Research article

Function space properties of the Cauchy transform on the Sierpinski gasket

Songran Wang ${ }^{1,2, *}$ and Zhinmin Wang ${ }^{3}$
${ }^{1}$ Department of Mathematics, Shantou University, Shantou 515063, China
${ }^{2}$ College of Science, Central South University of Forestry and Technology, Changsha 410004, China
${ }^{3}$ School of Science, Hunan University of Technology, Zhuzhou 412007, China
* Correspondence: Emails: 16srwang@stu.edu.cn.

Abstract

Let $S_{j}(z)=\varepsilon_{j}+\left(z-\varepsilon_{j}\right) / 2$ be an iterated function system, where $\varepsilon_{j}=e^{2 j \pi i / 3}$ for $j=0,1,2$. Then, there exists a uniform self-similar measure μ supported on a compact set K, which is the attractor of $\left\{S_{j}\right\}_{j=0}^{2}$. The Hausdorff dimension of the attractor K is $\alpha=\log 3 / \log 2$. Let $F(z)=\int_{K}(z-\omega)^{-1} d \mu(\omega)$ be the Cauchy transform of μ. In this paper, we consider the Hardy space and the multiplier property of F. We prove that F^{\prime} belongs to H^{p} for $0<p<1 /(2-\alpha)$ and that F is a multiplier of some class of function space.

Keywords: Cauchy transform; Sierpinski gasket; self-similar measure; Hardy space; multiplier Mathematics Subject Classification: 28A80, 30C55, 30E20

1. Introduction

The Cauchy transform of a measure in the plane is a useful tool for geometric measure theory [1-3], and it has also important applications in solving integral equations [4,5]. If the measure is a self-similar measure, the Cauchy transform of it has very rich fractal behavior. Stricharz et. al. [6] initiated the study of the Cauchy transform $F(z)=\int_{K}(z-\omega)^{-1} d \mu(\omega)$ of a self-similar measure μ with compact support K, and they proved that F has a Holder continuous extension over K and showed how to compute the Laurent expansion of F in the complement of a disk containing K. Soon afterwards, more analytic and geometric properties of F were given by Dong and Lau [7-12]: for example, the asymptotic behavior of the Laurent coefficients of F and the region of starlikeness of F. They also gave estimates for the Taylor coefficients of the Cauchy transforms of some special Hausdorff measures [13,14]. For the special case that K is the Sierpinski gasket, and μ is the normalized Hausdorff measure on K, Dong and Lau [8-11] carried out a detailed study of the properties of the mapping of the Cauchy transform on K and investigated some open problems proposed in [6]. Away from K, F is well-behaved, but the image of F is chaotic near the boundary of
K and is difficult to catch [see $6,7,12$]. In this paper, we will consider the properties of the function spaces of $F(z)$ near the Sierpinski gasket.

Let $S_{j}(z)=\varepsilon_{j}+\left(z-\varepsilon_{j}\right) / 2$ be an iterated function system, where $\varepsilon_{j}=e^{2 j \pi i / 3}$ for $j=0,1,2$. The attractor K of $\left\{S_{j}\right\}_{j=0}^{2}$ is just the Sierpinski gasket (Figure 1). It is well known that K is a compact set, $\mathbb{C} \backslash K$ is a multiply connected domain, and the Hausdorff dimension of K is $\alpha=\log 3 / \log 2$. We denote unbounded connected region of $\mathbb{C} \backslash K$ by Δ_{0} and the triangular connected region of $\mathbb{C} \backslash K$ by $\Delta_{n}(n \geq 1)$. Then, $\mathbb{C} \backslash K=\cup_{n=0}^{\infty} \Delta_{n}$.

Figure 1. Sierpinski gasket.

Let μ be the uniform self-similar measure on K, i.e., μ is the restriction of the α-Hausdorff measure on K normalized to a probability measure. With slight abusing of notation, we let \mathcal{H}^{α} be the Hausdorff measure normalized on K. From the basic property of the Hausdorff measure [15], for $E \subset \mathbb{C}$, we have $\mathcal{H}^{\alpha}(\phi(E))=\mathcal{H}^{\alpha}(E)$, where ϕ can be the complex conjugation or the rotation of $e^{i \theta}$. Also, for any $n \in \mathbb{Z}, \mathcal{H}^{\alpha}\left(2^{n} E\right)=2^{\alpha n} \mathcal{H}(E)$. The Cauchy transform of $\mu=\left.\mathcal{H}^{\alpha}\right|_{K}$ is

$$
\begin{equation*}
F(z)=\int_{K} \frac{d \mathcal{H}^{\alpha}(w)}{z-\omega} . \tag{1.1}
\end{equation*}
$$

Our main consideration is on the dyadic points of $\partial \Delta_{0}$. With fixed k, for $1 \leq m \leq 2^{k}-1$, let

$$
z_{k, m}=\frac{m}{2^{k}} \varepsilon_{1}+\left(1-\frac{m}{2^{k}}\right) \varepsilon_{2}=-\frac{1}{2}+\frac{m-2^{k-1}}{2^{k}} \sqrt{3} i .
$$

These are the dyadic points on the line segment joining the two vertices ε_{1} and ε_{2}. The dyadic points on the other two sides of $\partial \Delta_{0}$ can be obtained by $z_{k, m}$ multiplied by $\varepsilon_{j}, j=1,2$. It suffices to consider $z_{k, m}$ since $\varepsilon_{j} F\left(\varepsilon_{j} z\right)=F(z), j=0,1,2$.

The paper is organized as follows. In Section 2, we introduce some necessary results and notations. In Section 3, we give an H^{p} space property of $F(1 / z)$ on $|z|<1$. In the final section, we study the multiplier property of $F(1 / z)$ on $|z|<1$.

2. Preliminaries

In this section, we first give some necessary notations and propositions firstly. Let $T=e^{\pi i}(K-1)$ be a relocation of the Sierpinski gasket K. The new vertices are at $0, \sqrt{3} e^{\pi i / 6}, \sqrt{3} e^{-\pi i / 6}$. Set $S_{j} K=$
$K_{j}, j=0,1,2$. Let $T_{j}=e^{\pi i}\left(K_{j}-1\right), j=0,1,2$, denote the three triangular components of T containing the respective vertices. We define the "Sierpinski cones" of T (Figure 2) as $A_{0}=\bigcup_{n \in \mathbb{Z}} 2^{n}\left(T_{1} \cup T_{2}\right)$. For $\ell=1, \cdots, 5$, let $A_{\ell}=e^{\ell \pi i / 3} A_{0}$, and

$$
H_{\ell}(z)=\int_{A_{\ell}} \frac{d \mathcal{H}^{\alpha}(\omega)}{(z-\omega)^{2}}
$$

Figure 2. Sierpinski cones.
It is easy to check that $H_{\ell}(2 z)=2^{\alpha-2} H_{\ell}(z)$ by the scaling property of Hausdorff measure. In the sequel, we need the following propositions.

Proposition 2.1. [9] There exists some constant $C>0$ such that ,

$$
\max _{\text {dist(z, }, \text {) } \geq t}\left|F^{\prime}(z)\right| \leq C t^{\alpha-2}, t>0 .
$$

Proposition 2.2. [9] For $0<\rho<1$, there exists some constant $C>0$ which depends on ρ such that for $|\arg z|<5 \pi / 6$ and $0<|z| \leq \rho \sqrt{3}$,

$$
\left|F^{\prime}(1+z)+H_{3}(z)\right| \leq C .
$$

For the details of the proof of the above two propositions, we can see [10].
3. H^{p} property of $F\left(\frac{1}{z}\right)$ on $|z|<1$

In this section, we consider the function space property of $F^{\prime}\left(\frac{1}{z}\right)$ on $\mathbb{D}=\{z:|z|<1\}$. The Hardy space H^{p} consists of analytic functions f in \mathbb{D} such that

$$
\|f\|_{p}=\sup _{0 \leq r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p}<+\infty .
$$

Theorem 3.1. Let $g(z)=F\left(\frac{1}{z}\right)$ for $z \in \mathbb{D}$. Then, $g^{\prime}(z) \in H^{p}$ for $0<p<\frac{1}{2-\alpha}$ and $g^{\prime} \notin H^{p}$ for $p \geq \frac{1}{2-\alpha}$, where α is the Hausdorff dimension of K.

Remark Similarly, we may prove that $g^{(k)}(z) \in H^{p}$ for $0<p<\frac{1}{k+1-\alpha}$ and $g^{(k)}(z) \notin H^{p}$ for $p \geq \frac{1}{k+1-\alpha}$.

Proof. Note that $g(z)$ is analytic in \mathbb{D}, and $g^{\prime}\left(e^{i \theta}\right)$ exists for $\theta \notin\{0,2 \pi / 3,4 \pi / 3\}$. By Theorem 2.6 in [16, p. 21], we only need to prove $g^{\prime}\left(e^{i \theta}\right) \in L^{p}$ for $0<p<1 /(2-\alpha)$, and $g^{\prime}\left(e^{i \theta}\right) \notin L^{p}$ for $p \geq 1 /(2-\alpha)$.

For $-\pi / 3 \leq \theta<0$, let $z=e^{i \theta}$ and $z^{*}=\rho e^{-i \theta} \in \partial \Delta_{0}$, where $\rho>0$. By the sine rule, we have

$$
\begin{align*}
\operatorname{dist}\left(e^{-i \theta}, K\right) & =\sin \left(\frac{\pi}{6}-\theta\right)\left|e^{-i \theta}-z^{*}\right| \\
& =-\sin \frac{\theta}{2}\left(\sqrt{3} \cos \frac{\theta}{2}+\sin \frac{\theta}{2}\right) \\
& \geq\left|\sin \frac{\theta}{2}\right| . \tag{3.1}
\end{align*}
$$

From Proposition 2.1, there exists some constant $C>0$ such that

$$
\left|g^{\prime}(z)\right| \leq C \operatorname{dist}\left(e^{-i \theta}, K\right)^{\alpha-2} \leq C|\theta|^{\alpha-2},-\frac{\pi}{3} \leq \theta<0 .
$$

Notice that \mathcal{H}^{α} and K are symmetric with respect to the real-axis. Then, $g^{\prime}(\bar{z})=\overline{g^{\prime}(z)}$, and $\int_{-\pi / 3}^{\pi / 3}\left|g^{\prime}\left(e^{i \theta}\right)\right|^{p} d \theta=2 \int_{-\pi / 3}^{0}\left|g^{\prime}\left(e^{i \theta}\right)\right|^{p} d \theta$. Hence, for $0<p<1 /(2-\alpha)$,

$$
\int_{-\pi}^{\pi}\left|g^{\prime}\left(e^{i \theta}\right)\right|^{p} d \theta=6 \int_{-\pi / 3}^{0}\left|g^{\prime}\left(e^{i \theta}\right)\right|^{p} d \theta \leq C \int_{0}^{\pi / 3} \theta^{p(\alpha-2)} d \theta<+\infty .
$$

The above inequality gives $g^{\prime}\left(e^{i \theta}\right) \in L^{p}$ for $0<p<1 /(2-\alpha)$.
Next, we will prove $g^{\prime}\left(e^{i \theta}\right) \notin L^{\frac{1}{2-\alpha}}$. For $0<t \leq \sqrt{3} / 2$ and $|\theta|<5 \pi / 6$, from Proposition 2.2, we obtain

$$
\begin{equation*}
\left|F^{\prime}\left(1+t e^{i \theta}\right)+2^{(2-\alpha) N} H_{3}\left(2^{N} t e^{i \theta}\right)\right| \leq C_{1}, \tag{3.2}
\end{equation*}
$$

where the positive integer N satisfies $1 / 2 \leq 2^{N} t<1$. For $0<t<1$, let $1+t e^{i \theta}=e^{i \varphi}$. Then,

$$
\begin{equation*}
\varphi=\varphi(t)=\arctan \frac{t \sqrt{1-t^{2} / 4}}{1-t^{2} / 2} \quad \text { and } \quad \theta=\theta(t)=\frac{\pi}{2}+\arcsin \frac{t}{2} . \tag{3.3}
\end{equation*}
$$

Since $F^{\prime}\left(e^{i \varphi}\right)=-e^{-2 i \varphi} g^{\prime}\left(e^{-i \varphi}\right)$ and $H_{3}(2 z)=2^{\alpha-2} H_{3}(z)$, we have

$$
\begin{equation*}
\left|e^{-2 i \varphi} g^{\prime}\left(e^{-i \varphi}\right)-2^{(2-\alpha) N} H_{3}\left(2^{N} t e^{i \theta}\right)\right| \leq C_{1} \tag{3.4}
\end{equation*}
$$

by using (3.2). Define $\beta=\arcsin (t / 2)$ and $b=b(t):=2^{N} t$. Noting that $b=b(t) \in\left[\frac{1}{2}, 1\right)$ and $i\left(e^{i \beta}-1\right)=-2 \sin (\beta / 2) e^{i \beta / 2}$, we see that

$$
\begin{align*}
H_{3}\left(b i e^{i \beta}\right) & =\int_{A_{3}} \frac{d \mathcal{H}^{\alpha}(w)}{\left(b i-w+b i\left(e^{i \beta}-1\right)\right)^{2}} \\
& =\int_{A_{3}} \frac{d \mathcal{H}^{\alpha}(w)}{(b i-w)^{2}}+\sum_{k=1}^{\infty}(k+1) \int_{A_{3}} \frac{\left(2 b \sin \left(\frac{\beta}{2}\right)\right)^{k} e^{\frac{k i i}{2}} d \mathcal{H}^{\alpha}(w)}{(b i-w)^{k+2}} \\
& :=H_{3}(b i)+\varepsilon(t) . \tag{3.5}
\end{align*}
$$

To estimate $\varepsilon(t)$, we set $E_{1}=-T_{1}, E_{2}=-T_{2}$. Then,

$$
\begin{aligned}
|\varepsilon(t)| \leq & \sum_{k=1}^{\infty}(k+1) \int_{A_{3}} \frac{(2 b \sin (\beta / 2))^{k} d \mathcal{H}^{\alpha}(w)}{|b i-w|^{k+2}} \\
= & \sum_{k=1}^{\infty}(k+1) \sum_{n=-\infty}^{\infty} 3^{n} \int_{E_{1} \cup E_{2}} \frac{(2 b \sin (\beta / 2))^{k} d \mathcal{H}^{\alpha}(w)}{\left|b i-2^{n} w\right|^{k+2}} \\
\leq & \sum_{k=1}^{\infty}(k+1) \sum_{n=0}^{\infty}\left(\frac{3}{8}\right)^{n} \int_{E_{1} \cup E_{2}} \frac{(2 b \sin (\beta / 2))^{k} d \mathcal{H}^{\alpha}(w)}{\left|2^{-n} b i-w\right|^{k+2}} \\
& +\sum_{k=1}^{\infty}(k+1) \sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n} \int_{E_{1} \cup E_{2}} \frac{(2 b \sin (\beta / 2))^{k} d \mathcal{H}^{\alpha}(w)}{\left|b i-2^{-n} w\right|^{k+2}} .
\end{aligned}
$$

With consideration of geometric factors, for $b \in[1 / 2,1), n \geq 1$ and $w \in E_{1} \cup E_{2}$, the two inequalities $\left|w-2^{-n} b i\right| \geq 3 / 4$ and $\left|b i-2^{-n} w\right| \geq \sqrt{3} b / 2$ hold. Hence,

$$
|\varepsilon(t)| \leq \frac{16}{15} \sum_{k=1}^{\infty}(k+1)\left(\frac{4}{3}\right)^{k+2}\left(2 b \sin \left(\frac{\beta}{2}\right)\right)^{k}+\frac{1}{3} \sum_{k=1}^{\infty}(k+1)\left(\frac{2 \sqrt{3}}{3 b}\right)^{k+2}\left(2 b \sin \left(\frac{\beta}{2}\right)\right)^{k} .
$$

By $\sin \beta=t / 2$, it is easy to check that $\sin (\beta / 2)=\sqrt{1-\sqrt{1-t^{2} / 4}} / \sqrt{2}<t / 3$ for small $t>0$. This shows that we can find constants $C_{2}>0$ and $\delta>0$ such that

$$
\begin{equation*}
|\varepsilon(t)| \leq C_{2} t, \quad 0<t \leq \delta \tag{3.6}
\end{equation*}
$$

From (3.4)-(3.6), we know that

$$
\begin{aligned}
\left|g^{\prime}\left(e^{-i \varphi}\right)\right| & \geq 2^{(2-\alpha) N}\left(\left|H_{3}(b i)\right|-C_{2} t\right)-C_{1} \\
& \geq 2^{(2-\alpha) N}\left|H_{3}(b i)\right|-C,
\end{aligned}
$$

where C is a positive constant. This implies that, for $0<t \leq \delta$, we have

$$
\begin{equation*}
\left(C+\left|g^{\prime}\left(e^{-i \varphi}\right)\right|\right)^{\frac{1}{2-\alpha}} \geq 2^{N}\left|H_{3}(b i)\right|^{\frac{1}{2-\alpha}} . \tag{3.7}
\end{equation*}
$$

Let the positive integer N_{0} satisfy $2^{-N} \leq \delta$ for all $N \geq N_{0}$. Note that $\varphi^{\prime}(t) \geq c_{1}>0$ for $0<t \leq \delta$. According to (3.7), we obtain

$$
\begin{aligned}
\int_{\varphi\left(2^{-N-1}\right)}^{\varphi\left(2^{-N}\right)}\left(C+\left|g^{\prime}\left(e^{-i \varphi}\right)\right|\right)^{\frac{1}{2-\alpha}} d \varphi & \geq 2^{N} \int_{\varphi\left(2^{-N-1}\right)}^{\varphi\left(2^{-N}\right)}\left|H_{3}(b i)\right|^{\frac{1}{2-\alpha}} d \varphi \\
& \geq c_{1} 2^{N} \int_{2^{-N-1}}^{2^{-N}}\left|H_{3}\left(2^{N} t i\right)\right|^{\frac{1}{2-\alpha}} d t \\
& =c_{1} \int_{1 / 2}^{1}\left|H_{3}(x i)\right|^{\frac{1}{2-\alpha}} d x \\
& :=c_{2} .
\end{aligned}
$$

We can check that $H_{3}(z)$ is non-constant analytic in $|\arg z|<5 \pi / 6$. This gives $c_{2}>0$. Noting that $\varphi\left(2^{-N-1}\right) \rightarrow 0^{+}$as $N \rightarrow \infty$, we have

$$
\int_{0}^{\varphi\left(2^{-N_{0}}\right)}\left(C+\left|g^{\prime}\left(e^{-i \varphi}\right)\right|\right)^{\frac{1}{2-\alpha}} d \varphi=\sum_{N=N_{0}}^{+\infty} \int_{\varphi\left(2^{-N-1}\right)}^{\varphi\left(2^{-N}\right)}\left(C+\left|g^{\prime}\left(e^{-i \varphi}\right)\right|\right)^{\frac{1}{2-\alpha}} d \varphi=+\infty .
$$

By using $(a+b)^{p} \leq 2^{p}\left(a^{p}+b^{p}\right)$ for $a>0, b>0$ and $p>0$, we have

$$
\int_{0}^{\varphi\left(2^{-N_{0}}\right)}\left|g^{\prime}\left(e^{-i \varphi}\right)\right|^{\frac{1}{2-\alpha}} d \varphi=+\infty
$$

which implies that $g^{\prime}(z) \notin H^{p}$ for $p \geq 1 /(2-\alpha)$.

4. Multiplier property of $F\left(\frac{1}{z}\right)$ on $|z|<1$

In this section, we consider the multiplier property of $g(z)$. Let Λ denote the set of complex-valued Borel measures on $\mathbb{T}=\{z:|z|=1\}$, let $k_{\lambda}(z)=(1-z)^{-\lambda}$ for $\lambda>0$, and $k_{\lambda}(z)=\log \frac{1}{1-z}+1$ for $\lambda=0$. Here, we choose the branch of $k_{\lambda}(z)$ which equals 1 when $z=0$. Let \mathfrak{F}_{λ} denote the family of functions h for which there exists $\mu \in \Lambda$ such that

$$
\begin{equation*}
h(z)=\int_{\mathbb{T}} k_{\lambda}(\zeta z) d \mu(\zeta),|z|<1 \tag{4.1}
\end{equation*}
$$

Each \mathfrak{F}_{λ} is a Banach space with respect to the norm defined by

$$
\|h\|_{\widetilde{\gamma}_{\lambda}}=\inf \{\|\mu\|: \mu \in \Lambda \text { such that (4.1) holds }\},
$$

where $\|\mu\|$ denotes the total variation of the measure μ. The spaces \mathfrak{F}_{λ} were introduced in [17,18], and some roperties of functions in \mathfrak{F}_{λ} were obtained in [19,20].

An analytic function $v(z)$ in \mathbb{D} is called a multiplier of \mathfrak{F}_{λ} provided that $v(z) h(z) \in \mathfrak{F}_{\lambda}$ for all $h \in \mathfrak{F}_{\lambda}$. Let \mathcal{M}_{λ} denote the set of all multipliers of $\tilde{\mathscr{F}}_{\lambda}$. \mathcal{M}_{λ} is a Banach space with respect to the norm defined by

$$
\|v\|_{\mathcal{M}_{\lambda}}=\sup \left\{\|v h\|_{\tilde{\mathscr{F}}_{1}}: h \in \mathfrak{F}_{\lambda},\|h\|_{\tilde{\mathcal{F}}_{1}} \leq 1\right\} .
$$

The family \mathcal{M}_{λ} has been studied in [19-21]. In this section, we will consider the multiplier property of $g(z)=F(1 / z)$ with respect to \tilde{F}_{λ}.
Theorem 4.1. For each $\beta \geq 0, g(z) \in \mathcal{M}_{\beta}$. For any small $\varepsilon>0, g^{\prime}(z) \in \mathfrak{F}_{2-\alpha+\varepsilon}$ and $g^{\prime}(z) \notin \mathfrak{F}_{2-\alpha-\varepsilon}$, where α is the Hausdorff dimension of K.

Proof. Since $g^{\prime} \in H^{p}$ for some $p>1$, we have $g \in \mathcal{M}_{\beta}$ for each $\beta \geq 0$ by Theorem 3.1 in [21, p. 621]. It follows from the remark of Theorem 3.1 that $g^{\prime \prime}(z) \in H^{1 /(3-\alpha)} \subset H^{1 /(3-\alpha+\varepsilon)}$. Together with Theorem 3 in [17, p. 116], we see that $H^{1 / p} \subset \mathfrak{F}_{p}$ for $p \geq 1$. Hence, $g^{\prime \prime} \in \mathfrak{F}_{3-\alpha+\varepsilon}$. Note that $f \in \mathfrak{F}_{\lambda}$ if and only if $f^{\prime} \in \mathscr{F}_{\lambda+1}$ [17, p. 112]. Consequently $g^{\prime}(z) \in \mathscr{F}_{2-\alpha+\varepsilon}$ follows. From [7, p. 70], we obtain that $g(z)=z+\sum_{n=1}^{\infty} a_{3 n+1} z^{3 n+1}$ for $|z|<1$, and $c_{1} n^{-\alpha} \leq a_{3 n+1} \leq c_{2} n^{-\alpha}$ for $n \geq 1$, with constants $c_{1}>0$ and $c_{2}>0$. Assume that $g^{\prime}(z) \in \mathfrak{F}_{2-\alpha-\varepsilon}$. Since every complex measure on \mathbb{T} is of bounded variation, it follows easily that there exists some constant $c>0$ such that $\left|(3 n+1) a_{3 n+1}\right| \leq c n^{1-\alpha-\varepsilon}, n \geq 1$. This is a contradiction. Then, the result follows.

In view of Theorem 4.1, an interesting question is to determine if $g^{\prime}(z) \in \mathfrak{F}_{2-\alpha}$, which is equivalent to ([17, p. 115]).

$$
\begin{equation*}
h(z)=\sum_{n=0}^{\infty} \frac{n+1}{d_{n}(2-\alpha)} \int_{K} \omega^{n} d \mathcal{H}^{\alpha}(\omega) z^{n} \in \mathfrak{F}_{1} \tag{4.2}
\end{equation*}
$$

where $d_{n}(\lambda)=\frac{\Gamma(n+\lambda)}{\Gamma(n+1) \Gamma(\lambda)}$ is defined by $(1-x)^{-\lambda}=\sum_{n=0}^{\infty} d_{n}(\lambda) x^{n}$. It follows from Stirling's formula that $d_{n}(\lambda)(n+1)^{1-\lambda}=\Gamma(\lambda)^{-1}+c(\lambda)(n+1)^{-1}+O\left((n+1)^{-2}\right)$. Then,

$$
\frac{n+1}{d_{n}(2-\alpha) d_{n}(\alpha+1)}=\frac{(n+1)^{1-\alpha}(n+1)^{\alpha}}{d_{n}(2-\alpha) d_{n}(\alpha+1)}=c_{0}+\frac{c_{1}}{n+1}+c_{n}
$$

where $\left|c_{n}\right| \leq C(n+1)^{-2}$. If we substitute this into (4.2), then we have

$$
\begin{aligned}
h(z)= & c_{0} \int_{K} \frac{d \mathcal{H}^{\alpha}(\omega)}{(1-z \omega)^{\alpha+1}}+c_{1} \sum_{n=0}^{\infty} \frac{d_{n}(\alpha+1)}{n+1} \int_{K} \omega^{n} d \mathcal{H}^{\alpha}(\omega) z^{n}+ \\
& \sum_{n=0}^{\infty} c_{n} d_{n}(\alpha+1) \int_{K} \omega^{n} d \mathcal{H}^{\alpha}(\omega) z^{n} \\
:= & c_{0} h_{1}(z)+c_{1} h_{2}(z)+h_{3}(z) .
\end{aligned}
$$

Since $\left|d_{n}(\alpha+1) \int_{K} \omega^{n} d \mathcal{H}^{\alpha}(\omega)\right| \leq C$ by [7], it follows that $h_{2}(z) \in H^{2}$ and $h_{3}(z) \in H^{\infty}$, which imply $c_{1} h_{2}(z)+h_{3}(z) \in \mathfrak{F}_{1}$ as $H^{\infty} \subset H^{2} \subset H^{1} \subset \mathfrak{F}_{1}$. Consequently,

$$
\begin{equation*}
g^{\prime}(z) \in \mathfrak{F}_{2-\alpha} \Longleftrightarrow h_{1}(z)=\int_{K} \frac{d \mathcal{H}^{\alpha}(\omega)}{(1-z \omega)^{\alpha+1}} \in \mathfrak{F}_{1} . \tag{4.3}
\end{equation*}
$$

In view of (4.3), by [18], we know that $g^{\prime}(z) \in \mathscr{F}_{2-\alpha}$ if and only if $\int_{0}^{z} h_{1}(t) d t \in \mathfrak{F}_{0}$. This leads us to consider

$$
\begin{equation*}
f_{\varepsilon}(z)=\int_{K} \frac{d \mathcal{H}^{\alpha}(\omega)}{(1-\omega z)^{\alpha-\varepsilon}},|z|<1 \tag{4.4}
\end{equation*}
$$

Theorem 4.2. $f_{\varepsilon} \in \mathcal{M}_{\beta}$ for each $\beta \geq 0$ if $\varepsilon>0$, and $f_{0}(z) \notin \mathcal{M}_{\beta}$ for each $\beta \geq 0$.
Proof. For the first assertion, we only need to show $f_{\varepsilon}^{\prime}(z) \in H^{p}$ for some $p>1$ by Theorem 3.1 in [21, p. 621]. Noting that $(1-x)^{-\lambda}=\sum_{n=0}^{\infty} d_{n}(\lambda) x^{n}$ for $|x|<1$, it follows easily by the Hölder inequality that

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{\varepsilon}^{\prime}\left(r e^{i \theta}\right)\right|^{p} d \theta & \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\int_{K} \frac{|\omega|}{\left.\left|1-r e^{i \theta} \omega\right|\right|^{(\alpha+1-\varepsilon)}} d \mathcal{H}^{\alpha}(\omega)\right)^{p} d \theta \\
& \leq C \int_{K} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\left|1-r e^{i \theta} \omega\right|^{p(\alpha+1-\varepsilon)}} d \mathcal{H}^{\alpha}(\omega) \\
& =C \int_{K} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{n=0}^{\infty} d_{n}\left(\frac{p}{2}(\alpha+1-\varepsilon)\right) r^{n} e^{i n \theta} \omega^{n}\right|^{2} d \theta d \mathcal{H}^{\alpha}(\omega) \\
& =C \sum_{n=0}^{\infty} d_{n}^{2}\left(\frac{p}{2}(\alpha+1-\varepsilon)\right) \int_{K}|\omega|^{2 n} d \mathcal{H}^{\alpha}(\omega) r^{2 n}
\end{aligned}
$$

It follows from Proposition 4.2 in [7] that $\int_{K}|\omega|^{n} d \mathcal{H}^{\alpha}(\omega) \leq C n^{-\alpha}$. Combining this with $d_{n}(\lambda) \sim$ $\Gamma(\lambda)^{-1} n^{\lambda-1}(n \rightarrow \infty)$, we get that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{\varepsilon}^{\prime}\left(r e^{i \theta}\right)\right|^{p} d \theta \leq C \sum_{n=1}^{\infty} n^{p(\alpha+1-\varepsilon)-2-\alpha} r^{2 n}
$$

Notice that $p(\alpha+1-\varepsilon)-2-\alpha \rightarrow-\varepsilon-1$ as $p \rightarrow 1$, we can choose $p>1$ such that $p(\alpha+1-\varepsilon)-2-\alpha<$ $-1-\varepsilon / 2$. Hence, $f_{\varepsilon}^{\prime} \in H^{p}$ for $p>1$.

For the second assertion, it is sufficient to prove that $f_{0}(z)$ is unbounded in \mathbb{D}. By Theorem 5.2 in [7], we get that $\int_{K} \omega^{n} d \mathcal{H}^{\alpha}(\omega)=0$ for $n \neq 3 k$, and there exists some constant $c_{1}>0$ such that $\int_{K} \omega^{3 k} d \mathcal{H}^{\alpha}(\omega) \geq c_{1} k^{-\alpha}$ for all $k \geq 1$. Note that $d_{n}(\alpha) \geq c_{2} n^{\alpha-1}$ for some constant $c_{2}>0$ and all $n \geq 1$. It follows that there exists some constant $c_{3}>0$ such that

$$
\begin{aligned}
f_{0}(x) & =\sum_{n=0}^{\infty} d_{n}(\alpha) \int_{K} \omega^{n} d \mathcal{H}^{\alpha}(\omega) x^{n} \\
& =1+\sum_{n=1}^{\infty} d_{3 n}(\alpha) \int_{K} \omega^{3 n} d \mathcal{H}^{\alpha}(\omega) x^{3 n} \\
& \geq c_{3} \sum_{n=1}^{\infty} \frac{x^{3 n}}{n} \rightarrow \infty, x \rightarrow 1^{-} .
\end{aligned}
$$

Although we can not prove $f_{0}(z)=\int_{0}^{z} h_{1}(t) d t \in \mathfrak{F}_{0}\left(\right.$ or $\left.g^{\prime}(z) \in \mathfrak{F}_{2-\alpha}\right)$, yet we can prove $f_{0}(z) \in$ BMOA, which consists of all functions $f \in H^{1}$ satisfying

$$
\|f\|_{\mathrm{BMOA}}=\sup _{I \subset \mathbb{T}} \frac{1}{|I|} \int_{I}\left|f(\zeta)-f_{I} \| d \zeta\right|<\infty,
$$

where the supremum is taken over all $\operatorname{arcs} I \subset \mathbb{T}$ with $|I|=\int_{I}|d \zeta|$ and $f_{I}=|I|^{-1} \int_{I} f(\zeta)|d \zeta|$. It should be noted that $\mathfrak{F}_{0} \subset \mathrm{BMOA} \subset H^{p}$ for all $p>0$ [21, p. 617].

Theorem 4.3. $f_{0}(z) \in$ BMOA.
Proof. We first prove that there exists some positive constant C such that

$$
\begin{equation*}
\left|f_{0}^{\prime}(z)\right| \leq \frac{C}{\left|1-z^{3}\right|},|z|<1 . \tag{4.5}
\end{equation*}
$$

It is equivalent to prove that $p(z):=\left(1-z^{3}\right) f_{0}^{\prime}(z)$ is bounded for $|z|<1$. It is easy check that $p(z)$ is continue on $\{z:|z| \leq 1 / 2\}$. Hence, $\max _{|z| 1 / 2 / 2}|p(z)|<\infty$. Next, we prove $p(z)$ is bounded for $1 / 2<$ $|z|<1$. Let $\Omega=\left\{r e^{i \theta}: 1 / 2<r<1,-\pi / 3 \leq \theta \leq 0\right\}$. For $z \in \Omega$, let $d=\operatorname{dist}\left(z^{-1}, K\right)$. Obviously, $d>0$ as $1<|z|^{-1}<2$. Noting that $p\left(e^{2 \pi i / 3} z\right)=p(z),|p(\bar{z})|=|p(z)|$, and we can check that there exists some positive constant C_{1} such that

$$
\left|f_{0}^{\prime}(z)\right| \leq C_{1} \int_{K} \frac{d \mathcal{H}^{\alpha}(\omega)}{\left|\frac{1}{z}-\omega\right|^{\alpha+1}} \leq \frac{C_{1}}{d}
$$

With consideration of geometry, we find that there exists some constant $C_{2}>0$ such that $d=\operatorname{dist}\left(z^{-1}, K\right) \geq C_{2}|1-z|$ for $z \in \Omega$. Hence,

$$
|p(z)| \leq C_{1} C_{2}^{-1}\left|1-z^{3} \| 1-z\right|^{-1} \leq C_{3}, z \in \Omega .
$$

Note that $\left|p\left(e^{2 \pi i / 3} z\right)\right|=|p(z)|,|p(\bar{z})|=|p(z)|$. We obtain that $p(z)$ is bounded for $1 / 2<|z|<1$, and (4.5) follows.

It is known that an analytic function $\psi(z)$ on \mathbb{D} belongs to BMOA if and only if $\left|\psi^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) d x d y / \pi$ is a Carleson measure [22, p. 240]. By using (4.5), we have $\left|f_{0}^{\prime}(z)\right| \leq C\left|1-z^{3}\right|^{-1}$. Hence, for any small sector $S_{h}\left(\theta_{0}\right)=\left\{r e^{i \theta}: 1-h \leq r<1,\left|\theta-\theta_{0}\right| \leq h\right\}$,

$$
\sup _{h>0} \frac{1}{h} \int_{S_{h}\left(\theta_{0}\right)}\left|f_{0}^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) \frac{d x d y}{\pi} \leq C \sup _{h>0} \frac{1}{h} \int_{S_{h}(0)} \frac{1-|z|^{2}}{\left|1-z^{3}\right|^{2}} d x d y \leq C^{\prime} .
$$

This shows that $\left|f_{0}^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) d x d y / \pi$ is a Carleson measure, and the result follows.

Acknowledgments

This work was supported by the NNSF of China (Grant No. 12101219) and the Hunan Provincial NSF (Grant No. 2022JJ40141). Also, the authors are grateful to Professor Xin-Han Dong for his guidance to complete this paper.

Conflict of interest

The authors declare no conflicts of interest.

References

1. P. Mattila, Geometry sets and measures in Euclidean spaces: fractals and rectifiability, Cambridge: Cambridge University Press, 1995.
2. X. Tolsa, Bilipschitz maps, analytic capacity, and the Cauchy integral, Ann. Math., 162 (2005), 1243-1304.
3. X. Tolsa, Growth estimates for Cauchy integrals of measures and rectifiability, Geom. Funct. Anal., 17 (2007), 605-643. https://doi.org/10.1007/s00039-007-0598-7
4. Y. F. Wang, Y. Zhang, D. V. Lukyanenko, A. G. Yagola, Recovering aerosol particle size distribution function on the set of bounded piecewise-convex functions, Inverse Probl. Sci. En., 21 (2013), 339-354. https://doi.org/10.1080/17415977.2012.700711
5. Y. Zhang, D. V. Lukyanenko, A. G. Yagola, An optimal regularization method for convolution equations on the sourcewise represented set, J. Inverse Ill-posed Probl., 23 (2015), 465-475. https://doi.org/10.1515/jiip-2014-0047
6. J. P. Lund, R. S. Strichartz, J. P. Vinson, Cauchy transforms of self-similar measures, Exp. Math., 7 (1998), 177-190. https://doi.org/10.1080/10586458.1998.10504368
7. X. H. Dong, K. S. Lau, Cauchy transforms of self-similar measures: the Laurent coefficients, J. Funct. Anal., 202 (2003), 67-97. https://doi.org/10.1016/S0022-1236(02)00069-1
8. X. H. Dong, K. S. Lau, An integral related to the Cauchy transform on the Sierpinski gasket, Exp. Math., 13 (2004), 415-419. https://doi.org/10.1080/10586458.2004.10504549
9. X. H. Dong , K. S. Lau, Cantor boundary behavior of analytic functions, recent developments in fractals and related fields, Appl. Numer. Harmon. Anal., 2010, 283-294.
10. X. H. Dong, K. S. Lau, The Cauchy transform on the Sierpinski gasket: fractal behavior at the boundary, Preprint, 2013.
11. X. H. Dong, K. S. Lau, J. C. Liu, Cantor boundary behavior of analytic functions, Adv. Math., 232 (2013), 543-570. https://doi.org/10.1016/j.aim.2012.09.021
12. X. H. Dong, K. S. Lau, H. H. Wu, Cauchy transform of self-similar measures: starlikeness and univalence, Trans. Am. Math. Soc., 369 (2017), 4817-4842.
13. H. P. Li, X. H. Dong, P. F. Zhang, H. H. Wu, Estimates for Taylor coefficients of Cauchy transforms of some Hausdorff measures (I), J. Funct. Anal., 280 (2021), 108653. https://doi.org/10.1016/j.jfa.2020.108653
14. H. G. Li, X.H. Dong, P. F. Zhang, Estimates for Taylor coefficients of Cauchy transforms of some Hausdorff measures (II), J. Funct. Anal., 280 (2021), 108654. https://doi.org/10.1016/j.jfa.2020.108654
15. K. J. Folconer, Fractal Geometry-mathematical foundations and applications, New York: John Wiley \& Sons, 1990.
16. P. Duren, Theory of H^{P} spaces, New York: Academic Press, 1970.
17. T. H. Macgregor, Analytic and univalent function with integral representations involving complex measures, Indiana Univ. Math. J., 86 (1987), 109-130.
18. R. A. Hibschweiler, T. H. Macgregor, Closure properties of families of Cauchy-Stieltjes transforms, Proc. Amer. Math. Soc., 105 (1989), 615-621.
19. R. A. Hibschweiler, T. H. Macgregor, Multipliers of families of Cauchy- Stieltjes transforms, Trans. Amer. Math. Soc., 331 (1992), 377-394.
20. D. J. Hallenbeck, T. H. Macgregor, Fractional Cauchy transforms, inner functions and multipliers, Proc. London math. Soc., 72 (1996), 157-187. https://doi.org/10.1112/plms/s3-72.1.157
21. D. J. Hallenbeck, K. Samotij, On Cauchy integrals of logarithmic potentials and their multipliers, J. Math. Anal. Appl., 174 (1993), 614-634.
22. J. B. Garnett, Bounded analytic functions, New York: Academic Press, 1981.
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
