Processing math: 100%
Research article Special Issues

Existence theory for a third-order ordinary differential equation with non-separated multi-point and nonlocal Stieltjes boundary conditions

  • This study develops the existence of solutions for a nonlinear third-order ordinary differential equation with non-separated multi-point and nonlocal Riemann-Stieltjes boundary conditions. Standard tools of fixed point theorems are applied to prove the existence and uniqueness of results for the problem at hand. Further, we made use of the fixed point theorem due to Bohnenblust-Karlin to discuss the existence of solutions for the multi-valued case. Lastly, we clarify the reported results by means of examples.

    Citation: Mona Alsulami. Existence theory for a third-order ordinary differential equation with non-separated multi-point and nonlocal Stieltjes boundary conditions[J]. AIMS Mathematics, 2023, 8(6): 13572-13592. doi: 10.3934/math.2023689

    Related Papers:

    [1] Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589
    [2] Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371
    [3] Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089
    [4] Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103
    [5] Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683
    [6] M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253
    [7] Sarah Elahi, Muhammad Aslam Noor . Integral inequalities for hyperbolic type preinvex functions. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597
    [8] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [9] Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989
    [10] Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via n-polynomial exponential type s-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787
  • This study develops the existence of solutions for a nonlinear third-order ordinary differential equation with non-separated multi-point and nonlocal Riemann-Stieltjes boundary conditions. Standard tools of fixed point theorems are applied to prove the existence and uniqueness of results for the problem at hand. Further, we made use of the fixed point theorem due to Bohnenblust-Karlin to discuss the existence of solutions for the multi-valued case. Lastly, we clarify the reported results by means of examples.



    The famous Young's inequality, as a classical result, state that: if a,b>0 and t[0,1], then

    atb1tta+(1t)b (1.1)

    with equality if and only if a=b. Let p,q>1 such that 1/p+1/q=1. The inequality (1.1) can be written as

    abapp+bqq (1.2)

    for any a,b0. In this form, the inequality (1.2) was used to prove the celebrated Hölder inequality. One of the most important inequalities of analysis is Hölder's inequality. It contributes wide area of pure and applied mathematics and plays a key role in resolving many problems in social science and cultural science as well as in natural science.

    Theorem 1 (Hölder inequality for integrals [11]). Let p>1 and 1/p+1/q=1. If f and g are real functions defined on [a,b] and if |f|p,|g|q are integrable functions on [a,b] then

    ba|f(x)g(x)|dx(ba|f(x)|pdx)1/p(ba|g(x)|qdx)1/q, (1.3)

    with equality holding if and only if A|f(x)|p=B|g(x)|q almost everywhere, where A and B are constants.

    Theorem 2 (Hölder inequality for sums [11]). Let a=(a1,...,an) and b=(b1,...,bn) be two positive n-tuples and p,q>1 such that 1/p+1/q=1. Then we have

    nk=1akbk(nk=1apk)1/p(nk=1bqk)1/q. (1.4)

    Equality hold in (1.4) if and only if ap and bq are proportional.

    In [10], İşcan gave new improvements for integral ans sum forms of the Hölder inequality as follow:

    Theorem 3. Let p>1 and 1p+1q=1. If f and g are real functions defined on interval [a,b] and if |f|p, |g|q are integrable functions on [a,b] then

    ba|f(x)g(x)|dx1ba{(ba(bx)|f(x)|pdx)1p(ba(bx)|g(x)|qdx)1q+(ba(xa)|f(x)|pdx)1p(ba(xa)|g(x)|qdx)1q} (1.5)

    Theorem 4. Let a=(a1,...,an) and b=(b1,...,bn) be two positive n-tuples and p,q>1 such that 1/p+1/q=1. Then

    nk=1akbk1n{(nk=1kapk)1/p(nk=1kbqk)1/q+(nk=1(nk)apk)1/p(nk=1(nk)bqk)1/q}. (1.6)

    Let E be a nonempty set and L be a linear class of real valued functions on E having the following properties

    L1: If f,gL then (αf+βg)L for all α,βR;

    L2: 1L, that is if f(t)=1,tE, then fL;

    We also consider positive isotonic linear functionals A:LR is a functional satisfying the following properties:

    A1: A(αf+βg)=αA(f)+β A(g) for f,gL and α,βR;

    A2: If fL, f(t)0 on E then A(f)0.

    Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which enjoy a number of convenient properties. Functional versions of well-known inequalities and related results could be found in [1,2,3,4,5,6,7,8,9,11,12].

    Example 1. i.) If E=[a,b]R and L=L[a,b], then

    A(f)=baf(t)dt

    is an isotonic linear functional.

    ii.)If E=[a,b]×[c,d]R2 and L=L([a,b]×[c,d]), then

    A(f)=badcf(x,y)dxdy

    is an isotonic linear functional.

    iii.)If (E,Σ,μ) is a measure space with μ positive measure on E and L=L(μ) then

    A(f)=Efdμ 

    is an isotonic linear functional.

    iv.)If E is a subset of the natural numbers N with all pk0, then A(f)=kEpkfk is an isotonic linear functional. For example; If E={1,2,...,n} and f:ER,f(k)=ak, then A(f)=nk=1ak is an isotonic linear functional. If E={1,2,...,n}×{1,2,...,m} and f:ER,f(k,l)=ak,l, then A(f)=nk=1ml=1ak,l is an isotonic linear functional.

    Theorem 5 (Hölder's inequality for isotonic functionals [13]). Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p1+q1=1. If w,f,g0 on E and wfp,wgq,wfgL then we have

    A(wfg)A1/p(wfp)A1/q(wgq). (2.1)

    In the case 0<p<1 and A(wgq)>0 (or p<0 and A(wfp)>0), the inequality in (2.1) is reversed.

    Remark 1. i.) If we choose E=[a,b]R, L=L[a,b], w=1 on E and A(f)=ba|f(t)|dt in the Theorem 5, then the inequality (2.1) reduce the inequality (1.3).

    ii.) If we choose E={1,2,...,n}, w=1 on E, f:E[0,),f(k)=ak, and A(f)=nk=1ak in the Theorem 5, then the inequality (2.1) reduce the inequality (1.4).

    iii.) If we choose E=[a,b]×[c,d],L=L(E), w=1 on E and A(f)=badc|f(x,y)|dxdy in the Theorem 5, then the inequality (2.1) reduce the following inequality for double integrals:

    badc|f(x,y)||g(x,y)|dxdy(badc|f(x,y)|pdx)1/p(badc|g(x,y)|qdx)1/q.

    The aim of this paper is to give a new general improvement of Hölder inequality for isotonic linear functional. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals.

    Theorem 6. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p1+q1=1. If α,β,w,f,g0 on E, αwfg,βwfg,αwfp,αwgq,βwfp,βwgq,wfgL and α+β=1 on E, then we have

    i.)

    A(wfg)A1/p(αwfp)A1/q(αwgq)+A1/p(βwfq)A1/q(βwgq) (3.1)

    ii.)

    A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq). (3.2)

    Proof. ⅰ.) By using of Hölder inequality for isotonic functionals in (2.1) and linearity of A, it is easily seen that

    A(wfg)=A(αwfg+βwfg)=A(αwfg)+A(βwfg)A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq).

    ⅱ.) Firstly, we assume that A1/p(wfp)A1/q(wgq)0. then

    A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)=(A(αwfp)A(wfp))1/p(A(αwgq)A(wgq))1/q+(A(βwfp)A(wfp))1/p(A(βwgq)A(wgq))1/q,

    By the inequality (1.1) and linearity of A, we have

    A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)1p[A(αwfp)A(wfp)+A(βwfp)A(wfp)]+1q[A(αwgq)A(wgq)+A(βwgq)A(wgq)]=1.

    Finally, suppose that A1/p(wfp)A1/q(wgq)=0. Then A1/p(wfp)=0 or A1/q(wgq)=0, i.e. A(wfp)=0 or A(wgq)=0. We assume that A(wfp)=0. Then by using linearity of A we have,

    0=A(wfp)=A(αwfp+βwfp)=A(αwfp)+A(βwfp).

    Since A(αwf),A(βwf)0, we get A(αwfp)=0 and A(βwfp)=0. From here, it follows that

    A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)=00=A1/p(wfp)A1/q(wgq).

    In case of A(wgq)=0, the proof is done similarly. This completes the proof.

    Remark 2. The inequality (3.2) shows that the inequality (3.1) is better than the inequality (2.1).

    If we take w=1 on E in the Theorem 6, then we can give the following corollary:

    Corollary 1. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p1+q1=1. If α,β,f,g0 on E, αfg,βfg,αfp,αgq,βfp,βgq,fgL and α+β=1 on E, then we have

    i.)

    A(fg)A1/p(αfp)A1/q(αgq)+A1/p(βfq)A1/q(βgq) (3.3)

    ii.)

    A1/p(αfp)A1/q(αgq)+A1/p(βfp)A1/q(βgq)A1/p(fp)A1/q(gq).

    Remark 3. i.) If we choose E=[a,b]R, L=L[a,b], α(t)=btba,β(t)=taba on E and A(f)=ba|f(t)|dt in the Corollary 1, then the inequality (3.3) reduce the inequality (1.5).

    ii.) If we choose E={1,2,...,n}, α(k)=kn,β(k)=nkn on E, f:E[0,),f(k)=ak, and A(f)=nk=1ak in the Theorem1, then the inequality (3.3) reduce the inequality (1.6).

    We can give more general form of the Theorem 6 as follows:

    Theorem 7. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p1+q1=1. If αi,w,f,g0 on E, αiwfg,αiwfp,αiwgq,wfgL,i=1,2,...,m, and mi=1αi=1 on E, then we have

    i.)

    A(wfg)mi=1A1/p(αiwfp)A1/q(αiwgq)

    ii.)

    mi=1A1/p(αiwfp)A1/q(αiwgq)A1/p(wfp)A1/q(wgq).

    Proof. The proof can be easily done similarly to the proof of Theorem 6.

    If we take w=1 on E in the Theorem 6, then we can give the following corollary:

    Corollary 2. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p1+q1=1. If αi,f,g0 on E, αifg,αifp,αigq,fgL,i=1,2,...,m, and mi=1αi=1 on E, then we have

    i.)

    A(fg)mi=1A1/p(αifp)A1/q(αigq) (3.4)

    ii.)

    mi=1A1/p(αifp)A1/q(αigq)A1/p(fp)A1/q(gq).

    Corollary 3 (Improvement of Hölder inequality for double integrals). Let p,q>1 and 1/p+1/q=1. If f and g are real functions defined on E=[a,b]×[c,d] and if |f|p,|g|qL(E) then

    badc|f(x,y)||g(x,y)|dxdy4i=1(badcαi(x,y)|f(x,y)|pdx)1/p(badcαi(x,y)|g(x,y)|qdx)1/q, (3.5)

    where α1(x,y)=(bx)(dy)(ba)(dc),α2(x,y)=(bx)(yc)(ba)(dc),α3(x,y)=(xa)(yc)(ba)(dc),,α4(x,y)=(xa)(dy)(ba)(dc) on E

    Proof. If we choose E=[a,b]×[c,d]R2, L=L(E), α1(x,y)=(bx)(dy)(ba)(dc),α2(x,y)=(bx)(yc)(ba)(dc),α3(x,y)=(xa)(yc)(ba)(dc),α4(x,y)=(xa)(dy)(ba)(dc) on E and A(f)=badc|f(x,y)|dxdy in the Corollary 1, then we get the inequality (3.5).

    Corollary 4. Let (ak,l) and (bk,l) be two tuples of positive numbers and p,q>1 such that 1/p+1/q=1. Then we have

    nk=1ml=1ak,lbk,l4i=1(nk=1ml=1αi(k,l)apk,l)1/p(nk=1ml=1αi(k,l)bqk,l)1/q, (3.6)

    where α1(k,l)=klnm,α2(k,l)=(nk)lnm,α3(k,l)=(nk)(ml)nm,α4(k,l)=k(ml)nm on E.

    Proof. If we choose E={1,2,...,n}×{1,2,...,m}, α1(k,l)=klnm,α2(k,l)=(nk)lnm,α3(k,l)=(nk)(ml)nm,α4(k,l)=k(ml)nm on E, f:E[0,),f(k,l)=ak,l, and A(f)=nk=1ml=1ak,l in the Theorem1, then we get the inequality (3.6).

    In [14], Sarıkaya et al. gave the following lemma for obtain main results.

    Lemma 1. Let f:ΔR2R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If 2ftsL(Δ), then the following equality holds:

    f(a,c)+f(a,d)+f(b,c)+f(b,d)41(ba)(dc)badcf(x,y)dxdy12[1baba[f(x,c)+f(x,d)]dx+1dcdc[f(a,y)+f(b,y)]dy]=(ba)(dc)41010(12t)(12s)2fts(ta+(1t)b,sc+(1s)d)dtds.

    By using this equality and Hölder integral inequality for double integrals, Sar\i kaya et al. obtained the following inequality:

    Theorem 8. Let f:ΔR2R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If |2fts|q,q>1, is convex function on the co-ordinates on Δ, then one has the inequalities:

    |f(a,c)+f(a,d)+f(b,c)+f(b,d)41(ba)(dc)badcf(x,y)dxdyA|(ba)(dc)4(p+1)2/p[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q, (4.1)

    where

    A=12[1baba[f(x,c)+f(x,d)]dx+1dcdc[f(a,y)+f(b,y)]dy],

    1/p+1/q=1 and fst=2fts.

    If Theorem 8 are resulted again by using the inequality (3.5), then we get the following result:

    Theorem 9. Let f:ΔR2R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If |2fts|q,q>1, is convex function on the co-ordinates on Δ, then one has the inequalities:

    |f(a,c)+f(a,d)+f(b,c)+f(b,d)41(ba)(dc)badcf(x,y)dxdyA|(ba)(dc)41+1/p(p+1)2/p{[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q}, (4.2)

    where

    A=12[1baba[f(x,c)+f(x,d)]dx+1dcdc[f(a,y)+f(b,y)]dy],

    1/p+1/q=1 and fst=2fts.

    Proof. Using Lemma 1 and the inequality (3.5), we find

    |f(a,c)+f(a,d)+f(b,c)+f(b,d)41(ba)(dc)badcf(x,y)dxdyA|(ba)(dc)41010|12t||12s||fst(ta+(1t)b,sc+(1s))|dtds(ba)(dc)4{(1010ts|12t|p|12s|pdtds)1/p×(1010ts|fst(ta+(1t)b,sc+(1s))|qdtds)1/q+(1010t(1s)|12t|p|12s|pdtds)1/p×(1010t(1s)|fst(ta+(1t)b,sc+(1s))|qdtds)1/q+(1010(1t)s|12t|p|12s|pdtds)1/p×(1010(1t)s|fst(ta+(1t)b,sc+(1s))|qdtds)1/q+(1010(1t)(1s)|12t|p|12s|pdtds)1/p×(1010(1t)(1s)|fst(ta+(1t)b,sc+(1s))|qdtds)1/q}. (4.3)

    Since |fst|q is convex function on the co-ordinates on Δ, we have for all t,s[0,1]

    |fst(ta+(1t)b,sc+(1s))|qts|fst(a,c)|q+t(1s)|fst(a,d)|q+(1t)s|fst(a,c)|q+(1t)(1s)|fst(a,c)|q (4.4)

    for all t,s[0,1]. Further since

    1010ts|12t|p|12s|pdtds=1010t(1s)|12t|p|12s|pdtds=1010(1t)s|12t|p|12s|pdtds (4.5)
    =1010(1t)(1s)|12t|p|12s|pdtds=14(p+1)2, (4.6)

    a combination of (4.3) - (4.5) immediately gives the required inequality (4.2).

    Remark 4. Since η:[0,)R,η(x)=xs,0<s1, is a concave function, for all u,v0 we have

    η(u+v2)=(u+v2)sη(u)+η(v)2=us+vs2.

    From here, we get

    I={[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q}2{[6|fst(a,c)|q+3|fst(a,d)|q+6|fst(b,c)|q+3|fst(b,d)|q72]1/q+[3|fst(a,c)|q+6|fst(a,d)|q+3|fst(b,c)|q+6|fst(b,d)|q72]1/q}
    4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q

    Thus we obtain

    (ba)(dc)41+1/p(p+1)2/pI(ba)(dc)41+1/p(p+1)2/p4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q}(ba)(dc)4(p+1)2/p{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q}.

    This shows that the inequality (4.2) is better than the inequality (4.1).

    The aim of this paper is to give a new general improvement of Hölder inequality via isotonic linear functional. An important feature of the new inequality obtained here is that many existing inequalities related to the Hölder inequality can be improved. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals. Similar method can be applied to the different type of convex functions.

    This research didn't receive any funding.

    The author declares no conflicts of interest in this paper.



    [1] R. Ma, A survey on nonlocal boundary value problems, Appl. Math. E-Notes, 7 (2007), 257–279.
    [2] F. T. Akyildiz, H. Bellout, K. Vajravelu, R. A. Van Gorder, Existence results for third order nonlinear boundary value problems arising in nano boundary layer fluid flows over stretching surfaces, Nonlinear Anal. Real World Appl., 12 (2011), 2919–2930. http://dx.doi.org/10.1016/j.nonrwa.2011.02.017 doi: 10.1016/j.nonrwa.2011.02.017
    [3] M. Ashordia, On boundary value problems for systems of nonlinear generalized ordinary differential equations, Czech. Math. J., 67 (2017), 579–608. http://dx.doi.org/10.21136/CMJ.2017.0144-11 doi: 10.21136/CMJ.2017.0144-11
    [4] L. Zheng, X. Zhang, Modeling and analysis of modern fluid problems, London: Elsevier/Academic Press, 2017. http://dx.doi.org/10.1016/C2016-0-01480-8
    [5] Y. Sun, L. Liu, J. Zhang, R. P. Agarwal, Positive solutions of singular three-point boundary value problems for second-order differential equations, J. Comput. Appl. Math., 230 (2009), 738–750. http://dx.doi.org/10.1016/j.cam.2009.01.003 doi: 10.1016/j.cam.2009.01.003
    [6] P. W. Eloe, B. Ahmad, Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions, Appl. Math. Lett., 18 (2005), 521–527. http://dx.doi.org/10.1016/j.aml.2004.05.009 doi: 10.1016/j.aml.2004.05.009
    [7] V. A. Ilyin, E. I. Moiseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Diff. Equat., 23 (1987), 803–810.
    [8] S. Clark, J. Henderson, Uniqueness implies existence and uniqueness criterion for nonlocal boundary value problems for third order differential equations, Proc. Amer. Math. Soc., 134 (2006), 3363–3372. http://dx.doi.org/10.2307/4098045 doi: 10.2307/4098045
    [9] J. R. L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. Lond. Math. Soc., 74 (2006), 673–693. http://dx.doi.org/10.1112/S0024610706023179 doi: 10.1112/S0024610706023179
    [10] B. Ahmad, S. Hamdan, A. Alsaedi, S. K. Ntouyas, A study of a nonlinear coupled system of three fractional differential equations with nonlocal coupled boundary conditions, Adv. Differ. Equ., 2021 (2021), 278. http://dx.doi.org/10.1186/s13662-021-03440-7 doi: 10.1186/s13662-021-03440-7
    [11] B. Ahmad, A. Alsaedi, N. Al-Malki, On higher-order nonlinear boundary value problems with nonlocal multipoint integral boundary conditions, Lith. Math. J., 56 (2016), 143–163. http://dx.doi.org/10.1007/s10986-016-9311-6 doi: 10.1007/s10986-016-9311-6
    [12] B. Ahmad, B. Alghamdi, R. P. Agarwal, A. Alsaedi, Riemann-Liouville fractional integro-differential equations with fractional nonlocal multi-point boundary conditions, Fractals, 30 (2022), 2240002. http://dx.doi.org/10.1142/S0218348X22400023
    [13] B. Ahmad, A. Alsaedi, Existence of approximate solutions of the forced Duffing equation with discontinuous type integral boundary conditions, Nonlinear Anal. Real World Appl., 10 (2009), 358–367. http://dx.doi.org/10.1016/j.nonrwa.2007.09.004 doi: 10.1016/j.nonrwa.2007.09.004
    [14] B. Ahmad, S. K. Ntouyas, A study of higher-order nonlinear ordinary differential equations with four-point nonlocal integral boundary conditions, J. Appl. Math. Comput., 39 (2012), 97–108. http://dx.doi.org/10.1007/s12190-011-0513-0 doi: 10.1007/s12190-011-0513-0
    [15] J. Henderson, Smoothness of solutions with respect to multi-strip integral boundary conditions for nth order ordinary differential equations, Nonlinear Anal. Model., 19 (2014), 396–412. http://dx.doi.org/10.15388/NA.2014.3.6 doi: 10.15388/NA.2014.3.6
    [16] I. Y. Karaca, F. T. Fen, Positive solutions of nth-order boundary value problems with integral boundary conditions, Math. Model. Anal., 20 (2015), 188–204. http://dx.doi.org/10.3846/13926292.2015.1020531 doi: 10.3846/13926292.2015.1020531
    [17] H. H. Alsulami, S. K. Ntouyas, S. A. Al-Mezel, B. Ahmad, A. Alsaedi, A study of third-order single-valued and multi-valued problems with integral boundary conditions, Bound. Value Probl., 2015 (2015), 25. http://dx.doi.org/10.1186/s13661-014-0271-7 doi: 10.1186/s13661-014-0271-7
    [18] M. Boukrouche, D. A. Tarzia, A family of singular ordinary differential equations of the third order with an integral boundary condition, Bound. Value Probl., 2018 (2018), 32. http://dx.doi.org/10.1186/s13661-018-0950-x doi: 10.1186/s13661-018-0950-x
    [19] N. I. Ionkin, The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition, Differ. Uravn., 13 (1977), 294–304.
    [20] B. Ahmad, S. K. Ntouyas, H. Alsulami, Existence of solutions or nonlinear nth-order differential equations and inclusions with nonlocal and integral boundary conditions via fixed point theory, Filomat, 28 (2014), 2149–2162. http://dx.doi.org/10.2298/FIL1410149A doi: 10.2298/FIL1410149A
    [21] F. Nicoud, T. Schfonfeld, Integral boundary conditions for unsteady biomedical CFD applications, Int. J. Numer. Meth. Fl., 40 (2002), 457–465. http://dx.doi.org/10.1002/fld.299 doi: 10.1002/fld.299
    [22] M. Feng, X. Zhang, W. Ge, Existence theorems for a second order nonlinear differential equation with nonlocal boundary conditions and their applications, J. Appl. Math. Comput., 33 (2010), 137–153. http://dx.doi.org/10.1007/s12190-009-0278-x doi: 10.1007/s12190-009-0278-x
    [23] J. R. L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Differ. Equ. Appl., 15 (2008), 45–67. http://dx.doi.org/10.1007/s00030-007-4067-7 doi: 10.1007/s00030-007-4067-7
    [24] J. R. Graef, J. R. L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal. Theor., 71 (2009), 1542–1551. http://dx.doi.org/10.1016/j.na.2008.12.047 doi: 10.1016/j.na.2008.12.047
    [25] X. Zhang, L. Liu, Y. Wu, Y. Zou, Existence and uniqueness of solutions for systems of fractional differential equations with Riemann-Stieltjes integral boundary condition, Adv. Differ. Equ., 2018 (2018), 204. http://dx.doi.org/10.1186/s13662-018-1650-7 doi: 10.1186/s13662-018-1650-7
    [26] B. Ahmad, Y. Alruwaily, A. Alsaedi, S. K. Ntouyas, Existence and stability results for a fractional order differential equation with non-conjugate Riemann-Stieltjes integro-nultipoint boundary conditions, Mathematics, 7 (2019), 249. http://dx.doi.org/10.3390/math7030249 doi: 10.3390/math7030249
    [27] N. Yao, X. Liu, M. Jia, Solvability for Riemann-Stieltjes integral boundary value problems of Bagley-Torvik equations at resonance, J. Appl. Anal. Comput., 10 (2020), 1937–1953. http://dx.doi.org/10.11948/20190289 doi: 10.11948/20190289
    [28] B. Ahmad, A. Alsaedi, A. Alruwauly, On Riemann-Stieltjes integral boundary value problems of Caputo-Riemann-Liouville type fractional integro-differential equations, Filomat, 34 (2020), 2723–2738. http://dx.doi.org/10.2298/FIL2008723A doi: 10.2298/FIL2008723A
    [29] B. Ahmad, A. Alsaedi, Y. Alruwaily, S. K. Ntouyas, Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions, AIMS Math., 5 (2020), 1446–1461. http://dx.doi.org/10.3934/math.2020099 doi: 10.3934/math.2020099
    [30] S. Aljoudi, B. Ahmad, A. Alsaedi, Existence and uniqueness results for a coupled system of Caputo-Hadamard fractional differential equations with nonlocal Hadamard type integral boundary conditions, Fractal Fract., 4 (2020), 13. http://dx.doi.org/10.3390/fractalfract4020013 doi: 10.3390/fractalfract4020013
    [31] B. Ahmad, Y. Alruwaily, A. Alsaedi, S. K. Ntouyas, Riemann-Stieltjes integral boundary value problems involving mixed Riemann-Liouville and Caputo fractional derivatives, J. Nonlinear Funct., 2021 (2021), 1–19. http://dx.doi.org/10.23952/jnfa.2021.11 doi: 10.23952/jnfa.2021.11
    [32] C. Nuchpong, S. K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for Hilfer type sequential fractional differential equations and inclusions involving Riemann-Stieltjes integral multi-strip boundary conditions, Adv. Differ. Equ., 2021 (2021), 268. http://dx.doi.org/10.1186/s13662-021-03424-7 doi: 10.1186/s13662-021-03424-7
    [33] M. I. Abbas, M. Fečkan, Investigation of an implicit Hadamard fractional differential equation with Riemann-Stieltjes integral boundary condition, Math. Slovaca, 72 (2022), 925–934. http://dx.doi.org/10.1515/ms-2022-0063 doi: 10.1515/ms-2022-0063
    [34] M. A. Yuan, J. I. Dehong, Existence of solutions to a system of Riemann-Liouville fractional differential equations with coupled Riemann-Stieltjes integrals boundary conditions, Fractal Fract., 6 (2022), 543. http://dx.doi.org/10.3390/fractalfract6100543 doi: 10.3390/fractalfract6100543
    [35] W. M. Whyburn, Differential equations with general boundary conditions, B. Am. Math. Soc., 48 (1942), 692–705. http://dx.doi.org/10.1090/S0002-9904-1942-07760-3 doi: 10.1090/S0002-9904-1942-07760-3
    [36] R. Conti, Recent trends in the theory of boundary value problems for ordinary differential equations, Bolletino dell Unione Mat. Ital., 22 (1967), 135–178.
    [37] B. Ahmad, A. Alsaedi, M. Alsulami, S. K. Ntouyas, Existence theory for coupled nonlinear third-order ordinary differential equations with nonlocal multi-point anti-periodic type boundary conditions on an arbitrary domain, AIMS Math., 4 (2019), 1634–1663. http://dx.doi.org/10.3934/math.2019.6.1634 doi: 10.3934/math.2019.6.1634
    [38] A. Alsaedi, M. Alsulami, H. M. Srivastav, B. Ahmad, S. K. Ntouyas, Existence theory for nonlinear third-order ordinary differential equations with nonlocal multi-point and multi-strip boundary conditions, Symmetry, 11, (2019), 281. http://dx.doi.org/10.3390/sym11020281
    [39] B. Ahmad, A. Alsaedi, M. Alsulami, S. K. Ntouyas, Second-order ordinary differential equations and inclusions with a new kind of integral and multi-strip boundary conditions, Differ. Equ. Appl., 11 (2019), 183–202. http://dx.doi.org/10.7153/dea-2019-11-07 doi: 10.7153/dea-2019-11-07
    [40] B. Ahmad, A. Alsaedi, M. Alsulami, S. K. Ntouyas, A study of a coupled system of nonlinear second-order ordinary differential equations with nonlocal integral multi-strip boundary conditions on an arbitrary domain, J. Comput. Anal. Appl., 29 (2021), 215–235.
    [41] H. M. Srivastava, S. K. Ntouyas, M. Alsulami, A. Alsaedi, B. Ahmad, A self-adjoint coupled system of nonlinear ordinary differential equations with nonlocal multi-point boundary conditions on anarbitrary domain, Appl. Sci., 11 (2021), 4798. http://dx.doi.org/10.3390/app11114798 doi: 10.3390/app11114798
    [42] D. R. Smart, Fixed point theorems, London: Cambridge University Press Archive, 1980.
    [43] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. http://dx.doi.org/10.1007/978-0-387-21593-8
    [44] K. Deimling, Multivalued differential equations, Berlin: De Gruyter, 1992. http://dx.doi.org/10.1515/9783110874228
    [45] S. Hu, N. Papageorgiou, Handbook of multivalued analysis, Dordrecht: Kluwer, 1997. http://dx.doi.org/10.1007/978-1-4615-4665-8
    [46] H. Covitz, S. B. Nadler, Multi-valued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. http://dx.doi.org/10.1007/BF02771543 doi: 10.1007/BF02771543
    [47] M. Kisielewicz, Differential inclusions and optimal control, Dordrecht: Kluwer, 1991.
    [48] H. F. Bohnenblust, S. Karlin, On a theorem of Ville, In: Contributions to the theory of games (AM-24), New Jersey: Princeton University Press, 1951. http://dx.doi.org/10.1515/9781400881727-014
    [49] A. Lasota, Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 13 (1965), 781–786.
  • This article has been cited by:

    1. Aljawhara H. Almuqrin, Sherif M. E. Ismaeel, C. G. L. Tiofack, A. Mohamadou, Badriah Albarzan, Weaam Alhejaili, Samir A. El-Tantawy, Solving fractional physical evolutionary wave equations using advanced techniques, 2025, 2037-4631, 10.1007/s12210-025-01320-w
    2. Samir A. El-Tantawy, Sahibzada I. H. Bacha, Muhammad Khalid, Weaam Alhejaili, Application of the Tantawy Technique for Modeling Fractional Ion-Acoustic Waves in Electronegative Plasmas having Cairns Distributed-Electrons, Part (I): Fractional KdV Solitary Waves, 2025, 55, 0103-9733, 10.1007/s13538-025-01741-w
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1954) PDF downloads(85) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog