}_{4}, {S}_{5}, {S}_{6} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{4}\le {R}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{4}\ge {S}_{1}\right) = (-0.18, -0.49)

    {v}_{{\grave{U}} }\left({R}_{4}\le {R}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{4}\ge {S}_{2}\right) = (-0.15, -0.43)

    {v}_{{\grave{U}} }\left({R}_{4}\le {R}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{4}\ge {S}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{4}\le {R}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{4}\ge {S}_{5}\right) = (-0.21, -0.59)

    {v}_{{\grave{U}} }\left({R}_{4}\le {R}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{4}\ge {S}_{6}\right) = (-0.8, -0.6)

    Max { {R}_{4}\le {R}_{1}, {R}_{2}, {R}_{3}, {R}_{5}, {R}_{6} } = [-0.5, -0.3], [-0.4, -0.1], min { {S}_{4}\ge {S}_{2}, {S}_{3}, {S}_{1}, {S}_{5}, {S}_{6} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{5}\le {R}_{1}\right) = [-0.22, -0.2], [-0.14, -0.05], {v}_{{\grave{U}} }\left({S}_{5}\ge {S}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{5}\le {R}_{2}\right) = [-0.5, -0.2], [-0.3, -0.09], {v}_{{\grave{U}} }\left({S}_{5}\ge {S}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{5}\le {R}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{5}\ge {S}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{5}\le {R}_{4}\right) = [-0.3, -0.16], [-0.25, -0.05], {v}_{{\grave{U}} }\left({S}_{5}\ge {S}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{5}\le {R}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({S}_{5}\ge {S}_{6}\right) = (-0.21, -0.59)

    Max { {R}_{5}\le {R}_{2}, {R}_{3}, {R}_{4}, {R}_{1}, {R}_{6} } = [-0.22, -0.16], [-0.14, -0.05], min { {S}_{5}\ge {S}_{2}, {S}_{3}, {S}_{4}, {S}_{1}, {S}_{6} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{6}\le {R}_{1}\right) = [-0.07, -0.04], [-0.06, -0.01], {v}_{{\grave{U}} }\left({S}_{6}\ge {S}_{1}\right) = (-0.18, -0.52)

    {v}_{{\grave{U}} }\left({R}_{6}\le {R}_{2}\right) = [-0.2, -0.1], [-0.2, -0.08], {v}_{{\grave{U}} }\left({S}_{6}\ge {S}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{6}\le {R}_{3}\right) = [-0.3, -0.2], [-0.4, -0.07], {v}_{{\grave{U}} }\left({S}_{6}\ge {S}_{3}\right) = (-0.20, -0.57)

    {v}_{{\grave{U}} }\left({R}_{6}\le {R}_{4}\right) = [-0.1, -0.06], [-0.1, -0.04], {v}_{{\grave{U}} }\left({S}_{6}\ge {S}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({R}_{6}\le {R}_{5}\right) = [-0.3, -0.24], [-0.3, -0.08], {v}_{{\grave{U}} }\left({S}_{6}\ge {S}_{5}\right) = (-0.8, -0.6)

    Max { {R}_{6}\le {R}_{2}, {R}_{3}, {R}_{4}, {R}_{5}, {R}_{1} } = [-0.07, -0.04], [-0.06, -0.01], min { {S}_{6}\ge {S}_{2}, {S}_{3}, {S}_{4}, {S}_{5}, {S}_{1} } = (-0.8, -0.6)

    Sub-criteria (operational factor):

    Step 1: The NCPF ( {O}_{K} ) extent value of kth sub-criterion (operational factor) is given by:

    \sum\limits_{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}{\left[\sum\limits_{k}^{n}\sum\limits_{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}\right]}^{-1}

    O (1) = (0.06, 0.12, 0.23), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    O (2) = (0.078, 0.143, 0.26), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    O (3) = (0.073, 0.12, 0.23), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    O (4) = (0.076, 0.149, 0.278), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    O (5) = (0.052, 0.091, 0.16), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    O (6) = (0.08, 0.153, 0.274), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    O (7) = (0.077, 0.143, 0.25), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    O (8) = (0.034, 0.063, 0.132), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    Step 2:

    {v}_{{\grave{U}} }\left({PO}_{1}\le {PO}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{1}\ge {OP}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{1}\le {PO}_{3}\right) = [-0.2, -0.05], [-0.11, -0.007], {v}_{{\grave{U}} }\left({OP}_{1}\ge {OP}_{3}\right) = (-0.16, -0.47)

    {v}_{{\grave{U}} }\left({PO}_{1}\le {PO}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{1}\ge {OP}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{1}\le {PO}_{5}\right) = [-0.2, -0.05], [-0.11, -0.007], {v}_{{\grave{U}} }\left({OP}_{1}\ge {OP}_{5}\right) = (-0.16, -0.48)

    {v}_{{\grave{U}} }\left({PO}_{1}\le {PO}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{1}\ge {OP}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{1}\le {PO}_{7}\right) = [-0.2, -0.05], [-0.11, -0.007], {v}_{{\grave{U}} }\left({OP}_{1}\ge {OP}_{7}\right) = (-0.16, -0.48)

    {v}_{{\grave{U}} }\left({PO}_{1}\le {PO}_{8}\right) = [-0.2, -0.05], [-0.11, -0.007], {v}_{{\grave{U}} }\left({OP}_{1}\ge {OP}_{8}\right) = (-0.16, -0.47)

    Max { {PO}_{1}\le {PO}_{2}, {PO}_{3}, {PO}_{4}, {PO}_{5}, {PO}_{6}, {PO}_{7}, {PO}_{8} } = [-0.2, -0.05], [-0.11, -0.007], min { {OP}_{1}\ge {OP}_{2}, {OP}_{3}, {OP}_{4}, {OP}_{5}, {OP}_{6}, {OP}_{7}, {OP}_{8} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{2}\le {PO}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{2}\ge {OP}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{2}\le {PO}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{2}\ge {OP}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{2}\le {PO}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{2}\ge {OP}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{2}\le {PO}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{2}\ge {OP}_{5}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{2}\le {PO}_{6}\right) = [-0.23, -0.06], [-0.12, -0.008], {v}_{{\grave{U}} }\left({OP}_{2}\ge {OP}_{6}\right) = (-0.17, -0.51)

    {v}_{{\grave{U}} }\left({PO}_{2}\le {PO}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{2}\ge {OP}_{7}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{2}\le {PO}_{8}\right) = [-0.22, -0.06], [-0.12, -0.008], {v}_{{\grave{U}} }\left({OP}_{2}\ge {OP}_{8}\right) = (-0.17, -0.51)

    Max { {PO}_{2}\le {PO}_{1}, {PO}_{3}, {PO}_{4}, {PO}_{5}, {PO}_{6}, {PO}_{7}, {PO}_{8} } = [-0.22, -0.06], [-0.12, -0.008], min { {OP}_{2}\ge {OP}_{1}, {OP}_{3}, {OP}_{4}, {OP}_{5}, {OP}_{6}, {OP}_{7}, {OP}_{8} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{3}\le {PO}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{3}\ge {OP}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{3}\le {PO}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{3}\ge {OP}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{3}\le {PO}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{3}\ge {OP}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{3}\le {PO}_{5}\right) = [-0.20, -0.05], [-0.11, -0.007], {v}_{{\grave{U}} }\left({OP}_{3}\ge {OP}_{5}\right) = (-0.16, -0.47)

    {v}_{{\grave{U}} }\left({PO}_{3}\le {PO}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{3}\ge {OP}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{3}\le {PO}_{7}\right) = [-0.21, -0.05], [-0.11, -0.007], {v}_{{\grave{U}} }\left({OP}_{3}\ge {OP}_{7}\right) = (-0.16, -0.48)

    {v}_{{\grave{U}} }\left({PO}_{3}\le {PO}_{8}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{3}\ge {OP}_{8}\right) = (-0.8, -0.6)

    Max { {PO}_{3}\le {PO}_{2}, {PO}_{1}, {PO}_{4}, {PO}_{5}, {PO}_{6}, {PO}_{7}, {PO}_{8} } = [-0.20, -0.05], [-0.11, -0.007], min { {OP}_{3}\ge {OP}_{2}, {OP}_{1}, {OP}_{4}, {OP}_{5}, {OP}_{6}, {OP}_{7}, {OP}_{8} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{4}\le {PO}_{1}\right) = [-0.20, -0.05], [-0.11, -0.008], {v}_{{\grave{U}} }\left({OP}_{4}\ge {OP}_{1}\right) = (-0.16, -0.48)

    {v}_{{\grave{U}} }\left({PO}_{4}\le {PO}_{2}\right) = [-0.20, -0.05], [-0.11, -0.007], {v}_{{\grave{U}} }\left({OP}_{4}\ge {OP}_{2}\right) = (-0.16, -0.47)

    {v}_{{\grave{U}} }\left({PO}_{4}\le {PO}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{4}\ge {OP}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{4}\le {PO}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{4}\ge {OP}_{5}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{4}\le {PO}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{4}\ge {OP}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{4}\le {PO}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{4}\ge {OP}_{7}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{4}\le {PO}_{8}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{4}\ge {OP}_{8}\right) = (-0.8, -0.6)

    Max { {PO}_{4}\le {PO}_{2}, {PO}_{3}, {PO}_{1}, {PO}_{5}, {PO}_{6}, {PO}_{7}, {PO}_{8} } = [-0.20, -0.05], [-0.11, -0.007], min { {OP}_{4}\ge {OP}_{2}, {OP}_{3}, {OP}_{1}, {OP}_{5}, {OP}_{6}, {OP}_{7}, {OP}_{8} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{5}\le {PO}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{5}\ge {OP}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{5}\le {PO}_{2}\right) = [-0.22, -0.06], [-0.12, -0.008], {v}_{{\grave{U}} }\left({OP}_{5}\ge {OP}_{2}\right) = (-0.17, -0.50)

    {v}_{{\grave{U}} }\left({PO}_{5}\le {PO}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{5}\ge {OP}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{5}\le {PO}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{5}\ge {OP}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{5}\le {PO}_{6}\right) = [-0.21, -0.05], [-0.11, -0.007], {v}_{{\grave{U}} }\left({OP}_{5}\ge {OP}_{6}\right) = (-0.17, -0.52)

    {v}_{{\grave{U}} }\left({PO}_{5}\le {PO}_{7}\right) = [-0.18, -0.05], [-0.10, -0.007], {v}_{{\grave{U}} }\left({OP}_{5}\ge {OP}_{7}\right) = (-0.18, -0.53)

    {v}_{{\grave{U}} }\left({PO}_{5}\le {PO}_{8}\right) = [-0.18, -0.04], [-0.09, -0.005], {v}_{{\grave{U}} }\left({OP}_{5}\ge {OP}_{8}\right) = (-0.17, -0.51)

    Max { {PO}_{5}\le {PO}_{2}, {PO}_{3}, {PO}_{4}, {PO}_{1}, {PO}_{6}, {PO}_{7}, {PO}_{8} } = [-0.18, -0.04], [-0.09, -0.005], min { {OP}_{5}\ge {OP}_{2}, {OP}_{3}, {OP}_{4}, {OP}_{1}, {OP}_{6}, {OP}_{7}, {OP}_{8} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{6}\le {PO}_{1}\right) = [-0.18, -0.05], [-0.11, -0.008], {v}_{{\grave{U}} }\left({OP}_{6}\ge {OP}_{1}\right) = (-0.18, -0.54)

    {v}_{{\grave{U}} }\left({PO}_{6}\le {PO}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{6}\ge {OP}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{6}\le {PO}_{3}\right) = [-0.18, -0.05], [-0.11, -0.008], {v}_{{\grave{U}} }\left({OP}_{6}\ge {OP}_{3}\right) = (-0.18, -0.54)

    {v}_{{\grave{U}} }\left({PO}_{6}\le {PO}_{4}\right) = [-0.18, -0.05], [-0.11, -0.007], {v}_{{\grave{U}} }\left({OP}_{6}\ge {OP}_{4}\right) = (-0.18, -0.53)

    {v}_{{\grave{U}} }\left({PO}_{6}\le {PO}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{6}\ge {OP}_{5}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{6}\le {PO}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{6}\ge {OP}_{7}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{6}\le {PO}_{8}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{6}\ge {OP}_{8}\right) = (-0.8, -0.6)

    Max { {PO}_{6}\le {PO}_{2}, {PO}_{3}, {PO}_{4}, {PO}_{5}, {PO}_{1}, {PO}_{7}, {PO}_{8} } = [-0.18, -0.05], [-0.11, -0.007], min { {OP}_{6}\ge {OP}_{2}, {OP}_{3}, {OP}_{4}, {OP}_{5}, {OP}_{1}, {OP}_{7}, {OP}_{8} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{7}\le {PO}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{7}\ge {OP}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{7}\le {PO}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{7}\ge {OP}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{7}\le {PO}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{7}\ge {OP}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{7}\le {PO}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{7}\ge {OP}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{7}\le {PO}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{7}\ge {OP}_{5}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{7}\le {PO}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{7}\ge {OP}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{7}\le {PO}_{8}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{7}\ge {OP}_{8}\right) = (-0.8, -0.6)

    Max {\{PO}_{7}\le {PO}_{2}, {PO}_{3}, {PO}_{4}, {PO}_{5}, {PO}_{6}, {PO}_{1}, {PO}_{8}\} = [-0.5, -0.3], [-0.4, -0.1], min { {OP}_{7}\ge {OP}_{2}, {OP}_{3}, {OP}_{4}, {OP}_{5}, {OP}_{6}, {OP}_{1}, {OP}_{8} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{8}\le {PO}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{8}\ge {OP}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{8}\le {PO}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{8}\ge {OP}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{8}\le {PO}_{3}\right) = [-0.23, -0.06], [-0.13, -0.008], {v}_{{\grave{U}} }\left({OP}_{8}\ge {OP}_{3}\right) = (-0.18, -0.54)

    {v}_{{\grave{U}} }\left({PO}_{8}\le {PO}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{8}\ge {OP}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{8}\le {PO}_{5}\right) = [-0.23, -0.06], [-0.13, -0.008], {v}_{{\grave{U}} }\left({OP}_{8}\ge {OP}_{5}\right) = (-0.18, -0.54)

    {v}_{{\grave{U}} }\left({PO}_{8}\le {PO}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{8}\ge {OP}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PO}_{8}\le {PO}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({OP}_{8}\ge {OP}_{7}\right) = (-0.8, -0.6)

    Max { {PO}_{8}\le {PO}_{2}, {PO}_{3}, {PO}_{4}, {PO}_{5}, {PO}_{6}, {PO}_{7}, {PO}_{1} } = [-0.23, -0.06], [-0.13, -0.008], min { {OP}_{8}\ge {OP}_{2}, {OP}_{3}, {OP}_{4}, {OP}_{5}, {OP}_{6}, {OP}_{7}, {OP}_{1} } = (-0.8, -0.6)

    Sub-criteria (economic/government factor)

    Step1: The NCPF ( {E}_{K} ) extent value of kth sub-criterion (economic/government factor) is given by,

    \sum\limits_{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}{\left[\sum\limits_{k}^{n}\sum\limits_{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}\right]}^{-1}

    E (1) = (0.21, 0.35, 0.34), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    E (2) = (0.18, 0.30, 0.29), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    E (3) = (0.48, 0.068, 0.061), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    E (4) = (0.15, 0.27, 0.26), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    Step 2:

    {v}_{{\grave{U}} }\left({EC}_{1}\le {EC}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({GO}_{1}\ge {GO}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({EC}_{1}\le {EC}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({GO}_{1}\ge {GO}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({EC}_{1}\le {EC}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({GO}_{1}\ge {GO}_{4}\right) = (-0.8, -0.6)

    Max { {EC}_{1}\le {EC}_{2}, {EC}_{3}, {EC}_{4} } = [-0.5, -0.3], [-0.4, -0.1], min { {GO}_{1}\ge {GO}_{2}, {GO}_{3}, {GO}_{4} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({EC}_{2}\le {EC}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({GO}_{2}\ge {GO}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({EC}_{2}\le {EC}_{3}\right) = [-0.9, -0.1], [-0.4, -0.006], {v}_{{\grave{U}} }\left({GO}_{2}\ge {GO}_{3}\right) = (-0.7, -0.5)

    {v}_{{\grave{U}} }\left({EC}_{2}\le {EC}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({GO}_{2}\ge {GO}_{4}\right) = (-0.8, -0.6)

    Max { {EC}_{2}\le {EC}_{1}, {EC}_{3}, {EC}_{4} } = [-0.5, -0.1], [-0.4, -0.006], min { {GO}_{2}\ge {GO}_{1}, {GO}_{3}, {GO}_{4} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({EC}_{3}\le {EC}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({GO}_{3}\ge {GO}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({EC}_{3}\le {EC}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({GO}_{3}\ge {GO}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({EC}_{3}\le {EC}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({GO}_{3}\ge {GO}_{4}\right) = (-1, -0.6)

    Max { {EC}_{3}\le {EC}_{2}, {EC}_{1}, {EC}_{4} } = [-0.5, -0.3], [-0.4, -0.1], min { {GO}_{3}\ge {GO}_{2}, {GO}_{1}, {GO}_{4} } = (-1, -0.6)

    {v}_{{\grave{U}} }\left({EC}_{4}\le {EC}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({GO}_{4}\ge {GO}_{1}\right) = (-1, -0.6)

    {v}_{{\grave{U}} }\left({EC}_{4}\le {EC}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({GO}_{4}\ge {GO}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({EC}_{4}\le {EC}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({GO}_{4}\ge {GO}_{3}\right) = (-1, -0.6)

    Max { {EC}_{4}\le {EC}_{2}, {EC}_{3}, {EC}_{1} } = [-0.5, -0.3], [-0.4, -0.1], min { {GO}_{4}\ge {GO}_{2}, {GO}_{3}, {GO}_{1} } = (-1, -0.6)

    Sub-criteria (performance related factor)

    Step 1: The NCPF ( {P}_{K} ) extent value of kth sub-criterion (performance related factor) is given by

    \sum\limits_{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}{\left[\sum\limits_{k}^{n}\sum\limits_{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}\right]}^{-1}

    P (1) = (0.089, 0.168, 0.30), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    P (2) = (0.080, 0.15, 0.293), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    P (3) = (0.093, 0.164, 0.296), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    P (4) = (0.06, 0.124, 0.23), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    P (5) = (0.098, 0.181, 0.32), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    P (6) = (0.04, 0.07, 0.13), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    P (7) = (0.07, 0.133, 0.24), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    Step 2:

    {v}_{{\grave{U}} }\left({PE}_{1}\le {PE}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{1}\ge {RE}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{1}\le {PE}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{1}\ge {RE}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{1}\le {PE}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{1}\ge {RE}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{1}\le {PE}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{1}\ge {RE}_{5}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{1}\le {PE}_{6}\right) = [-0.23, -0.06], [-0.13, -0.009], {v}_{{\grave{U}} }\left({RE}_{1}\ge {RE}_{6}\right) = (-0.19, -0.55)

    {v}_{{\grave{U}} }\left({PE}_{1}\le {PE}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{1}\ge {RE}_{7}\right) = (-0.8, -0.6)

    Max \{{PE}_{1}\le {PE}_{2}, {PE}_{3}, {PE}_{4}, {PE}_{5}, {PE}_{6}, {PE}_{7}\} = [-0.23, -0.06], [-0.13, -0.009], min {\{RE}_{1}\ge {RE}_{2}, {RE}_{3}, {RE}_{4}, {RE}_{5}, {RE}_{6}, {RE}_{7} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{2}\le {PE}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{2}\ge {RE}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{2}\le {PE}_{3}\right) = [-0.21, -0.06], [-0.12, -0.009], {v}_{{\grave{U}} }\left({RE}_{2}\ge {RE}_{3}\right) = (-0.17, -0.48)

    {v}_{{\grave{U}} }\left({PE}_{2}\le {PE}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{2}\ge {RE}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{2}\le {PE}_{5}\right) = [-0.21, -0.05], [-0.11, -0.008], {v}_{{\grave{U}} }\left({RE}_{2}\ge {RE}_{5}\right) = (-0.16, -0.48)

    {v}_{{\grave{U}} }\left({PE}_{2}\le {PE}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{2}\ge {RE}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{2}\le {PE}_{7}\right) = [-0.21, -0.06], [-0.12, -0.009], {v}_{{\grave{U}} }\left({RE}_{2}\ge {RE}_{7}\right) = (-0.17, -0.49)

    Max \{{PE}_{2}\le {PE}_{1}, {PE}_{3}, {PE}_{4}, {PE}_{5}, {PE}_{6}, {PE}_{7}\} = [-0.21, -0.05], [-0.11, -0.009], min { {RE}_{2}\ge {RE}_{1}, {RE}_{3}, {RE}_{4}, {RE}_{5}, {RE}_{6}, {RE}_{7} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{3}\le {PE}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{3}\ge {RE}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{3}\le {PE}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{3}\ge {RE}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{3}\le {PE}_{4}\right) = [-0.23, -0.06], [-0.13, -0.009], {v}_{{\grave{U}} }\left({RE}_{3}\ge {RE}_{4}\right) = (-0.18, -0.53)

    {v}_{{\grave{U}} }\left({PE}_{3}\le {PE}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{3}\ge {RE}_{5}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{3}\le {PE}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{3}\ge {RE}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{3}\le {PE}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{3}\ge {RE}_{7}\right) = (-0.8, -0.6)

    Max {\{PE}_{3}\le {PE}_{2}, {PE}_{1}, {PE}_{4}, {PE}_{5}, {PE}_{6}, {PE}_{7} } = [-0.23, -0.06], [-0.13, -0.009], min { {RE}_{3}\ge {RE}_{2}, {RE}_{1}, {RE}_{4}, {RE}_{5}, {RE}_{6}, {RE}_{7} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{4}\le {PE}_{1}\right) = [-0.22, -0.06], [-0.12, -0.009], {v}_{{\grave{U}} }\left({RE}_{4}\ge {RE}_{1}\right) = (-0.18, -0.54)

    {v}_{{\grave{U}} }\left({PE}_{4}\le {PE}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{4}\ge {RE}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{4}\le {PE}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{4}\ge {RE}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{4}\le {PE}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{4}\ge {RE}_{5}\right) = (-0.17, -0.51)

    {v}_{{\grave{U}} }\left({PE}_{4}\le {PE}_{6}\right) = [-0.20, -0.05], [-0.11, -0.009], {v}_{{\grave{U}} }\left({RE}_{4}\ge {RE}_{6}\right) = (-0.17, -0.50)

    {v}_{{\grave{U}} }\left({PE}_{4}\le {PE}_{7}\right) = [-0.21, -0.05], [-0.11, -0.008], {v}_{{\grave{U}} }\left({RE}_{4}\ge {RE}_{7}\right) = (-0.17, -0.51)

    Max {\{PE}_{4}\le {PE}_{2}, {PE}_{3}, {PE}_{1}, {PE}_{5}, {PE}_{6}, {PE}_{7}\} = [-0.21, -0.05], [-0.11, -0.008], min { {RE}_{4}\ge {RE}_{2}, {RE}_{3}, {RE}_{1}, {RE}_{5}, {RE}_{6}, {RE}_{7} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{5}\le {PE}_{1}\right) = [-0.19, -0.05], [-0.11, -0.008], {v}_{{\grave{U}} }\left({RE}_{5}\ge {RE}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{5}\le {PE}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{5}\ge {RE}_{2}\right) = (-0.18, -0.52)

    {v}_{{\grave{U}} }\left({PE}_{5}\le {PE}_{3}\right) = [-0.19, -0.05], [-0.11, -0.009], {v}_{{\grave{U}} }\left({RE}_{5}\ge {RE}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{5}\le {PE}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{5}\ge {RE}_{4}\right) = (-0.16, -0.49)

    {v}_{{\grave{U}} }\left({PE}_{5}\le {PE}_{6}\right) = [-0.22, -0.05], [-0.12, -0.007], {v}_{{\grave{U}} }\left({RE}_{5}\ge {RE}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{5}\le {PE}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{5}\ge {RE}_{7}\right) = (-0.8, -0.6)

    Max \{{PE}_{5}\le {PE}_{2}, {PE}_{3}, {PE}_{4}, {PE}_{1}, {PE}_{6}, {PE}_{7}\} = [-0.19, -0.05], [-0.11, -0.007], min { {RE}_{5}\ge {RE}_{2}, {RE}_{3}, {RE}_{4}, {RE}_{1}, {RE}_{6}, {RE}_{7} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{6}\le {PE}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{6}\ge {RE}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{6}\le {PE}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{6}\ge {RE}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{6}\le {PE}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{6}\ge {RE}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{6}\le {PE}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{6}\ge {RE}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{6}\le {PE}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{6}\ge {RE}_{5}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{6}\le {PE}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{6}\ge {RE}_{7}\right) = (-0.17, -0.51)

    Max \{{PE}_{6}\le {PE}_{2}, {PE}_{3}, {PE}_{4}, {PE}_{5}, {PE}_{1}, {PE}_{7}\} = [-0.5, -0.3], [-0.4, -0.1], min { {RE}_{6}\ge {RE}_{2}, {RE}_{3}, {RE}_{4}, {RE}_{5}, {RE}_{1}, {RE}_{7} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{7}\le {PE}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({RE}_{7}\ge {RE}_{1}\right) = (-0.17, -0.50)

    {v}_{{\grave{U}} }\left({PE}_{7}\le {PE}_{2}\right) = [-0.12, -0.04], [-0.07, -0.008], {v}_{{\grave{U}} }\left({RE}_{7}\ge {RE}_{2}\right) = (-0.17, -0.51)

    {v}_{{\grave{U}} }\left({PE}_{7}\le {PE}_{3}\right) = [-0.13, -0.04], [-0.08, -0.007], {v}_{{\grave{U}} }\left({RE}_{7}\ge {RE}_{3}\right) = (-0.16, -0.48)

    {v}_{{\grave{U}} }\left({PE}_{7}\le {PE}_{4}\right) = [-0.11, -0.03], [-0.06, -0.007], {v}_{{\grave{U}} }\left({RE}_{7}\ge {RE}_{4}\right) = (-0.18, -0.52)

    {v}_{{\grave{U}} }\left({PE}_{7}\le {PE}_{5}\right) = [-0.17, -0.05], [-0.10, -0.007], {v}_{{\grave{U}} }\left({RE}_{7}\ge {RE}_{5}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({PE}_{7}\le {PE}_{6}\right) = [-0.10, -0.03], [-0.06, -0.008], {v}_{{\grave{U}} }\left({RE}_{7}\ge {RE}_{6}\right) = (-0.16, -0.48)

    Max \{{PE}_{7}\le {PE}_{2}, {PE}_{3}, {PE}_{4}, {PE}_{5}, {PE}_{6}, {PE}_{1}\} = [-0.10, -0.03], [-0.06, -0.007], min \{{RE}_{7}\ge {RE}_{2}, {RE}_{3}, {RE}_{4}, {RE}_{5}, {RE}_{6}, {RE}_{1} } = (-0.8, -0.6)

    Sub-criteria (financial factor)

    Step 1: The NCPF ( {F}_{K} ) extent value of kth sub-criterion (financial factor) is given by,

    \sum\limits_{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}{\left[\sum\limits_{k}^{n}\sum\limits_{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}\right]}^{-1}

    F (1) = (0.067, 0.122, 0.225), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    F (2) = (0.072, 0.128, 0.234), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    F (3) = (0.051, 0.090, 0.166), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    F (4) = (0.064, 0.112, 0.204), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    F (5) = (0.043, 0.076, 0.141), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    F (6) = (0.055, 0.095, 0.169), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    F (7) = (0.039, 0.065, 0.115), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    F (8) = (0.083, 0.153, 0.279), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    F (9) = (0.034, 0.065, 0.128), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    F (10) = (0.051, 0.090, 0.165), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    Step 2:

    {v}_{{\grave{U}} }\left({IF}_{1}\le {IF}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{1}\ge {FI}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{1}\le {IF}_{3}\right) = [-0.21, -0.05], [-0.11, -0.007], {v}_{{\grave{U}} }\left({FI}_{1}\ge {FI}_{3}\right) = (-0.16, -0.49)

    {v}_{{\grave{U}} }\left({IF}_{1}\le {IF}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{1}\ge {FI}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{1}\le {IF}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{1}\ge {FI}_{5}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{1}\le {IF}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{1}\ge {FI}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{1}\le {IF}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{1}\ge {FI}_{7}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{1}\le {IF}_{8}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{1}\ge {FI}_{8}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{1}\le {IF}_{9}\right) = [-0.20, -0.05], [-0.11, -0.008], {v}_{{\grave{U}} }\left({FI}_{1}\ge {FI}_{9}\right) = (-0.17, -0.50)

    {v}_{{\grave{U}} }\left({IF}_{1}\le {IF}_{10}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{1}\ge {FI}_{10}\right) = (-0.8, -0.6)

    Max { {IF}_{1}\le {IF}_{2}, {IF}_{3}, {IF}_{4}, {IF}_{5}, {IF}_{6}, {IF}_{7}, {IF}_{8}, {IF}_{9}, {IF}_{10} } = [-0.20, -0.05], [-0.11, -0.007], min { {FI}_{1}\ge {FI}_{2}, {FI}_{3}, {FI}_{4}, {FI}_{5}, {FI}_{6}, {FI}_{7}, {FI}_{8}, {FI}_{9}, {FI}_{10} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{2}\le {IF}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{2}\ge {FI}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{2}\le {IF}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{2}\ge {FI}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{2}\le {IF}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{2}\ge {FI}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{2}\le {IF}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{2}\ge {FI}_{5}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{2}\le {IF}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{2}\ge {FI}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{2}\le {IF}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{2}\ge {FI}_{7}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{2}\le {IF}_{8}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{2}\ge {FI}_{8}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{2}\le {IF}_{9}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{2}\ge {FI}_{9}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{2}\le {IF}_{10}\right) = [-0.21, -0.05], [-0.11, -0.008], {v}_{{\grave{U}} }\left({FI}_{2}\ge {FI}_{10}\right) = (-0.17.-0.51)

    Max { {IF}_{2}\le {IF}_{1}, {IF}_{3}, {IF}_{4}, {IF}_{5}, {IF}_{6}, {IF}_{7}, {IF}_{8}, {IF}_{9}, {IF}_{10} } = [-0.21, -0.05], [-0.11, -0.008], min { {FI}_{2}\ge {FI}_{1}, {FI}_{3}, {FI}_{4}, {FI}_{5}, {FI}_{6}, {FI}_{7}, {FI}_{8}, {FI}_{9}, {FI}_{10} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{3}\le {IF}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{3}\ge {FI}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{3}\le {IF}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{3}\ge {FI}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{3}\le {IF}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{3}\ge {FI}_{4}\right) = (-0.16, -0.48)

    {v}_{{\grave{U}} }\left({IF}_{3}\le {IF}_{5}\right) = [-0.19, -0.05], [-0.10, -0.006], {v}_{{\grave{U}} }\left({FI}_{3}\ge {FI}_{5}\right) = (-0.16, -0.49)

    {v}_{{\grave{U}} }\left({IF}_{3}\le {IF}_{6}\right) = [-0.18, -0.05], [-0.10, -0.006], {v}_{{\grave{U}} }\left({FI}_{3}\ge {FI}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{3}\le {IF}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{3}\ge {FI}_{7}\right) = (-0.15, -0.47)

    {v}_{{\grave{U}} }\left({IF}_{3}\le {IF}_{8}\right) = [-0.19, -0.05], [-0.10, -0.006], {v}_{{\grave{U}} }\left({FI}_{3}\ge {FI}_{8}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{3}\le {IF}_{9}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{3}\ge {FI}_{9}\right) = (-0.15, -0.46)

    {v}_{{\grave{U}} }\left({IF}_{3}\le {IF}_{10}\right) = [-0.20, -0.05], [-0.10, -0.005], {v}_{{\grave{U}} }\left({FI}_{3}\ge {FI}_{10}\right) = (-0.8, -0.6)

    Max { {IF}_{3}\le {IF}_{2}, {IF}_{1}, {IF}_{4}, {IF}_{5}, {IF}_{6}, {IF}_{7}, {IF}_{8}, {IF}_{9}, {IF}_{10} } = [-0.18, -0.05], [-0.10, -0.005], min { {FI}_{3}\ge {FI}_{2}, {FI}_{1}, {FI}_{4}, {FI}_{5}, {FI}_{6}, {FI}_{7}, {FI}_{8}, {FI}_{9}, {FI}_{10} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{4}\le {IF}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{4}\ge {FI}_{1}\right) = (-0.17, -0.50)

    {v}_{{\grave{U}} }\left({IF}_{4}\le {IF}_{2}\right) = [-0.17, -0.05], [-0.09, -0.008], {v}_{{\grave{U}} }\left({FI}_{4}\ge {FI}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{4}\le {IF}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{4}\ge {FI}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{4}\le {IF}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{4}\ge {FI}_{5}\right) = (-0.16, -0.49)

    {v}_{{\grave{U}} }\left({IF}_{4}\le {IF}_{6}\right) = [-0.21, -0.05], [-0.11, -0.006], {v}_{{\grave{U}} }\left({FI}_{4}\ge {FI}_{6}\right) = (-0.16, -0.49)

    {v}_{{\grave{U}} }\left({IF}_{4}\le {IF}_{7}\right) = [-0.20, -0.05], [-0.11, -0.007], {v}_{{\grave{U}} }\left({FI}_{4}\ge {FI}_{7}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{4}\le {IF}_{8}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{4}\ge {FI}_{8}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{4}\le {IF}_{9}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{4}\ge {FI}_{9}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{4}\le {IF}_{10}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{4}\ge {FI}_{10}\right) = (-0.8, -0.6)

    Max { {IF}_{4}\le {IF}_{2}, {IF}_{3}, {IF}_{1}, {IF}_{5}, {IF}_{6}, {IF}_{7}, {IF}_{8}, {IF}_{9}, {IF}_{10} } = [-0.17, -0.05], [-0.09, -0.006], min { {FI}_{4}\ge {FI}_{2}, {FI}_{3}, {FI}_{1}, {FI}_{5}, {FI}_{6}, {FI}_{7}, {FI}_{8}, {FI}_{9}, {FI}_{10} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{5}\le {IF}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{5}\ge {FI}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{5}\le {IF}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{5}\ge {FI}_{2}\right) = (-0.17, -0.51)

    {v}_{{\grave{U}} }\left({IF}_{5}\le {IF}_{3}\right) = [-0.19, -0.05], [-0.11, -0.008], {v}_{{\grave{U}} }\left({FI}_{5}\ge {FI}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{5}\le {IF}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{5}\ge {FI}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{5}\le {IF}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{5}\ge {FI}_{6}\right) = (-0.16, -0.48)

    {v}_{{\grave{U}} }\left({IF}_{5}\le {IF}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{5}\ge {FI}_{7}\right) = (-0.16, -0.48)

    {v}_{{\grave{U}} }\left({IF}_{5}\le {IF}_{8}\right) = [-0.16, -0.04], [-0.09, -0.006], {v}_{{\grave{U}} }\left({FI}_{5}\ge {FI}_{8}\right) = (-0.15, -0.45)

    {v}_{{\grave{U}} }\left({IF}_{5}\le {IF}_{9}\right) = [-0.16, -0.04], [-0.09, -0.006], {v}_{{\grave{U}} }\left({FI}_{5}\ge {FI}_{9}\right) = (-0.15, -0.47)

    {v}_{{\grave{U}} }\left({IF}_{5}\le {IF}_{10}\right) = [-0.19, -0.04], [-0.10, -0.005], {v}_{{\grave{U}} }\left({FI}_{5}\ge {FI}_{10}\right) = (-0.8, -0.6)

    Max { {IF}_{5}\le {IF}_{2}, {IF}_{3}, {IF}_{4}, {IF}_{1}, {IF}_{6}, {IF}_{7}, {IF}_{8}, {IF}_{9}, {IF}_{10} } = [-0.16, -0.04], [-0.09, -0.005], min { {FI}_{5}\ge {FI}_{2}, {FI}_{3}, {FI}_{4}, {FI}_{1}, {FI}_{6}, {FI}_{7}, {FI}_{8}, {FI}_{9}, {FI}_{10} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{6}\le {IF}_{1}\right) = [-0.17, -0.04], [-0.09, -0.005], {v}_{{\grave{U}} }\left({FI}_{6}\ge {FI}_{1}\right) = (-0.15, -0.46)

    {v}_{{\grave{U}} }\left({IF}_{6}\le {IF}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{6}\ge {FI}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{6}\le {IF}_{3}\right) = [-0.18, -0.04], [-0.10, -0.005], {v}_{{\grave{U}} }\left({FI}_{6}\ge {FI}_{3}\right) = (-0.17, -0.50)

    {v}_{{\grave{U}} }\left({IF}_{6}\le {IF}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{6}\ge {FI}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{6}\le {IF}_{5}\right) = [-0.14, -0.04], [-0.08, -0.007], {v}_{{\grave{U}} }\left({FI}_{6}\ge {FI}_{5}\right) = (-0.4, -0.3)

    {v}_{{\grave{U}} }\left({IF}_{6}\le {IF}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{6}\ge {FI}_{7}\right) = (-0.17, -0.51)

    {v}_{{\grave{U}} }\left({IF}_{6}\le {IF}_{8}\right) = [-0.19, -0.04], [-0.10, -0.005], {v}_{{\grave{U}} }\left({FI}_{6}\ge {FI}_{8}\right) = (-0.17, -0.51)

    {v}_{{\grave{U}} }\left({IF}_{6}\le {IF}_{9}\right) = [-0.19, -0.05], [-0.11, -0.006], {v}_{{\grave{U}} }\left({FI}_{6}\ge {FI}_{9}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{6}\le {IF}_{10}\right) = [-0.19, -0.05], [-0.10, -0.006], {v}_{{\grave{U}} }\left({FI}_{6}\ge {FI}_{10}\right) = (-0.16, -0.50)

    Max { {IF}_{6}\le {IF}_{2}, {IF}_{3}, {IF}_{4}, {IF}_{5}, {IF}_{1}, {IF}_{7}, {IF}_{8}, {IF}_{9}, {IF}_{10} } = [-0.14, -0.04], [-0.08, -0.005], min { {FI}_{6}\ge {FI}_{2}, {FI}_{3}, {FI}_{4}, {FI}_{5}, {FI}_{1}, {FI}_{7}, {FI}_{8}, {FI}_{9}, {FI}_{10} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{7}\le {IF}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{7}\ge {FI}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{7}\le {IF}_{2}\right) = [-0.20, -0.05], [-0.11, -0.006], {v}_{{\grave{U}} }\left({FI}_{7}\ge {FI}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{7}\le {IF}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{7}\ge {FI}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{7}\le {IF}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{7}\ge {FI}_{4}\right) = (-0.18, -0.53)

    {v}_{{\grave{U}} }\left({IF}_{7}\le {IF}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{7}\ge {FI}_{5}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{7}\le {IF}_{6}\right) = [-0.18, -0.05], [-0.10, -0.008], {v}_{{\grave{U}} }\left({FI}_{7}\ge {FI}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{7}\le {IF}_{8}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{7}\ge {FI}_{8}\right) = (-0.17, -0.51)

    {v}_{{\grave{U}} }\left({IF}_{7}\le {IF}_{9}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{7}\ge {FI}_{9}\right) = (-0.17, -0.51)

    {v}_{{\grave{U}} }\left({IF}_{7}\le {IF}_{10}\right) = [-0.14, -0.04], [-0.08, -0.006], {v}_{{\grave{U}} }\left({FI}_{7}\ge {FI}_{10}\right) = (-0.15, -0.49)

    Max { {IF}_{7}\le {IF}_{2}, {IF}_{3}, {IF}_{4}, {IF}_{5}, {IF}_{6}, {IF}_{1}, {IF}_{8}, {IF}_{9}, {IF}_{10} } = [-0.14, -0.04], [-0.10, -0.006], min { {FI}_{7}\ge {FI}_{2}, {FI}_{3}, {FI}_{4}, {FI}_{5}, {FI}_{6}, {FI}_{1}, {FI}_{8}, {FI}_{9}, {FI}_{10} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{8}\le {IF}_{1}\right) = [-0.13, -0.04], [-0.07, -0.006], {v}_{{\grave{U}} }\left({FI}_{8}\ge {FI}_{1}\right) = (-0.16, -0.50)

    {v}_{{\grave{U}} }\left({IF}_{8}\le {IF}_{2}\right) = [-0.17, -0.04], [-0.09, -0.005], {v}_{{\grave{U}} }\left({FI}_{8}\ge {FI}_{2}\right) = (-0.15, -0.48)

    {v}_{{\grave{U}} }\left({IF}_{8}\le {IF}_{3}\right) = [-0.15, -0.04], [-0.08, -0.005], {v}_{{\grave{U}} }\left({FI}_{8}\ge {FI}_{3}\right) = (-0.16, -0.49)

    {v}_{{\grave{U}} }\left({IF}_{8}\le {IF}_{4}\right) = [-0.19, -0.04], [-0.10, -0.004], {v}_{{\grave{U}} }\left({FI}_{8}\ge {FI}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{8}\le {IF}_{5}\right) = [-0.17, -0.04], [-0.09, -0.005], {v}_{{\grave{U}} }\left({FI}_{8}\ge {FI}_{5}\right) = (-0.18, -0.53)

    {v}_{{\grave{U}} }\left({IF}_{8}\le {IF}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{8}\ge {FI}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{8}\le {IF}_{7}\right) = [-0.11, -0.03], [-0.06, -0.007], {v}_{{\grave{U}} }\left({FI}_{8}\ge {FI}_{7}\right) = (-0.6, -0.4)

    {v}_{{\grave{U}} }\left({IF}_{8}\le {IF}_{9}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{8}\ge {FI}_{9}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{8}\le {IF}_{10}\right) = [-0.17, -0.04], [-0.09, -0.005], {v}_{{\grave{U}} }\left({FI}_{8}\ge {FI}_{10}\right) = (-0.8, -0.6)

    Max { {IF}_{8}\le {IF}_{2}, {IF}_{3}, {IF}_{4}, {IF}_{5}, {IF}_{6}, {IF}_{7}, {IF}_{1}, {IF}_{9}, {IF}_{10} } = [-0.11, -0.03], [-0.06, -0.004], min { {FI}_{8}\ge {FI}_{2}, {FI}_{3}, {FI}_{4}, {FI}_{5}, {FI}_{6}, {FI}_{7}, {FI}_{1}, {FI}_{9}, {FI}_{10} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{9}\le {IF}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{9}\ge {FI}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{9}\le {IF}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{9}\ge {FI}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{9}\le {IF}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{9}\ge {FI}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{9}\le {IF}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{9}\ge {FI}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{9}\le {IF}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{9}\ge {FI}_{5}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{9}\le {IF}_{6}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{9}\ge {FI}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{9}\le {IF}_{7}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{9}\ge {FI}_{7}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{9}\le {IF}_{8}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{9}\ge {FI}_{8}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{9}\le {IF}_{10}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{9}\ge {FI}_{10}\right) = (-0.15, -0.44)

    Max { {IF}_{9}\le {IF}_{2}, {IF}_{3}, {IF}_{4}, {IF}_{5}, {IF}_{6}, {IF}_{7}, {IF}_{8}, {IF}_{1}, {IF}_{10} } = [-0.5, -0.3], [-0.4, -0.1], min { {FI}_{9}\ge {FI}_{2}, {FI}_{3}, {FI}_{4}, {FI}_{5}, {FI}_{6}, {FI}_{7}, {FI}_{8}, {FI}_{1}, {FI}_{10} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{10}\le {IF}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{10}\ge {FI}_{1}\right) = (-0.15, -0.45)

    {v}_{{\grave{U}} }\left({IF}_{10}\le {IF}_{2}\right) = [-0.14, -0.04], [-0.08, -0.006], {v}_{{\grave{U}} }\left({FI}_{10}\ge {FI}_{2}\right) = (-0.14, -0.42)

    {v}_{{\grave{U}} }\left({IF}_{10}\le {IF}_{3}\right) = [-0.13, -0.04], [-0.07, -0.06], {v}_{{\grave{U}} }\left({FI}_{10}\ge {FI}_{3}\right) = (-0.14, -0.43)

    {v}_{{\grave{U}} }\left({IF}_{10}\le {IF}_{4}\right) = [-0.17, -0.04], [-0.09, -0.005], {v}_{{\grave{U}} }\left({FI}_{10}\ge {FI}_{4}\right) = (-0.13, -0.41)

    {v}_{{\grave{U}} }\left({IF}_{10}\le {IF}_{5}\right) = [-0.15, -0.04], [-0.08, -0.005], {v}_{{\grave{U}} }\left({FI}_{10}\ge {FI}_{5}\right) = (-0.14, -0.42)

    {v}_{{\grave{U}} }\left({IF}_{10}\le {IF}_{6}\right) = [-0.18, -0.04], [-0.09.-0.004], {v}_{{\grave{U}} }\left({FI}_{10}\ge {FI}_{6}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{10}\le {IF}_{7}\right) = [-0.16, -0.04], [-0.09, -0.005], {v}_{{\grave{U}} }\left({FI}_{10}\ge {FI}_{7}\right) = (-0.16, -0.46)

    {v}_{{\grave{U}} }\left({IF}_{10}\le {IF}_{8}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({FI}_{10}\ge {FI}_{8}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({IF}_{10}\le {IF}_{9}\right) = [-0.12, -0.04], [-0.07, -0.007], {v}_{{\grave{U}} }\left({FI}_{10}\ge {FI}_{9}\right) = (-0.6, -0.4)

    Max { {IF}_{10}\le {IF}_{2}, {IF}_{3}, {IF}_{4}, {IF}_{5}, {IF}_{6}, {IF}_{7}, {IF}_{8}, {IF}_{9}, {IF}_{1} } = [-0.12, -0.04], [-0.07, -0.004], min { {FI}_{10}\ge {FI}_{2}, {FI}_{3}, {FI}_{4}, {FI}_{5}, {FI}_{6}, {FI}_{7}, {FI}_{8}, {FI}_{9}, {FI}_{1} } = (-0.8, -0.6)

    Sub-criteria (market related factor)

    Step 1: The NCPF ( {M}_{K} ) extent value of kth sub-criterion (market related factor) is given by,

    \sum\limits_{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}{\left[\sum\limits_{k}^{n}\sum\limits_{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}\right]}^{-1}

    M (1) = (0.129, 0.229, 0.397), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    M (2) = (0.102, 0.175, 0.300), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    M (3) = (0.176, 0.316, 0.56), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    M (4) = (0.041, 0.078, 0.143), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    M (5) = (0.12, 0.20, 0.347), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    Step 2:

    {v}_{{\grave{U}} }\left({RM}_{1}\le {RM}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({MR}_{1}\ge {MR}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({RM}_{1}\le {RM}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({MR}_{1}\ge {MR}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({RM}_{1}\le {RM}_{4}\right) = [-0.23, -0.07], [-0.14, -0.01], {v}_{{\grave{U}} }\left({MR}_{1}\ge {MR}_{4}\right) = (-0.24, -0.66)

    {v}_{{\grave{U}} }\left({RM}_{1}\le {RM}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({MR}_{1}\ge {MR}_{5}\right) = (-0.8, -0.6)

    Max \{{RM}_{1}\le {RM}_{2}, {RM}_{3}, {RM}_{4}, {RM}_{5}\} = [-0.23, -0.07], [-0.14, -0.01], min { {MR}_{1}\ge {MR}_{2}, {MR}_{3}, {MR}_{4}, {RM}_{5} } = (-0.8, -0.66)

    {v}_{{\grave{U}} }\left({RM}_{2}\le {RM}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({MR}_{2}\ge {MR}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({RM}_{2}\le {RM}_{3}\right) = [-0.22, -0.06], [-0.12, -0.01], {v}_{{\grave{U}} }\left({MR}_{2}\ge {MR}_{3}\right) = (-0.21, -0.61)

    {v}_{{\grave{U}} }\left({RM}_{2}\le {RM}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({MR}_{2}\ge {MR}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({RM}_{2}\le {RM}_{5}\right) = [-0.19, -0.06], [-0.11, -0.01], {v}_{{\grave{U}} }\left({MR}_{2}\ge {MR}_{5}\right) = (-0.25, -0.67)

    Max \{{RM}_{2}\le {RM}_{1}, {RM}_{3}, {RM}_{4}, {RM}_{5}\} = [-0.19, -0.06], [-0.11, -0.01], min { {MR}_{2}\ge {MR}_{1}, {MR}_{3}, {MR}_{4}, {RM}_{5} } = (-0.8, -0.67)

    {v}_{{\grave{U}} }\left({RM}_{3}\le {RM}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({MR}_{3}\ge {MR}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({RM}_{3}\le {RM}_{2}\right) = [-0.22, -0.06], [-0.12, -0.009], {v}_{{\grave{U}} }\left({MR}_{3}\ge {MR}_{2}\right) = (-0.20, -0.59)

    {v}_{{\grave{U}} }\left({RM}_{3}\le {RM}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({MR}_{3}\ge {MR}_{4}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({RM}_{3}\le {RM}_{5}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({MR}_{3}\ge {MR}_{5}\right) = (-0.8, -0.6)

    Max {\{RM}_{3}\le {RM}_{2}, {RM}_{1}, {RM}_{4}, {RM}_{5}\} = [-0.22, -0.06], [-0.12, -0.009], min { {MR}_{3}\ge {MR}_{2}, {MR}_{1}, {MR}_{4}, {RM}_{5} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({RM}_{4}\le {RM}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({MR}_{4}\ge {MR}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({RM}_{4}\le {RM}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({MR}_{4}\ge {MR}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({RM}_{4}\le {RM}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({MR}_{4}\ge {MR}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({RM}_{4}\le {RM}_{5}\right) = [-0.07, -0.03], [-0.05, -0.01], {v}_{{\grave{U}} }\left({MR}_{4}\ge {MR}_{5}\right) = (-0.20, -0.56)

    Max {\{RM}_{4}\le {RM}_{2}, {RM}_{3}, {RM}_{1}, {RM}_{5}\} = [-0.07, -0.03], [-0.05, -0.01], min { {MR}_{4}\ge {MR}_{2}, {MR}_{3}, {MR}_{1}, {RM}_{5} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({RM}_{5}\le {RM}_{1}\right) = [-0.11, -0.03], [-0.06, -0.007], {v}_{{\grave{U}} }\left({MR}_{5}\ge {MR}_{1}\right) = (-0.18, -0.52)

    {v}_{{\grave{U}} }\left({RM}_{5}\le {RM}_{2}\right) = [-0.05, -0.03], [-0.06, -0.007], {v}_{{\grave{U}} }\left({MR}_{5}\ge {MR}_{2}\right) = (-1, -0.52)

    {v}_{{\grave{U}} }\left({RM}_{5}\le {RM}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({MR}_{5}\ge {MR}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({RM}_{5}\le {RM}_{4}\right) = [-0.08, -0.03], [-0.05, -0.008], {v}_{{\grave{U}} }\left({MR}_{5}\ge {MR}_{4}\right) = (-0.19, -0.54)

    Max \left\{{RM}_{5}\le {RM}_{2}, {RM}_{3}, {RM}_{4}, {RM}_{1}\right\} = [-0.05, -0.03], [-0.05, -0.007], min { {MR}_{5}\ge {MR}_{2}, {MR}_{3}, {MR}_{4}, {RM}_{1} } = (-1, -0.6)

    Sub-criteria (external factor)

    Step1: The NCPF ( {E}_{K} ) extent value of kth sub-criterion (external factor) is given by,

    \sum\limits_{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}{\left[\sum\limits_{k}^{n}\sum\limits_{l}^{m}{\boldsymbol{M}}_{{h}_{k}}^{\boldsymbol{l}}\right]}^{-1}

    E (1) = (0.103, 0.17, 0.28), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    E (2) = (0.186, 0.312, 0.515), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    E(3) = (0.185, 0.309, 0.507), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    E(4) = (0.132, 0.207, 0.33), [-0.5, -0.3], [-0.4, -0.1], (-0.8, -0.6)

    Step 2:

    {v}_{{\grave{U}} }\left({XE}_{1}\le {XE}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({EX}_{1}\ge {EX}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({XE}_{1}\le {XE}_{3}\right) = [-0.6, -0.16], [-0.10, -0.01], {v}_{{\grave{U}} }\left({EX}_{1}\ge {EX}_{3}\right) = (-0.2, -0.7)

    {v}_{{\grave{U}} }\left({XE}_{1}\le {XE}_{4}\right) = [-0.6, -0.16], [-0.10, -0.01], {v}_{{\grave{U}} }\left({XE}_{1}\ge {EX}_{4}\right) = (-0.2, -0.7)

    Max { {XE}_{1}\le {XE}_{2}, {XE}_{3}, {XE}_{4}\} = [-0.5, -0.16], [-0.10, -0.01], min { {EX}_{1}\ge {EX}_{2}, {EX}_{3}, {EX}_{4} } = (-0.8, -0.7)

    {v}_{{\grave{U}} }\left({XE}_{2}\le {XE}_{1}\right) = [-0.20, -0.05], [-0.11, -0.008], {v}_{{\grave{U}} }\left({EX}_{2}\ge {EX}_{1}\right) = (-0.2, -0.6)

    {v}_{{\grave{U}} }\left({XE}_{2}\le {XE}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({EX}_{2}\ge {EX}_{3}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({XE}_{2}\le {XE}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({EX}_{2}\ge {EX}_{4}\right) = (-0.8, -0.6)

    Max { {XE}_{2}\le {XE}_{1}, {XE}_{3}, {XE}_{4}\} = [-0.20, -0.05], [-0.11, -0.008], min { {EX}_{2}\ge {EX}_{1}, {EX}_{3}, {EX}_{4} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({XE}_{3}\le {XE}_{1}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({EX}_{3}\ge {EX}_{1}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({XE}_{3}\le {XE}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({EX}_{3}\ge {EX}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({XE}_{3}\le {XE}_{4}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({EX}_{3}\ge {EX}_{4}\right) = (-0.8, -0.6)

    Max { {XE}_{3}\le {XE}_{1}, {XE}_{2}, {XE}_{4}\} = [-0.5, -0.3], [-0.4, -0.1], min { {EX}_{3}\ge {EX}_{2}, {EX}_{1}, {EX}_{4} } = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({XE}_{4}\le {XE}_{1}\right) = [-0.2, -0.08], [-0.15, -0.01], {v}_{{\grave{U}} }\left({EX}_{4}\ge {EX}_{1}\right) = (-0.2, -0.7)

    {v}_{{\grave{U}} }\left({XE}_{4}\le {XE}_{2}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({EX}_{4}\ge {EX}_{2}\right) = (-0.8, -0.6)

    {v}_{{\grave{U}} }\left({XE}_{4}\le {XE}_{3}\right) = [-0.5, -0.3], [-0.4, -0.1], {v}_{{\grave{U}} }\left({EX}_{4}\ge {EX}_{3}\right) = (-0.8, -0.6)

    Max { {XE}_{4}\le {XE}_{2}, {XE}_{3}, {XE}_{1}\} = [-0.2, -0.008], [-0.15, -0.01], min { {EX}_{4}\ge {EX}_{2}, {EX}_{3}, {EX}_{1} } = (-0.8, -0.7)

    By the intersection of both membership functions and both non membership function of N-cubic Pythagorean fuzzy numbers is the abscissae of the common portion of upper and lower triangles are generated respectively.

    Similarly, these steps (b, c) are followed by remaining other sub-criteria including (operational factors, economic/government factors, performance related factors, financial factors, market related factors, external factors).

    Step 3: The weight of main factors that play role in downfall of PIA in hierarchy form is given by Table 10:

    Table 10.  Weight of main factors.
    Main factors ¥ Weight Rank
    Operational factors 0.4250 0.8321 0.6285 0.1629 5
    Economic/government factors 0.4475 0.8321 0.639 0.1658 4
    Performance related factors 0.4800 0.8321 0.656 0.1702 2
    Financial factors 0.4252 0.8321 0.6286 0.1631 6
    Market related factors 0.4525 0.8321 0.642 0.1665 3
    External factors 0.4900 0.8321 0.661 0.1715 1

     | Show Table
    DownLoad: CSV

    The weight of sub-criteria (operational factors) is as under (see Table 11):

    Table 11.  Weight of sub-criteria of operational factors.
    Sub-criteria (operational factors) ¥ Weight Rank
    Load factor 0.4228 0.8321 0.627 0.1222 7
    Average number of passengers carried per departure 0.4128 0.8321 0.622 0.1213 8
    Average number of hours flown per pilot 0.4352 0.8321 0.633 0.1234 6
    Number of departures per aircraft 0.4668 0.8321 0.649 0.1265 3
    Number of pilots per aircraft 0.4688 0.8321 0.650 0.1267 2
    The average age of the aircraft fleet 0.4718 0.8321 0.651 0.1269 1
    Number of different brands of aircraft operated 0.4612 0.8321 0.646 0.1259 5
    International operations 0.4620 0.8321 0.647 0.1261 4

     | Show Table
    DownLoad: CSV

    The weight of sub-criteria (economic/government) factor is (see Table 12):

    Table 12.  Weight of sub-criteria of economic/government factor.
    Sub-criteria (economic/government factors) ¥ Weight Rank
    Annual inflation 0.4250 0.8321 0.628 0.2340 4
    GDP Growth Rate 0.4515 0.8321 0.641 0.2389 3
    Aviation Fuel price (INR per liter) 0.42 1 0.702 0.2616 2
    Average Growth in Value of Passengers carried in country 0.4250 1 0.712 0.2653 1

     | Show Table
    DownLoad: CSV

    The weight of sub-criteria (performance related) factor as under (see Table 13):

    Table 13.  Weight of performance related factor.
    Sub-criteria (performance related factors) ¥ Weight Rank
    Available seat kilometer (ASK) 0.4595 0.8321 0.645 0.1428 6
    Revenue per kilometer (RPK) 0.4620 0.8321 0.647 0.1430 4
    Available seat KM per employee 0.4608 0.8321 0.646 0.1429 5
    Average stage length flown in kilometer 0.4640 0.8321 0.648 0.1431 3
    Fuel efficiency (liters per KM flown) 0.4680 0.8321 0.650 0.1437 2
    Break even load factor 0.4250 0.8321 0.628 0.1388 7
    Labor cost per KM flown 0.4842 0.8321 0.658 0.1455 1

     | Show Table
    DownLoad: CSV

    The weight of sub-criteria (financial factor) is below (see Table 14):

    Table 14.  Weight of financial factor.
    Sub-criteria (financial factors) ¥ Weight Rank
    Operating revenues/operating cost 0.4656 0.8321 0.648 0.0988 7
    Operating Profit/ Total Assets 0.4635 0.8321 0.647 0.0986 8
    Retained earnings/total assets 0.4678 0.8321 0.649 0.0989 6
    Market Value of Equity/Total Book value of debt 0.4690 0.8321 0.650 0.0991 5
    Current assets/current liabilities 0.4783 0.8321 0.655 0.0999 3
    Earnings before interest and taxes/ operating revenues 0.4762 0.8321 0.654 0.0998 4
    Interest/total liabilities or debt service 0.4815 0.8321 0.656 0.1001 2
    Operating revenues per air kilometer 0.5900 0.8321 0.711 0.1084 1
    Earnings stability (the deviation around a 10-year trend line of return on assets) 0.4250 0.8321 0.628 0.0957 9
    Firm size (measured by the log of the firm's total assets). 0.4195 0.8321 0.625 0.0945 10

     | Show Table
    DownLoad: CSV

    The weight of sub-criteria (market related) is as under (see Table 15):

    Table 15.  Weight of market related factor.
    Sub-criteria (market related) ¥ weight rank
    Number of airlines operating 0.4625 0.8367 0.649 0.1933 4
    Company passenger growth (%)/Industry growth (%) 0.4675 0.8376 0.652 0.1942 3
    Market share 0.4622 0.8321 0.647 0.1927 5
    Govt. policies regarding slot allocation 0.4900 0.8321 0.661 0.1969 2
    Airport preference of airlines 0.4942 1 0.747 0.2225 1

     | Show Table
    DownLoad: CSV

    The weight of sub-criteria (external factors) as follows (see Table 16):

    Table 16.  Weight of external factors.
    Sub-criteria (external factors) ¥ weight rank
    Environment or weather conditions 0.3625 1 0.681 0.2597 1
    Geographical location 0.4670 0.8321 0.649 0.2475 3
    Threats to national security 0.4250 0.8321 0.628 0.2395 4
    Political influence (hiring & benefits) 0.4880 0.8408 0.664 0.2532 2

     | Show Table
    DownLoad: CSV

    Step 4: Final ranking

    The final ranking of main criteria's and sub-criteria's according to weights are (see Table 17):

    Table 17.  Final ranking.
    Factor's list Main criteria ranking Sub-criteria list Sub-criteria ranking Weights Global ranking
    Operational factors 5 OP(1) 7 0.1222 27
    OP(2) 8 0.1213 28
    OP(3) 6 0.1234 26
    OP(4) 3 0.1265 23
    OP(5) 2 0.1267 22
    OP(6) 1 0.1269 21
    OP(7) 5 0.1259 25
    OP(8) 4 0.1261 24
    Economic/Govt factor 4 E/G(1) 4 0.2340 8
    E/G(2) 3 0.2389 7
    E/G(3) 2 0.2616 2
    E/G(4) 1 0.2653 1
    Performance related factor 2 PR(1) 6 0.1428 19
    PR(2) 4 0.1430 17
    PR(3) 5 0.1429 18
    PR(4) 3 0.1431 16
    PR(5) 2 0.1437 15
    PR(6) 7 0.1388 20
    PR(7) 1 0.1455 14
    Financial factor 6 FF(1) 7 0.0988 35
    FF(2) 8 0.0986 36
    FF(3) 6 0.0989 34
    FF(4) 5 0.0991 33
    FF(5) 3 0.0999 31
    FF(6) 4 0.0998 32
    FF(7) 2 0.1001 30
    FF(8) 1 0.1084 29
    FF(9) 9 0.0957 37
    FF(10) 10 0.0945 38
    Market related factors 3 MR (1) 4 0.1933 12
    MR (2) 3 0.1942 11
    MR (3) 5 0.1927 13
    MR (4) 2 0.1969 10
    MR (5) 1 0.2225 9
    External factors 1 EF (1) 1 0.2597 3
    EF (2) 3 0.2475 5
    EF (3) 4 0.2395 6
    EF (4) 2 0.2532 4

     | Show Table
    DownLoad: CSV

    The final ranking of the classification of several factors, it is observed that ranking of external factors is 1, which means external factors plays negative role in financial position to create the downfall of companies in airline sector. If we discuss further, then we may conclude that for other factors including Performance related factor contribute to negative sense after the external factors. Managers of the companies will be able to overcome the position of downfall after gaining information that which category is strong in their negative performance as well as weak.

    Following Table 18 shows that comparative analysis of fuzzy AHP and AHP under N-cubic Pythagorean fuzzy sets of the downfall of international airline.

    Table 18.  Comparative analysis.
    Methods Main Ranking Ranking Results
    Fuzzy AHP EF = 1, MR = 3, FF = 6, PR = 2, E/G = 4, OP = 5 EF > PR > MR > E/G > OP > FF
    AHP under N- cubic pythagorean fuzzy sets EF = 1, MR = 3, FF = 6, PR = 2, E/G = 4, OP = 5 EF > PR > MR > E/G > OP > FF

     | Show Table
    DownLoad: CSV

    Experts must make decisions about how to improve the performance of airline companies for them to grow. There is a need to examine the inner and outside factors of airline's firms. For this purpose, and according to world research, the results will be more accurate. It is critical to observe both negative and positive factors when making decisions. To discuss the negative factors we initiated the study of N-cubic Pythagorean fuzzy set. This method reveals the behavior of variables in non-positive ways, which could be effective in overcoming the severity of this industry. This method will be used for ranking reasons in other real-world applications in future.

    The authors express their appreciation for the Deanship of Scientific Research at King Khalid University for funding this work through the Public Research Project under Grant Number (R.G.P.2 / 48/43).

    The authors declare that there is no conflict of interest regarding the publication of this article.



    [1] L. A. Zadeh, Fuzzy sets, Adv. Fuzzy Syst., 1996,394-432. https://doi.org/10.1142/9789814261302_0021
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Int. J. Bioautom., 20 (2016), S1-S6. https://doi.org/10.1007/978-3-7908-1870-3_1
    [3] S. K. De, R. Biswas, A. R. Roy, Some operations on intuitionistic fuzzy sets, Fuzzy Set. Syst., 114 (2000), 477-484. https://doi.org/10.1016/s0165-0114(98)00191-2 doi: 10.1016/s0165-0114(98)00191-2
    [4] P. A. Ejegwa, Pythagorean fuzzy set and its application in career placements based on academic performance using max-min-max composition, Complex Intell. Syst., 5 (2019), 165-175. https://doi.org/10.1007/s40747-019-0091-6 doi: 10.1007/s40747-019-0091-6
    [5] P. Angelov, S. Sotirov, Imprecision and uncertainty in information representation and processing, Springer Cham, Switzerland, 332 (2016), 249-271. https://doi.org/10.1007/978-3-319-26302-1
    [6] H. Garg, Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process, Int. J. Intell. Syst., 33 (2018), 1234-1263. https://doi.org/10.1002/int.21979 doi: 10.1002/int.21979
    [7] D. Li, W. Zeng, Distance measure of Pythagorean fuzzy sets, Int. J. Intell. Syst., 33 (2018), 348-361. https://doi.org/10.1002/int.21934 doi: 10.1002/int.21934
    [8] M. Gehrke, C. Walker, E. Walker, Some basic theory of interval-valued fuzzy sets, IEEE Access, 3 (2001), 1332-1336. https://doi.org/10.1109/NAFIPS.2001.943741 doi: 10.1109/NAFIPS.2001.943741
    [9] C. Cornelis, G. Deschrijver, E. E. Kerre, Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: Construction, classification, application, Int. J. Approx. Reason., 35 (2004), 55-95. https://doi.org/10.1016/S0888-613X(03)00072-0
    [10] G. Deschrijver, Arithmetic operators in interval-valued fuzzy set theory, Inf. Sci., 177 (2007), 2906-2924. https://doi.org/10.1016/j.ins.2007.02.003 doi: 10.1016/j.ins.2007.02.003
    [11] G. Deschrijver, C. Cornelis, Representability in interval-valued fuzzy set theory, Int. J. Uncertain. Fuzz., 15 (2007), 345-361. https://doi.org/10.1142/S0218488507004716 doi: 10.1142/S0218488507004716
    [12] S. P. Mondal, Interval valued intuitionistic fuzzy number and its application in differential equation, J. Intell. Fuzzy Syst., 34 (2018), 677-687. https://doi.org/10.3233/JIFS-161898 doi: 10.3233/JIFS-161898
    [13] V. L. G. Nayagam, S. Muralikrishnan, G. Sivaraman, Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets, Expert Syst. Appl., 38 (2011), 1464-1467. https://doi.org/10.1016/j.eswa.2010.07.055 doi: 10.1016/j.eswa.2010.07.055
    [14] V. L. G. Nayagam, G. Sivaraman, Ranking of interval-valued intuitionistic fuzzy sets, Appl. Soft Comput. J., 11 (2011), 3368-3372. https://doi.org/10.1016/j.asoc.2011.01.008 doi: 10.1016/j.asoc.2011.01.008
    [15] G. D. Tre, A. Hallez, A. Bronselaer, Performance optimization of object comparison, Int. J. Intell. Syst., 29 (2014), 495-524.
    [16] X. Peng, W. Li, Algorithms for interval-valued pythagorean fuzzy sets in emergency decision making based on multiparametric similarity measures and WDBA, IEEE Access, 7 (2019), 7419-7441. https://doi.org/10.1109/ACCESS.2018.2890097 doi: 10.1109/ACCESS.2018.2890097
    [17] K. Rahman, S. Abdullah, M. Shakeel, M. S. Ali Khan, M. Ullah, Interval-valued Pythagorean fuzzy geometric aggregation operators and their application to group decision making problem, Cogent Math., 4 (2017), 1338638. https://doi.org/10.1080/23311835.2017.1338638 doi: 10.1080/23311835.2017.1338638
    [18] N. Li, H. Garg, L. Wang, Some novel interactive hybridweighted aggregation operators with pythagorean fuzzy numbers and their applications to decision making, Mathematics, 7 (2019), 1-31. https://doi.org/10.3390/MATH7121150
    [19] Y. B. Jun, C. S. Kim, J. G. Kang, Cubic q-ideals of BCI-algebras, Ann. Fuzzy Math. Inform., 1 (2011), 25-34.
    [20] Y. B. Jun, C. S. Kim, K. O. Yang, Cubic sets, Ann. Fuzzy Math. Inform., 4 (2012), 83-98.
    [21] K. J. Zhu, Y. Jing, D. Y. Chang, A discussion on fuzzy extent analysis method and applications on fuzzy AHP, Eur. J. Oper. Res., 116 (1999), 450-456. https://doi.org/10.1016/S0377-2217(98)00331-2 doi: 10.1016/S0377-2217(98)00331-2
    [22] S. Z. Abbas, M. S. Ali Khan, S. Abdullah, H. Sun, F. Hussain, Cubic Pythagorean fuzzy sets and their application to multi-attribute decision making with unknown weight information, J. Intell. Fuzzy Syst., 37 (2019), 1529-1544. https://doi.org/10.3233/JIFS-18382 doi: 10.3233/JIFS-18382
    [23] Y. B. Jun, F. Smarandache, C. S. Kim, Neutrosophic cubic sets, New Math. Nat. Comput., 13 (2017), 41-54. https://doi.org/10.1142/S1793005717500041
    [24] Y. B. Jun, A novel extension of cubic sets and its applications in BCK/BCI-algebras, Ann. Fuzzy Math. Info., 14 (2017), 475-486. https://doi.org/10.30948/afmi.2017.14.5.475 doi: 10.30948/afmi.2017.14.5.475
    [25] M. Gulistan, I. Beg, Neutrosophic-cubic analaytic hierarchy process with applications, Infinite Study, 2020.
    [26] S. Rashid, M. Gulistan, Y. B. Jun, S. Khan, S. Kadry, N-Cubic sets and aggregation operators, J. Intell. Fuzzy Syst., 37 (2019), 5009-5023. https://doi.org/10.3233/JIFS-182595 doi: 10.3233/JIFS-182595
    [27] D. Y. Chang, Applications of the extent analysis method on fuzzy AHP, Eur. J. Oper. Res., 95 (1996), 649-655. https://doi.org/10.1016/0377-2217(95)00300-2 doi: 10.1016/0377-2217(95)00300-2
    [28] A. Biswas, S. Kumar, Generalization of extent analysis method for solving multicriteria decision making problems involving intuitionistic fuzzy numbers, Opsearch, 56 (2019), 1142-1166. https://doi.org/10.1007/s12597-019-00413-z doi: 10.1007/s12597-019-00413-z
    [29] A. Fahmi, S. Abdullah, F. Amin, N. Siddiqui, A. Ali, Aggregation operators on triangular cubic fuzzy numbers and its applications to multi-criteria decision making problems, J. Intell. Fuzzy Syst., 33 (2017), 3323-3337. https://doi.org/10.3233/JIFS-162007 doi: 10.3233/JIFS-162007
    [30] M. H. Vahidnia, A. A. Alesheikh, A. Alimohammadi, A. Bassiri, Fuzzy analytical hierarchy process in GIS application, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 37 (2008), 593-596.
    [31] Y. B. Jun, J Kavikumar, K S. So, N-ideals of subtraction algebras, Commun. Korean Math. Soc. Arch., 25 (2010), 173-184. https://doi.org/10.4134/CKMS.2010.25.2.173 doi: 10.4134/CKMS.2010.25.2.173
    [32] D. R. P. Williams, A. B. Saeid, Generalized N-ideals of subtraction algebras, J. Uncertain Syst., 9 (2020), 31-48.
    [33] S. P Wan, Z. Jin, J. Y. Dong, Pythagorean fuzzy mathematical programming method for multi-attribute group decision making with pythagorean fuzzy truth degrees, Knowl. Inform. Syst., 55 (2018), 437-466. https://doi.org/10.1007/s10115-017-1085-6 doi: 10.1007/s10115-017-1085-6
    [34] S. P Wan, S. Q. Li, J. Y. Dong, A three-phase method for Pythagorean fuzzy multi-attribute group decision making and application to haze management, Comput. Ind. Eng., 123 (2018), 348-363. https://doi.org/10.1016/j.cie.2018.07.005 doi: 10.1016/j.cie.2018.07.005
    [35] S. P Wan, Z. Jin, J. Y. Dong, A new order relation for Pythagorean fuzzy numbers and application to multi-attribute group decision making, Knowl. Inform. Syst., 62 (2020), 751-785. https://doi.org/10.1007/s10115-019-01369-8 doi: 10.1007/s10115-019-01369-8
    [36] M. Gulistan, N. Yaqoob, T. Vougiouklis, H. A. Wahab, Extensions of cubic ideals in weak left almost semihypergroups, J. Intell. Fuzzy Syst., 34 (2019), 4161-4172. https://doi.org/10.3233/JIFS-171744 doi: 10.3233/JIFS-171744
    [37] N. Yaqoob, M. Gulistan, V. Leoreanu-Fotea, K. Hila, Cubic hyperideals in LA-semihypergroups, J. Intell. Fuzzy Syst., 34 (2018), 2707-2721. https://doi.org/10.3233/JIFS-17850 doi: 10.3233/JIFS-17850
    [38] M. Khan, Y. B. Jun, M. Gulistan, N. Yaqoob, The generalized version of Jun's cubic sets in semigroups, J. Intell. Fuzzy Syst., 28 (2015), 947-960. https://doi.org/10.3233/IFS-141377 doi: 10.3233/IFS-141377
    [39] M. Gulistan, M. Khan, N. Yaqoob, M. Shahzad, U. Ashraf, Direct product of generalized cubic sets in Hv-LA-semigroups, Sci. Int., 28 (2016), 767-779.
    [40] M. Gulistan, M. Khan, N. Yaqoob, M. Shahzad, Structural properties of cubic sets in regular LA-semihypergroups, Fuzzy Inform. Eng., 9 (2017), 93-116. https://doi.org/10.1016/j.fiae.2017.03.005 doi: 10.1016/j.fiae.2017.03.005
    [41] M. Khan, M. Gulistan, N. Yaqoob, F. Hussain, General cubic hyperideals of LA-semihypergroups, Afrika Mat., 27 (2016), 731-751. https://doi.org/10.1007/s13370-015-0367-y doi: 10.1007/s13370-015-0367-y
    [42] M. Akram, N. Yaqoob, M. Gulistan, Cubic KU-subalgebras, Int. J. Pure Appl. Math., 89 (2013), 659-665. https://doi.org/10.12732/ijpam.v89i5.2
    [43] X. L. Ma, J. Zhan, M. Khan, M. Gulistan, N. Yaqoob, Generalized cubic relations in Hv -LA-semigroups, J. Discret. Math. Sci. C., 21 (2018), 607-630. https://doi.org/10.1080/09720529.2016.1191174 doi: 10.1080/09720529.2016.1191174
    [44] S. Rashid, N. Yaqoob, M. Akram, M. Gulistan, Cubic graphs with application, Int. J. Anal. Appl., 16 (2018), 733-750.
    [45] M Gulistan, N Hassan, A generalized approach towards soft expert sets via neutrosophic cubic sets with applications in games, Symmetry, 11 (2019), 289. https://doi.org/10.3390/sym11020289
    [46] M. A. Al Shumrani, M. Gulistan, S. Khan, The neutro-stability analysis of neutrosophic cubic sets with application in decision making problems, J. Math., 2020 (2020). https://doi.org/10.1155/2020/8835019 doi: 10.1155/2020/8835019
    [47] J. Zhan, M. Khan, M. Gulistan, A. Ali, Applications of neutrosophic cubic sets in multi-criteria decision-making, Int. J. Uncertain. Quan., 7 (2017), 377-394. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020446 doi: 10.1615/Int.J.UncertaintyQuantification.2017020446
    [48] M. Gulistan, A. Elmoasry, N. Yaqoob, N-Version of the neutrosophic cubic set: Application in the negative influences of internet, J. Supercomput., 77 (2021), 11410-11431. https://doi.org/10.1007/s11227-020-03615-1 doi: 10.1007/s11227-020-03615-1
    [49] M. Gulistan, S. Rashid, Y. B. Jun, S. Kadery, S. Khan, N-Cubic sets and aggregation operators, J. Intell. Fuzzy Syst., 37 (2019), 5009-5023. https://doi.org/10.3233/JIFS-182595 doi: 10.3233/JIFS-182595
    [50] W. Q. Duan, M. Gulistan, F. H. Abbasi, A. Kjurshid, M. M. A. Shamiri, q-Rung double hierarchy linguistic term set fuzzy AHP: Applications in the security systems threats features of social media platforms, Int. J. Intell Syst., 2021, 1-34. https://doi.org/10.1002/int.22755 doi: 10.1002/int.22755
  • This article has been cited by:

    1. Mohammed A. Al Shumrani, Muhammad Gulistan, On the similarity measures of N-cubic Pythagorean fuzzy sets using the overlapping ratio, 2022, 2199-4536, 10.1007/s40747-022-00850-2
    2. Shi Yin, Fengyu Guo, Yuanyuan Yu, Yibo Li, Kifayat Ullah, Practical teaching method innovation decisions related to labor and reading at agricultural colleges based on entropy-fuzzy AHP combination weights, 2023, 8, 2473-6988, 7641, 10.3934/math.2023383
    3. Xiaopeng Yang, Tahir Mahmood, Ubaid Ur Rehman, Analyzing the effect of different types of pollution with bipolar complex fuzzy power Bonferroni mean operators, 2022, 10, 2296-665X, 10.3389/fenvs.2022.1026316
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2477) PDF downloads(101) Cited by(3)

Figures and Tables

Figures(5)  /  Tables(18)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog