Research article

Function space properties of the Cauchy transform on the Sierpinski gasket

  • Received: 23 October 2022 Revised: 06 December 2022 Accepted: 19 December 2022 Published: 29 December 2022
  • MSC : 28A80, 30C55, 30E20

  • Let $ S_j(z) = \varepsilon_j +(z-\varepsilon_j)/2 $ be an iterated function system, where $ \varepsilon_j = e^{2j\pi i/3} $ for $ j = 0, 1, 2 $. Then, there exists a uniform self-similar measure $ \mu $ supported on a compact set $ K $, which is the attractor of $ \{S_j\}_{j = 0}^2 $. The Hausdorff dimension of the attractor $ K $ is $ \alpha = \log 3/\log 2 $. Let $ F(z) = \int_{K}(z-\omega)^{-1}d\mu(\omega) $ be the Cauchy transform of $ \mu $. In this paper, we consider the Hardy space and the multiplier property of $ F $. We prove that $ F' $ belongs to $ H^p $ for $ 0 < p < 1/(2-\alpha) $ and that $ F $ is a multiplier of some class of function space.

    Citation: Songran Wang, Zhinmin Wang. Function space properties of the Cauchy transform on the Sierpinski gasket[J]. AIMS Mathematics, 2023, 8(3): 6064-6073. doi: 10.3934/math.2023306

    Related Papers:

  • Let $ S_j(z) = \varepsilon_j +(z-\varepsilon_j)/2 $ be an iterated function system, where $ \varepsilon_j = e^{2j\pi i/3} $ for $ j = 0, 1, 2 $. Then, there exists a uniform self-similar measure $ \mu $ supported on a compact set $ K $, which is the attractor of $ \{S_j\}_{j = 0}^2 $. The Hausdorff dimension of the attractor $ K $ is $ \alpha = \log 3/\log 2 $. Let $ F(z) = \int_{K}(z-\omega)^{-1}d\mu(\omega) $ be the Cauchy transform of $ \mu $. In this paper, we consider the Hardy space and the multiplier property of $ F $. We prove that $ F' $ belongs to $ H^p $ for $ 0 < p < 1/(2-\alpha) $ and that $ F $ is a multiplier of some class of function space.



    加载中


    [1] P. Mattila, Geometry sets and measures in Euclidean spaces: fractals and rectifiability, Cambridge: Cambridge University Press, 1995.
    [2] X. Tolsa, Bilipschitz maps, analytic capacity, and the Cauchy integral, Ann. Math., 162 (2005), 1243–1304.
    [3] X. Tolsa, Growth estimates for Cauchy integrals of measures and rectifiability, Geom. Funct. Anal., 17 (2007), 605–643. https://doi.org/10.1007/s00039-007-0598-7 doi: 10.1007/s00039-007-0598-7
    [4] Y. F. Wang, Y. Zhang, D. V. Lukyanenko, A. G. Yagola, Recovering aerosol particle size distribution function on the set of bounded piecewise-convex functions, Inverse Probl. Sci. En., 21 (2013), 339–354. https://doi.org/10.1080/17415977.2012.700711 doi: 10.1080/17415977.2012.700711
    [5] Y. Zhang, D. V. Lukyanenko, A. G. Yagola, An optimal regularization method for convolution equations on the sourcewise represented set, J. Inverse Ill-posed Probl., 23 (2015), 465–475. https://doi.org/10.1515/jiip-2014-0047 doi: 10.1515/jiip-2014-0047
    [6] J. P. Lund, R. S. Strichartz, J. P. Vinson, Cauchy transforms of self-similar measures, Exp. Math., 7 (1998), 177–190. https://doi.org/10.1080/10586458.1998.10504368 doi: 10.1080/10586458.1998.10504368
    [7] X. H. Dong, K. S. Lau, Cauchy transforms of self-similar measures: the Laurent coefficients, J. Funct. Anal., 202 (2003), 67–97. https://doi.org/10.1016/S0022-1236(02)00069-1 doi: 10.1016/S0022-1236(02)00069-1
    [8] X. H. Dong, K. S. Lau, An integral related to the Cauchy transform on the Sierpinski gasket, Exp. Math., 13 (2004), 415–419. https://doi.org/10.1080/10586458.2004.10504549 doi: 10.1080/10586458.2004.10504549
    [9] X. H. Dong, K. S. Lau, Cantor boundary behavior of analytic functions, recent developments in fractals and related fields, Appl. Numer. Harmon. Anal., 2010,283–294.
    [10] X. H. Dong, K. S. Lau, The Cauchy transform on the Sierpinski gasket: fractal behavior at the boundary, Preprint, 2013.
    [11] X. H. Dong, K. S. Lau, J. C. Liu, Cantor boundary behavior of analytic functions, Adv. Math., 232 (2013), 543–570. https://doi.org/10.1016/j.aim.2012.09.021 doi: 10.1016/j.aim.2012.09.021
    [12] X. H. Dong, K. S. Lau, H. H. Wu, Cauchy transform of self-similar measures: starlikeness and univalence, Trans. Am. Math. Soc., 369 (2017), 4817–4842.
    [13] H. P. Li, X. H. Dong, P. F. Zhang, H. H. Wu, Estimates for Taylor coefficients of Cauchy transforms of some Hausdorff measures (Ⅰ), J. Funct. Anal., 280 (2021), 108653. https://doi.org/10.1016/j.jfa.2020.108653 doi: 10.1016/j.jfa.2020.108653
    [14] H. G. Li, X.H. Dong, P. F. Zhang, Estimates for Taylor coefficients of Cauchy transforms of some Hausdorff measures (Ⅱ), J. Funct. Anal., 280 (2021), 108654. https://doi.org/10.1016/j.jfa.2020.108654 doi: 10.1016/j.jfa.2020.108654
    [15] K. J. Folconer, Fractal Geometry-mathematical foundations and applications, New York: John Wiley & Sons, 1990.
    [16] P. Duren, Theory of $H^P$ spaces, New York: Academic Press, 1970.
    [17] T. H. Macgregor, Analytic and univalent function with integral representations involving complex measures, Indiana Univ. Math. J., 86 (1987), 109–130.
    [18] R. A. Hibschweiler, T. H. Macgregor, Closure properties of families of Cauchy-Stieltjes transforms, Proc. Amer. Math. Soc., 105 (1989), 615–621.
    [19] R. A. Hibschweiler, T. H. Macgregor, Multipliers of families of Cauchy-Stieltjes transforms, Trans. Amer. Math. Soc., 331 (1992), 377–394.
    [20] D. J. Hallenbeck, T. H. Macgregor, Fractional Cauchy transforms, inner functions and multipliers, Proc. London math. Soc., 72 (1996), 157–187. https://doi.org/10.1112/plms/s3-72.1.157 doi: 10.1112/plms/s3-72.1.157
    [21] D. J. Hallenbeck, K. Samotij, On Cauchy integrals of logarithmic potentials and their multipliers, J. Math. Anal. Appl., 174 (1993), 614–634.
    [22] J. B. Garnett, Bounded analytic functions, New York: Academic Press, 1981.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(774) PDF downloads(68) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog