In this paper we expressed the eigenvalues of a sort of heptadiagonal symmetric matrices as the zeros of explicit rational functions establishing upper and lower bounds for each of them. From the prescribed eigenvalues, we computed eigenvectors for these types of matrices, giving also a formula not dependent on any unknown parameter for its determinant and inverse. Potential applications of the results are still provided.
Citation: João Lita da Silva. Spectral properties for a type of heptadiagonal symmetric matrices[J]. AIMS Mathematics, 2023, 8(12): 29995-30022. doi: 10.3934/math.20231534
[1] | Tatjana Došenović, Dušan Rakić, Stojan Radenović, Biljana Carić . Ćirić type nonunique fixed point theorems in the frame of fuzzy metric spaces. AIMS Mathematics, 2023, 8(1): 2154-2167. doi: 10.3934/math.2023111 |
[2] | Ying Chang, Hongyan Guan . Generalized (αs,ξ,ℏ,τ)-Geraghty contractive mappings and common fixed point results in partial b-metric spaces. AIMS Mathematics, 2024, 9(7): 19299-19331. doi: 10.3934/math.2024940 |
[3] | Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817 |
[4] | Nihal Taş, Irshad Ayoob, Nabil Mlaiki . Some common fixed-point and fixed-figure results with a function family on Sb-metric spaces. AIMS Mathematics, 2023, 8(6): 13050-13065. doi: 10.3934/math.2023657 |
[5] | Sourav Shil, Hemant Kumar Nashine . Positive definite solution of non-linear matrix equations through fixed point technique. AIMS Mathematics, 2022, 7(4): 6259-6281. doi: 10.3934/math.2022348 |
[6] | Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Manuel De la Sen . Generalized common best proximity point results in fuzzy multiplicative metric spaces. AIMS Mathematics, 2023, 8(11): 25454-25476. doi: 10.3934/math.20231299 |
[7] | Mi Zhou, Naeem Saleem, Xiao-lan Liu, Nihal Özgür . On two new contractions and discontinuity on fixed points. AIMS Mathematics, 2022, 7(2): 1628-1663. doi: 10.3934/math.2022095 |
[8] | Nosheen Zikria, Aiman Mukheimer, Maria Samreen, Tayyab Kamran, Hassen Aydi, Kamal Abodayeh . Periodic and fixed points for F-type contractions in b-gauge spaces. AIMS Mathematics, 2022, 7(10): 18393-18415. doi: 10.3934/math.20221013 |
[9] | Aftab Hussain . Fractional convex type contraction with solution of fractional differential equation. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344 |
[10] | Fatima M. Azmi . New fixed point results in double controlled metric type spaces with applications. AIMS Mathematics, 2023, 8(1): 1592-1609. doi: 10.3934/math.2023080 |
In this paper we expressed the eigenvalues of a sort of heptadiagonal symmetric matrices as the zeros of explicit rational functions establishing upper and lower bounds for each of them. From the prescribed eigenvalues, we computed eigenvectors for these types of matrices, giving also a formula not dependent on any unknown parameter for its determinant and inverse. Potential applications of the results are still provided.
Let R be a commutative ring with identity, and A a unital algebra over R. For any X,Y∈A, denote the Jordan product of X,Y by X∘Y=XY+YX. An additive mapping Δ from A into itself is called a derivation (resp., anti-derivation) if Δ(XY)=Δ(X)Y+XΔ(Y) (resp., Δ(XY)=Δ(Y)X+YΔ(X)) for all X,Y∈A. It is called a Jordan derivation if Δ(X∘Y)=Δ(X)∘Y+X∘Δ(Y) for all X,Y∈A. It is called a Jordan triple derivation if Δ(X∘Y∘Z)=Δ(X)∘Y∘Z+X∘Δ(Y)∘Z+X∘Y∘Δ(Z) for all X,Y,Z∈A. Obviously, every derivation or anti-derivation is a Jordan derivation. However, the inverse statement is not true in general (see [1]). If a Jordan derivation or Jordan triple derivation is not a derivation, then it is said to be proper. Otherwise, it is said to be improper.
In the past few decades, the problem of characterizing the structure of Jordan derivations and Jordan triple derivations has attracted the attention of many mathematical workers and has achieved some important research results. For example, Herstein in [2] proved that every Jordan derivation on a prime ring not of characteristic 2 is a derivation. This result was extended by Cusack in [3] and Brešar in [4] to the case of semiprime. Zhang in [5,6] showed that every Jordan derivation on a nest algebra or a 2-torsion free triangular algebra is a inner derivation or a derivation, respectively. Later, Hoger in [7] extended the result of Zhang in [6] and proved that, under certain conditions, each Jordan derivation on trivial extension algebras is a sum of a derivation and an anti-derivation. In addition, there have been many research results on Jordan triple derivations, as shown in references [8,9,10,11].
Definition 1.1. Let R be a commutative ring with identity, A a unital algebra over R, N0 be the set of all nonnegative integers, and D={dn}n∈N0 be a family of additive maps on A such that d0=idA (the identity map on A). D is said to be:
(i) a higher derivation if for each n∈N0,
dn(XY)=∑p+q=ndp(X)dq(Y) |
for all X,Y∈A;
(ii) a higher anti-derivation if for each n∈N0,
dn(XY)=∑p+q=ndp(Y)dq(X) |
for all X,Y∈A;
(iii) a higher Jordan derivation if for each n∈N0,
dn(X∘Y)=∑p+q=ndp(X)∘dq(Y) |
for all X,Y∈A;
(iv) a higher Jordan triple derivation if for each n∈N0,
dn(X∘Y∘Z)=∑p+q+r=ndp(X)∘dq(Y)∘dr(Z) |
for all X,Y,Z∈A.
If a higher Jordan derivation or a higher Jordan triple derivation is not a higher derivation, then it is said to be proper. Otherwise, it is said to be improper. With the deepening of research on this topic, many research achievements have been obtained about higher Jordan derivations and higher Jordan triple derivations. For example, Xiao and Wei in [12] proved that every higher Jordan derivation on triangular algebras is a higher derivation; Fu, Xiao, and Du in [13] extended this conclusion, and proved that every nonlinear higher Jordan derivation on triangular algebras is a higher derivation. Later, Vishki, Mirzavaziri, and Moafian in [14] proved that, under certain conditions, every higher Jordan derivation on trivial extension algebras is a higher derivation, and this conclusion further extended the works of the authors of references [12,13]. Salih and Haetinger in [15] proved that, under certain conditions, every higher Jordan triple derivation on prime rings is a higher derivation. Ashraf and Jabeenin [16] proved that every nonlinear higher Jordan triple derivable mapping on triangular algebras is a higher derivation.
In this paper, we are interested in describing the form of higher Jordan triple derivation on trivial extension algebras. As a main result, we give conditions under which each higher Jordan triple derivation on trivial extension algebras is a sum of a higher derivation and a higher anti-derivation. This result extends the study of Jordan derivation on trivial extension algebras [7], Jordan triple derivations on ∗-type trivial extension algebras [17], and Jordan higher derivations on trivial extension algebras [14].
Let R be a commutative ring with identity, A a unital algebra over R and M be an A-bimodule. Then the direct product A⊕M together with the pairwise addition, scalar product, and algebra multiplication defined by
(a,m)(b,n)=(ab,an+mb)(∀a,b∈A,m,n∈M) |
is an R-algebra with a unity (1,0) denoted by
T=A⊕M={(a,m):a∈A,m∈M} |
and T is called a trivial extension algebra.
An important example of trivial extension algebra is the triangular algebra which was introduced by Cheung in [18]. Let A and B be unital algebras over a commutative ring R, and M be a unital (A,B)-bimodule, which is faithful as both a left A-module and a right B-module. Then, the R-algebra
U=Tri(A,M,B)={(am0b):a∈A,m∈M,b∈B} |
under the usual matrix operations is called a triangular algebra. Basic examples of triangular algebras are upper triangular matrix algebras and nest algebras.
It is well-known that every triangular algebra can be viewed as a trivial extension algebra. Indeed, denote by A⊕B the direct product as an R-algebra, and then M is viewed as an A⊕B-bimodule with the module action given by (a,b)m=am and m(a,b)=mb for all (a,b)∈A⊕B and m∈M. Then triangular algebra U is isomorphic to trivial extensions algebra T=(A⊕B)⊕M. However, a trivial extension algebra is not necessarily a triangular algebra. For more details about trivial extension algebras, we refer the readers to [19,20,21].
The following notations will be used in our paper: Let R be a commutative ring with identity, A a unital algebra over R, M an A-bimodule, T=A⊕M be a 2-torsion free trivial extension algebra (i.e., for any X∈T, 2X={0} implies X=0), and denote by 1 and 0 are the unity and zero of T=A⊕M, respectively.
We say T=A⊕M is a ∗-type trivial extension algebra if A has a non-trivial idempotent element e and f=1−e such that
(i) eMf=M;
(ii) exeM={0} implies exe=0,∀x∈A;
(iii) Mfxf={0} implies fxf=0,∀x∈A;
(iv) exfye=0=fxeyf=0,∀x,y∈A.
For convenience, in the following we let P1=(e,0), P2=(f,0), and
Tij=PiTPj( 1≤i≤j≤2). |
It is not hard to see that the trivial extension algebra T may be represented as
T=P1TP1+P1TP2+P2TP1+P2TP2=T11+T12+T21+T22. |
Then every element A∈T may be represented as A=A11+A12+A21+A22, where Aij∈Tij(1≤i≤j≤2). In the following, we give a property of ∗-type trivial extension algebras (see Lemma 1.1).
Lemma 1.1. [17] Let T be a ∗-type trivial extension algebra and 1≤i≠j≤2. Then,
(i) for any A11∈T11, if A11T12=0, then A11=0;
(ii) for any A22∈T22, if T12A22=0, then A22=0;
(iii) AijBji=AiiBji=AijBii=0, ∀Aii,Bii∈Tii,∀Aij∈Tij,∀Bji∈Tji.
For ease of reading, we provide the main conclusions of reference [17] as follows:
Theorem 1.1. [17] Let T=A⊕M be a 2-torsion free ∗-type trivial extension algebra and Δ be a Jordan triple derivation on T. Then, there exists a derivation D and an anti-derivation φ on T, respectively, such that
Δ(A)=D(A)+φ(A) |
for all A∈T.
The main result of this paper is the following theorem:
Theorem 2.1. Let T=A⊕M be a 2-torsion free ∗-type trivial extension algebra, and D={dn}n∈N0 be a higher Jordan triple derivation on T. Then, there exists a higher derivation G={gn}n∈N0 and a higher anti-derivation F={fn}n∈N0 on T, respectively, such that
dn(X)=gn(X)+fn(X) |
for any n≥1 and X∈T.
In order to prove Theorem 2.1, we shall establish Theorems 2.2 and 2.3 in the following. We assume that T is a ∗-type trivial extension algebra, N0 is the set of all nonnegative integers, and D={dn}n∈N0 is a higher Jordan triple derivation on T.
In [17], it is proved that if d1 is a Jordan triple derivation on T, then for all Aij∈Tij (1≤i,j≤2), d1 satisfies the following properties (L):
(i) d1(P1)=−d1(P2);
(ii) d1(P1)=P1d1(P1)P2+P2d1(P1)P1 and d1(P2)=P1d1(P2)P2+P2d1(P2)P1;
(iii) P2d1(A11)P2=0, P1d1(A11)P2=A11d1(P1) and P2d1(A11)P1=d1(P1)A11;
(iv) P1d1(A22)P1=0,P1d1(A22)P2=d1(P2)A22 and P2d1(A22)P1=A22d1(P2);
(v) d1(A12)=P1d1(A12)P2+P2d1(A12)P1 and d1(A21)=P1d1(A21)P2+P2d1(A21)P1;
(vi) d1(P1)∘d1(P2)=d1(P1)∘d1(A12)=d1(P1)∘d1(A21)=d1(P2)∘d1(A12)=d1(P2)∘d1(A21)=0;
(vii) d1(A12)∘d1(A12)=d1(A21)∘d1(A21)=d1(A12)∘d1(A21)=0.
Now, for all Aij∈Tij (1≤i,j≤2), we assume that dk (1⩽k<n) satisfy the properties L. In the following, we show that dn satisfies the properties L.
Lemma 2.1. Let D={dn}n∈N0 be a higher Jordan triple derivation on T. Then, for each n≥1, and for any A11∈T11,A12∈T12,A21∈T21, A22∈T22,
(i) dn(P1)=P1dn(P1)P2+P2dn(P1)P1 and dn(P2)=P1dn(P2)P2+P2dn(P2)P1;
(ii) dn(P1)=−dn(P2);
(iii) P2dn(A11)P2=0, P1dn(A11)P2=A11dn(P1) and P2dn(A11)P1=dn(P1)A11;
(iv) P1dn(A22)P1=0,P1dn(A22)P2=dn(P2)A22 and P2dn(A22)P1=A22dn(P2);
(v) dn(A12)=P1dn(A12)P2+P2dn(A12)P1 and dn(A21)=P1dn(A21)P2+P2dn(A21)P1;
(vi) dn(P1)∘dn(P2)=dn(P1)∘dn(A12)=dn(P1)∘dn(A21)=dn(P2)∘dn(A12)=dn(P2)∘dn(A21)=0;
(vii) dn(A12)∘dn(A12)=dn(A21)∘dn(A21)=dn(A12)∘dn(A21)=0.
Proof. (i) For each n≥1 and for any X,Y,Z∈T, by the definition of D={dn}n∈N0, we get
dn(X∘Y∘Z)=∑p+q+r=ndp(X)∘dq(Y)∘dr(Z). | (2.1) |
Taking X=Y=Z=P1 in Eq (2.1), we assume that dk (1⩽k<n) satisfy the properties L, and then it follows from Lemma 1.1 (iii) that
4dn(P1)=∑p+q+r=ndp(P1)∘dq(P1)∘dr(P1)=∑p+q+r=n,1≤p,q,rdp(P1)∘dq(P1)∘dr(P1)+∑q+r=n,1≤q,rP1∘dq(P1)∘dr(P1)+∑p+r=n,1≤p,rdp(P1)∘P1∘dr(P1)+∑p+q=n,1≤p,qdp(P1)∘dq(P1)∘P1+dn(P1)∘P1∘P1+P1∘dn(P1)∘P1+P1∘P1∘dn(P1)=dn(P1)∘P1∘P1+P1∘dn(P1)∘P1+P1∘P1∘dn(P1)=4P1dn(P1)P1+4P1dn(P1)+4dn(P1)P1. |
This yields from the 2-torsion freeness of T that
P1dn(P1)P1=P2dn(P1)P2=0. |
Similarly, we get that
P1dn(P2)P1=P2dn(P2)P2=0. |
Therefore, dn(P1)=P1dn(P1)P2+P2dn(P1)P1 and dn(P2)=P1dn(P2)P2+P2dn(P2)P1.
(ii) For each n≥1, taking X=P1,Y=P2,Z=P1 in Eq (2.1), we assume that dk (1⩽k<n) satisfy the properties L, then by Lemma 1.1 (iii) and Lemma 2.1 (i), we get that
0=∑p+q+r=ndp(P1)∘dq(P2)∘dr(P1)=∑p+q+r=n,1≤p,q,rdp(P1)∘dq(P2)∘dr(P1)+∑q+r=n,1≤q,rP1∘dq(P2)∘dr(P1)+∑p+r=n,1≤p,rdp(P1)∘P2∘dr(P1)+∑p+q=n,1≤p,qdp(P1)∘dq(P2)∘P1+dn(P1)∘P2∘P1+P1∘dn(P2)∘P1+P1∘P2∘dn(P2)=dn(P1)∘P2∘P1+P1∘dn(P2)∘P1+P1∘P2∘dn(P2)={dn(P1)P2+P2dn(P1)}∘P1+{P1dn(P2)+dn(P2)P1}∘P1=P1dn(P1)P2+P2dn(P1)P1+P1dn(P2)+dn(P2)P1+2P1dn(P2)P1=P1dn(P1)P2+P2dn(P1)P1+P1dn(P2)P2+P2dn(P2)P1=dn(P1)+dn(P2). |
(iii)–(iv) For each n≥1 and for any A11∈T11, taking X=A11,Y=Z=P2 in Eq (2.1), we assume that dk (1⩽k<n) satisfy the properties L, and then by Lemma 1.1 (iii) and Lemma 2.1 (i,ii), we get that
0=∑p+q+r=ndp(A11)∘dq(P2)∘dr(P2)=∑p+q+r=n,1≤p,q,rdp(A11)∘dq(P2)∘dr(P2)+∑q+r=n,1≤q,rA11∘dq(P2)∘dr(P2)+∑p+r=n,1≤p,rdp(A11)∘P2∘dr(P2)+∑p+q=n,1≤p,qdp(A11)∘dq(P2)∘P2+dn(A11)∘P2∘P2+A11∘dn(P2)∘P2+A11∘P2∘dn(P2)=dn(A11)∘P2∘P2+A11∘dn(P2)∘P2+A11∘P2∘dn(P2)={dn(A11)P2+P2dn(A11)}∘P2+{A11dn(P2)+dn(P2)A11}∘P2={dn(A11)P2+P2dn(A11)+2P2dn(A11)P2}+{A11dn(P2)+P2dn(P2)A11}=dn(A11)P2+P2dn(A11)+A11dn(P2)+dn(P2)A11. |
This implies that P2dn(A11)P2=0. and
P1dn(A11)P2=A11dn(P1) and P2dn(A11)P1=dn(P1)A11. |
Similarly, for each n≥1 and for any A22∈T22, we get that P1dn(A22)P1=0, P1dn(A22)P2=dn(P2)A22 and P2dn(A22)P1=A22dn(P2).
(v) For each n≥1 and for any A12∈T12, taking X=P1,Y=A12,Z=P2 in Eq (2.1), we assume that dk (1⩽k<n) satisfy the properties L, and then by Lemma 1.1 (iii) and Lemma 2.1 (i,ii), we get that
dn(A12)=∑p+q+r=ndp(P1)∘dq(A12)∘dr(P2)=∑p+q+r=n,1≤p,q,rdp(P1)∘dq(A12)∘dr(P2)+∑q+r=n,1≤q,rP1∘dq(A12)∘dr(P2)+∑p+r=n,1≤p,rdp(P1)∘A12∘dr(P2)+∑p+q=n,1≤p,qdp(P1)∘dq(A12)∘P2+dn(P1)∘A12∘P2+P1∘dn(A12)∘P2+P1∘A12∘dn(P2)=P1∘dn(A12)∘P2=P1dn(A12)P2+P2dn(A12)P1. |
Similarly, for each n≥1 and for any A21∈T21, we get that dn(A21)=P1dn(A21)P2+P2dn(A21)P1.
(vi) For each n≥1 and for any A12∈T12, A21∈T21, by Lemma 1.1 (iii) and Lemma 2.1 (i,ii,v), we can easily check that (vi) holds. Similarly, we show (vii) holds. The proof is complete.
Theorem 2.2. Let F={fn}n∈N0 be a sequence of mappings on T (with f0=ifT). For each n≥1 and X∈T, define
fn(X)=P2dn(P1XP2)P1+P1dn(P2XP1)P2. |
Then, F is a higher anti-derivation on T.
It is clear that fn(Aii)=0 and fn(Aij)=Pjfn(Aij)Pi for each n≥1, and for any Aii∈Tii,Aij∈Tij (1≤i≠j≤2).
In the following, we show that F={fn}n∈N0 is a higher anti-derivation, i.e., for each n≥1 and for any X,Y∈T, fn satisfies fn(XY)=∑p+q=nfp(Y)fq(X). For this, we introduce Lemmas 2.2 and 2.3, and prove Lemmas 2.2 and 2.3.
Lemma 2.2. Let fn:T→T be defined as in Theorem 2.2. Then, for each n≥1 and for any Aii,Bii∈Tii,Aij,Bij∈Tij,Bji∈Tji,Bjj∈Tjj (1≤i≠j≤2),
(i) fn(AiiBii)=∑p+q=nfp(Bii)fq(Aii);
(ii) fn(AiiBjj)=∑p+q=nfp(Bjj)fq(Aii);
(iii) fn(AiiBji)=∑p+q=nfp(Bji)fq(Aii);
(iv) fn(AijBii)=∑p+q=nfp(Bii)fq(Aij);
(v) fn(AijBij)=∑p+q=nfp(Bij)fq(Aij);
(vi) fn(AijBji)=∑p+q=nfp(Bji)fq(Aij).
Proof. (i) For any n≥1 and Aii,Bii∈Tii (1≤i≤2), we get from fn(AiiBii)=fn(Aii)=fn(Bii)=0 that
fn(AiiBii)=∑p+q=nfp(Bii)fq(Aii). |
Similarly, we can show (ii) holds.
(iii) For each n≥1 and for any Aii∈Tii,Bji∈Tji (1≤i≠j≤2), on the one hand, we have fn(AiiBji)=fn(0)=0. On the other hand, it follows from fn(Aii)=0 and fn(Bji)=Pifn(Bji)Pj that
∑p+q=nfp(Bji)fq(Aii)=∑p+q=n,1≤p,qfp(Bji)fq(Aii)+fn(Bji)Aii+Bjifn(Aii)=fn(Bji)Aii=(Pifn(Bji)Pj)Aii=0. |
Therefore, fn(AiiBji)=∑p+q=nfp(Bji)fq(Aii). Similarly, we get (iv).
(v) For each n≥1 and for any Aij,Bij∈Tij (1≤i≠j≤2), on the one hand, we have fn(AijBij)=fn(0)=0. On the other hand, we get from fn(Bij)fn(Aij)={Pjfn(Bij)Pi}{Pjfn(Aij)Pi}=0 and Lemma 1.1 (iii) that
∑p+q=nfp(Bij)fq(Aij)=∑p+q=n,1≤p,qfp(Bij)fq(Aij)+fn(Bij)Aij+Bijfn(Aij)=fn(Bij)Aij+Bijfn(Aij)={Pjfn(Bij)Pi}Aij+Bij{Pjfn(Aij)Pi}=0. |
Therefore, fn(AijBij)=∑p+q=nfp(Bij)fq(Aij). Similarly, we get (vi). The proof is complete.
Lemma 2.3. Let fn:T→T be defined as in Theorem 2.2. Then, for each n≥1 and for any Aii∈Tii,Bij∈Tij,Bjj∈Tjj (1≤i≠j≤2),
(i) fn(AiiBij)=∑p+q=nfp(Bij)fq(Aii);
(ii) fn(AijBjj)=∑p+q=nfp(Bjj)fq(Aij).
Proof. (i) For each n≥1 and for any Aii∈Tii,Bij∈Tij (1≤i≠j≤2), it follows from AiiBij=Aii∘Bij∘Pj and Lemma 2.1 that
fn(AiiBij)=Pjdn(AiiBij)Pi=Pjdn(Aii∘Bij∘Pj)Pi=Pj{∑p+q+r=ndp(Aii)∘dq(Bij)∘dr(Pj)}Pi=Pj{∑p+q+r=n,1≤p,q,rdp(Aii)∘dq(Bij)∘dr(Pj)}Pi+Pj{∑q+r=n,1≤q,rAii∘dq(Bij)∘dr(Pj)}Pi+Pj{∑p+r=n,1≤r,tdp(Aii)∘Bij∘dr(Pj)}Pi+Pj{∑p+q=n,1≤r,s,tdp(Aii)∘dq(Bij)∘Pj}Pi+Pj{dn(Aii)∘Bij∘Pj}Pi+Pj{Aii∘dn(Bij)∘Pj}Pi+Pj{Aii∘Bij∘dn(Pj)}Pi=Pj{dn(Aii)∘Bij∘Pj}Pi+Pj{Aii∘dn(Bij)∘Pj}Pi+Pj{Aii∘Bij∘dn(Pj)}Pi=Pj{dn(Aii)BijPj+Pjdn(Aii)Bij+Bijdn(Aii)Pj}Pi+Pj{Aiidn(Bij)Pj+Pjdn(Bij)Aii}Pi+Pj{AiiBij∘dn(Pj)}Pi=Pjdn(Bij)AiiPi=fn(Bij)Aii. | (2.2) |
On the other hand, it is follows from fn(Aii)=0 (n≥1) that fn−k(Bij)dk(Aii)=0, so we get
fn(AiiBij)=fn(Bij)Aii+fn−1(Bij)f1(Aii)+fn−2(Bij)f2(Aii)+…+Bijfn(Aii)=∑p+q=nfp(Bij)fq(Aii). |
Similarly, we get (ii). The proof is complete.
In the following, we give the completed proof of Theorem 2.2:
Proof of Theorem 2.2. For each n≥1, let A=A11+A12+A21+A22 and B=B11+B12+B21+B22 be arbitrary elements of T, where Aij,Bij∈Tij (1≤i,j≤2). Then, it follows from Lemmas 2.2 and 2.3 that
fn(AB)=fn((A11+A12+A21+A22)(B11+B12+B21+B22))=fn(A11B11)+fn(A11B12)+fn(A11B21)+fn(A11B22)+fn(A12B11)+fn(A12B12)+fn(A12B21)+fn(A12B22)+fn(A21B11)+fn(A21B12)+fn(A21B21)+fn(A21B22)+fn(A22B11)+fn(A22B12)+fn(A22B21)+fn(A22B22)=∑p+q=nfp(B11)fq(A11)+∑p+q=nfp(B11)fq(A12)+∑p+q=nfp(B11)fq(A21)+∑p+q=nfp(B11)fq(A22)+∑p+q=nfp(B12)fq(A11)+∑p+q=nfp(B12)fq(A12)+∑p+q=nfp(B12)fq(A21)+∑p+q=nfp(B12)fq(A22)+∑p+q=nfp(B21)fq(A11)+∑p+q=nfp(B21)fq(A12)+∑p+q=nfp(B21)fq(A21)+∑p+q=nfp(B21)fq(A22)+∑p+q=nfp(B22)fq(A11)+∑p+q=nfp(B22)fq(A12)+∑p+q=nfp(B22)fq(A21)+∑p+q=nfp(B22)fq(A22)=∑p+q=nfp(B)fq(A). |
Therefore, F={fn}n∈N0 is a higher anti-derivation on T. The proof is complete.
Theorem 2.3. Let G={gn}n∈N0 be a sequence of mappings on T (with g0=igT). For each n≥1 and for any X∈T, define
gn(X)=dn(X)−fn(X). |
Then, G is a higher derivation on T.
Next, we show that G={gn}n∈N0 is a higher derivation on T. In order to prove G is a higher derivation, we introduce Lemmas 2.4–2.6, and then, using the mathematical induction, we prove Lemmas 2.4–2.6.
In [12] Theorem 1.3, we have proved that if g1=d1−f1, then g1 is a derivation on T, i.e., for any X,Y∈T, g1 satisfies
g1(XY)=g1(X)Y+Xg1(Y)=∑p+q=1gp(X)gq(Y). |
Therefore, in the following, we assume that
gk(XY)=∑p+q=kgp(X)gq(Y) | (2.3) |
for each 1⩽k<n and X,Y∈T. Next, we prove that Lemmas 2.4–2.6 hold.
By the definitions of F={fn}n∈N0 and G={gn}n∈N0, and by Lemma 2.1, we can easily check that the following Lemma holds:
Lemma 2.4. Let gn:T→T be defined as in Theorem 2.3. Then, for each n≥1 and for any Aii∈Tii,Aij∈Tij (1≤i≠j≤2),
(i) gn(Pi)=−gn(Pj) and gn(Pi)=Pign(Pi)Pj+Pjgn(Pi)Pi;
(ii) Pjgn(Aii)Pj=0,Pign(Aii)Pj=Aiign(Pi) and Pjgn(Aii)Pi=gn(Pi)Aii;
(iii) gn(Aij)=Pign(Aij)Pj.
Lemma 2.5. Let gn:T→T be defined as in Theorem 2.3. Then, for each n≥1, and for any Aii,Bii∈Tii, Bjj∈Tjj,Aij,Bij∈Tij (1≤i≠j≤2),
(i) gn(AiiBij)=∑p+q=ngp(Aii)gq(Bij);
(ii) gn(AijBjj)=∑p+q=ngp(Aij)gq(Bjj);
(iii) gn(AiiBii)=∑p+q=ngp(Aii)gq(Bii);
(iv) gn(AiiBjj)=∑p+q=ngp(Aii)gqBjj).
Proof. (i) For each n≥1 and for any Aii∈Tii,Bij∈Tij (1≤i≠j≤2), taking X=Aii,Y=Bij,Z=Pj in Eq (2.1), and by Lemma 1.1 (iii) and Lemma 2.1, we get
dn(AiiBij)=dn(Aii∘Bij∘Pj)=∑p+q+r=ndp(Aii)∘dq(Bij)∘dr(Pj)=∑p+q+r=n,1≤p,q,rdp(Aii)∘dq(Bij)∘dr(Pj)+∑q+r=n,1≤q,rAii∘dq(Bij)∘dr(Pj)+∑p+r=n,1≤p,rdp(Aii)∘Bij∘dr(Pj)+∑p+q=n,1≤p,qdp(Aii)∘dq(Bij)∘Pj+dn(Aii)∘Bij∘Pj+Aii∘dn(Bij)∘Pj+Aii∘Bij∘dn(Pj)=∑p+q=n,1≤p,qdp(Aii)∘dq(Bij)∘Pj+dn(Aii)∘Bij∘Pj+Aii∘dn(Bij)∘Pj=∑p+q=n,1≤p,qdp(Aii)∘dq(Bij)+dn(Aii)Bij+Aiidn(Bij)+dn(Bij)Aii=∑p+q=ndp(Aii)dq(Bij)+dn(Bij)Aii. |
Therefore, it follows from Eq (2.2), with fn(Aii)=0 and fn(Aij)=Pjfn(Aij)Pi (n≥1), that
gn(AiiBij)=dn(AiiBij)−fn(AiiBij)=∑p+q=ndp(Aii)dq(Bij)+dn(Bij)Aii−dn(Bij)Aii=∑p+q=n,1≤p,qdp(Aii)dq(Bij)+dn(Aii)Bij+Aiidn(Bij)=∑p+q=n,1≤p,q{dp(Aii)−fp(Aii)}dq(Bij)+{dn(Aii)−fn(Aii)}Bij+Aii{dn(Bij)−fn(Bij)}=∑p+q=n,1≤p,qgp(Aii)dq(Bij)+gn(Aii)Bij+Aiign(Bij)=∑p+q=n,1≤p,qgp(Aii){dq(Bij)−fq(Bij)}+gn(Aii)Bij+Aiign(Bij)=∑p+q=n,1≤p,qgp(Aii)gq(Bij)+gn(Aii)Bij+Aiign(Bij)=∑p+q=ngp(Aii)gq(Bij). |
Similarly, we get that (ii) holds.
(iii) For each n≥1 and for any Aii,Bii∈Tii,Xij∈Tij (1≤i≠j≤2), by Lemma 2.5 (i) and Eq (2.3), on the one hand, we get
gn(AiiBiiXij)=gn((AiiBii)Xij)=∑p+q=n,1≤qgp(AiiBii)gq(Xij)+gn(AiiBii)Xij=∑p+q=n,1≤q{∑r+s=pgr(Aii)gs(Bii)}gq(Xij)+gn(AiiBii)Xij=∑r+s+q=n,1≤qgr(Aii)gs(Bii)gq(Xij)+gn(AiiBii)Xij. |
On the other hand, we have
gn(AiiBiiXij)=gn(Aii(BiiXij))=∑p+q=ngp(Aii)gq(BiiXij)=∑p+q=ngp(Aii)∑r+s=qgr(Bii)gs(Xij)=∑p+r+s=ngp(Aii)gr(Bii)gs(Xij)=∑p+r+s=n,1≤sgp(Aii)gr(Bii)gs(Xij)+∑p+r=ngp(Aii)gr(Bii)Xij. |
Comparing the above two equations, we get
{gn(AiiBii)−∑p+r=ngp(Aii)gr(Bii)}Xij=0,∀Xij∈Tij(1≤i≠j≤2). |
This yields from Lemma 1.1 (i) that
Pign(AiiBii)Pi=Pi{∑p+r=ngp(Aii)gr(Bii)}Pi. | (2.4) |
Next, we show that
Pign(AiiBii)Pj=Pi{∑p+r=ngp(Aii)gr(Bii)}Pj and Pjgn(AiiBii)Pi=Pj{∑p+r=ngp(Aii)gr(Bii)}Pi. |
Indeed, for each n≥1 and for any Aii,Bii∈Tii (1≤i≠j≤2), taking X=Aii,Y=Z=Pj in Eq (2.1), by Lemma 2.1, we get
0=dn(Aii∘Pj∘Pj)=∑p+q+r=ndp(Aii)∘dq(Pj)∘dr(Pj)=∑p+q+r=n,1≤p,q,rdp(Aii)∘dq(Pj)∘dr(Pj)+∑q+r=n,1≤q,rAii∘dq(Pj)∘dr(Pj)+∑p+r=n,1≤p,rdp(Aii)∘Pj∘dr(Pj)+∑p+q=n,1≤p,qdp(Aii)∘dq(Pj)∘Pj+dn(Aii)∘Pj∘Pj+Aii∘dn(Pj)∘Pj+Aii∘Pj∘dn(Pj)=∑p+q=n,1≤p,qdp(Aii)∘dq(Pj)∘Pj+dn(Aii)∘Pj∘Pj+Aii∘dn(Pj)∘Pj=∑p+q=n,1≤p,q{dp(Aii)dq(Pj)+dq(Pj)dp(Aii)}∘Pj+dn(Aii)Pj+Pjdn(Aii)+Aiidn(Pj)+dn(Pj)Aii=∑p+q=ndp(Aii)dq(Pj)+∑p+q=ndq(Pj)dp(Aii). |
Therefore, we get from ∑p+q=ndp(Aii)dq(Pj)∈Tij and ∑p+q=ndq(Pj)dp(Aii)∈Tji that
∑p+q=ndp(Aii)dq(Pj)=0 and ∑p+q=ndq(Pj)dp(Aii)=0. |
So we get from fk(Aii)=0 and fk(Pj)=0 (k≥1) that
0=∑p+q=ndp(Aii)dq(Pj)=∑p+q=n,1≤p,qdp(Aii)dq(Pj)+dn(Aii)Pj+Aiidn(Pj)=∑p+q=n,1≤p,q(dp(Aii)−fp(Aii))(dq(Pj)−fq(Pj))+(dn(Aii)−fn(Aii))Pj+Aii(dn(Pj)−fn(Pj))=∑p+q=n,1≤p,qgp(Aii)gq(Pj)+gn(Aii)Pj+Aiign(Pj)=∑p+q=ngp(Aii)gq(Pj)=∑p+q=n,1≤qgp(Aii)gq(Pj)+gn(Aii)Pj=−∑p+q=n,1≤qgp(Aii)gq(Pi)+gn(Aii)Pj=−∑p+q=ngp(Aii)gq(Pi)+gn(Aii)Pi+gn(Aii)Pj=−∑p+q=ngp(Aii)gq(Pi)+gn(Aii). |
Therefore,
gn(Aii)=∑p+q=ngp(Aii)gq(Pi). | (2.5) |
For each n≥1 and for any Aii,Bii∈Tii, by Eq (2.5), we get
gn(AiiBii)=∑p+q=ngp(AiiBii)gq(Pi)=∑p+q=n,1≤qgp(AiiBii)gq(Pi)+gn(AiiBii)Pi=∑p+q=n,1≤q{∑r+s=pgr(Aii)gs(Bii)}gq(Pi)+gn(AiiBii)Pi=∑r+s+q=n,1≤qgr(Aii)gs(Bii)gq(Pi)+gn(AiiBii)Pi=n∑r=0gr(Aii){∑s+q=n−r,1≤qgs(Bii)gq(Pi)}+gn(AiiBii)Pi=n∑r=0gr(Aii){∑s+q=n−rgs(Bii)gq(Pi)−gn−r(Bii)Pi}+gn(AiiBii)Pi=n∑r=0gr(Aii){gn−r(Bii)−gn−r(Bii)Pi}+gn(AiiBii)Pi=n∑r=0gr(Aii)gn−r(Bii)−n∑r=0gr(Aii)gn−r(Bii)Pi+gn(AiiBii)Pi=∑p+q=ngp(Aii)gq(Bii)+∑p+q=ngp(Aii)gq(Bii)Pi+gn(AiiBii)Pi. |
This implies that
Pign(AiiBii)Pj=Pi{∑p+q=ngp(Aii)gq(Bii)}Pj. | (2.6) |
Similarly, we get
Pjgn(AiiBii)Pi=Pj{∑p+q=ngp(Aii)gq(Bii)}Pi. | (2.7) |
Therefore, by Eqs (2.4), (2.6), (2.7) and Lemma 2.4 (ii), we get that
gn(AiiBii)=Pi{∑p+q=ngp(Aii)gq(Bii)}Pi+Pi{∑p+q=ngp(Aii)gq(Bii)}Pj+Pj{∑p+q=ngp(Aii)gq(Bii)}Pi=∑p+q=ngp(Aii)gq(Bii). |
(iv) For each n≥1 and for any Aii∈Tii,Bjj∈Tjj (1≤i≠j≤2), taking X=Aii,Y=Bjj,Z=Pj (1≤i≠j≤2) in Eq (2.1), we get from Lemma 2.1 that
0=dn(Aii∘Bjj∘Pj)=∑p+q+r=ndp(Aii)∘dq(Bjj)∘dr(Pj)=∑p+q+r=n,1≤p,q,rdp(Aii)∘dq(Bjj)∘dr(Pj)+∑q+r=n,1≤q,rAii∘dq(Bjj)∘dr(Pj)+∑p+r=n,1≤p,rdp(Aii)∘Bjj∘dr(Pj)+∑p+q=n,1≤p,qdp(Aii)∘dq(Bjj)∘Pj+dn(Aii)∘Bjj∘Pj+Aii∘dn(Bjj)∘Pj+Aii∘Bjj∘dn(Pj)=∑p+q=n,1≤p,qdp(Aii)∘dq(Bjj)∘Pj+dn(Aii)∘Bjj∘Pj+Aii∘dn(Bjj)∘Pj=∑p+q=n,1≤p,qdp(Aii)dq(Bjj)∘Pj+∑p+q=n,1≤p,qdp(Bjj)dq(Aii)∘Pj+dn(Aii)Bjj+Bjjdn(Aii)+Aiidn(Bjj)+dn(Bjj)Aii=∑p+q=n,1≤p,qdp(Aii)dq(Bjj)+∑p+q=n,1≤p,qdp(Bjj)dq(Aii)+dn(Aii)Bjj+Bjjdn(Aii)+Aiidn(Bjj)+dn(Bjj)Aii=∑p+q=ndp(Aii)dq(Bjj)+∑p+q=ndp(Bjj)dq(Aii). |
Hence, we get from ∑p+q=ndp(Aii)dq(Bjj)∈Tij and ∑p+q=ndp(Bjj)dq(Aii)∈Tji (1≤i≠j≤2) that
∑p+q=ndp(Aii)dq(Bjj)=∑p+q=ndp(Bjj)dq(Aii)=0. |
Therefore, it follows from gk(Aii)=dk(Aii) and gk(Bjj)=dk(Bjj) (k≥1) that
gn(AiiBjj)=0=∑p+q=ndp(Aii)dq(Bjj)=∑p+q=ngp(Aii)gq(Bjj). |
The proof is complete.
Lemma 2.6. Let gn:T→T be defined as in Theorem 2.3. Then for each n≥1 and for any Aii∈Tii,Bjj∈Tjj,Aij,Bij∈Tij,Aji,Bji∈Tji (1≤i≠j≤2),
(i) gn(AijBji)=∑p+qgp(Aij)gq(Bji);
(ii) gn(AijBij)=∑p+q=ngp(Aij)gq(Bij);
(iii) gn(AiiBji)=∑p+q=ngp(Aii)gq(Bji);
(iv) gn(AjiBjj)=∑p+q=ngp(Aji)gq(Bjj).
Proof. (i) For each n≥1 and for any Aij∈Tij,Bji∈Tji (1≤i≠j≤2), it follows from Lemma 1 (iii) that AijBji=0, and therefore we get
gn(AijBji)=gn(0)=0. |
On the other hand, by Lemma 1 (iii) and Lemma 2.4 (iii), we have gp(Aij)gq(Bji)=0, therefore we get
gn(AijBji)=0=∑p+q=ngp(Aij)gq(Bji). |
Similarly, we get that (ii) holds.
(iii) For each n≥1 and for any Aii∈Tii,Bji∈Tji (1≤i≠j≤2), by Lemma 1 (iii) and Lemma 2.4 (ii,iii), we get gp(Aii)gq(Bji)=0, and therefore we get
gn(AiiBji)=0=∑p+q=ngp(Aii)gq(Bji). |
Similarly, we get (iv) holds. The proof is complete.
In the following, we complete the proof of Theorem 2.3.
Proof of Theorem 2.3. For any n≥1, let A=A11+A12+A21+A22 and B=B11+B12+B21+B22 be arbitrary elements of T, where Aij,Bij∈Tij (1≤i,j≤2). It follows from Lemmas 2.4–2.6 that
gn(AB)=gn((A11+A12+A21+A22)(B11+B12+B21+B22))=gn(A11B11)+gn(A11B12)+gn(A11B21)+gn(A11B22)+gn(A12B11)+gn(A12B12)+gn(A12B21)+gn(A12B22)+gn(A21B11)+gn(A21B12)+gn(A21B21)+gn(A21B22)+gn(A22B11)+gn(A22B12)+gn(A22B21)+gn(A22B22)=∑p+q=ngp(A11)gq(B11)+∑p+q=ngp(A11)gq(B12)+∑p+q=ngp(A11)gq(B21)+∑p+q=ngp(A11)gq(B22)+∑p+q=ngp(A12)gq(B11)+∑p+q=ngp(A12)gq(B12)+∑p+q=ngp(A12)gq(B21)+∑p+q=ngp(A12)gq(B22)+∑p+q=ngp(A21)gq(B11)+∑p+q=ngp(A21)gq(B12)+∑p+q=ngp(A21)gq(B21)+∑p+q=ngp(A21)gq(B22)+∑p+q=ngp(A22)gq(B11)+∑p+q=ngp(A22)gq(B21)+∑p+q=ngp(A22)gq(B21)+∑p+q=ngp(A22)gq(B22)=∑p+q=ngp(A11+A12+A21+A22)gq(B11+B12+B21+B22)=∑p+q=ngp(A)gq(B). |
Therefore, G={gn}n∈N0 is a higher derivation on T. The proof is complete.
Next, we show that Theorem 2.1 holds.
Proof of Theorem 2.1. For each n≥1 and for any A,B∈T, by Theorems 2.2 and 2.3, we obtain that
dn(A)=gn(A)+fn(A), |
where G={gn}n∈N0 is a higher derivation and F={fn}n∈N0 is a higher anti-derivation from T into itself such that fn(Aii)=0 for all Aii∈Tii (1≤i≤2). The proof is complete.
Remark 2.1. Let D={dn}n∈N0 be a higher Jordan triple derivation from T into itself. Then, by Theorems 2.1 and 2.2, we obtain that the following statements are equivalent.
(i) D={dn}n∈N0 is a higher derivation;
(ii) Pjdn(Aij)Pi=0 for each n≥1 and for any Aij∈Tij (1≤i≠j≤2);
(iii) dn(Aij)∈Tij for each n≥1 and for any Aij∈Tij (1≤i≠j≤2).
In the following, we show that every higher Jordan triple derivation on triangular algebras is a higher derivation.
Corollary 2.1. Let A and B be unital algebras over a commutative ring R and M be a unital (A,B)-bimodule, which is faithful as both a left A-module and a right B-module, and U be the 2-torsion free triangular algebra, and D={dn}n∈N0 be a higher Jordan triple derivation on U. Then D={dn}n∈N0 is a higher derivation.
Proof of Corollary 2.1. Let 1A and 1B be the identities of the algebras A and B, respectively, and let 1 be the identity of the triangular algebra U. We denote
P1=(1A000) by the standard idempotent of U, P2=1−P1=(0001B) |
and
Uij=PiUPj for 1≤i≤j≤2. |
It is clear that the triangular algebra U may be represented as
U=P1UP1+P1UP2+P2UP2=A+M+B. |
Here P1UP1 and P2UP2 are subalgebras of U isomorphic to A and B, respectively, and P1UP2 is a (P1UP1,P2UP2)-bimodule isomorphic to the (A,B)-bimodule M.
By the definition of triangular algebra U, we can easily check that U is a ∗-type trivial extension algebra, and so if U is a 2-torsion free triangular algebra, then for any n≥1, A=A11+A12+A22∈U, where Aij∈Uij (1≤i,j≤2), we get from Theorem 2.1 that
dn(A)=gn(A)+fn(A). |
Where G={gn}n∈N0 is a higher derivation and F={fn}n∈N0 is a higher anti-derivation from U into itself such that fn(Aii)=0 for all Aii∈Uii (1≤i≤2). Next, we show that fn(A12)=0 for each n≥1 and for any A12∈U12.
Indeed, for any A12∈U12, it follows from Lemma 2.1 (v) and U21={0} that
dn(A12)=P1dn(A12)P2+P2dn(A12)P1=P1dn(A12)P2. |
And then we obtain from the definition of fn in Theorem 2.2 that fn(A12)=P2dn(A12)P1=0. Therefore, for any A∈U, fn(A)=0, so D={gn}n∈N0 is a higher derivation. The proof is complete.
Next, we give an application of Corollary 2.1 to certain special classes of triangular algebras, such as block upper triangular matrix algebras and nest algebras.
Let R be a commutative ring with identity and let Mn×k(R) be the set of all n×k matrices over R. For n≥2 and m≤n, the block upper triangular matrix algebra Tˉkn(R) is a subalgebra of Mn(R) with the form
(Mk1(R)Mk1×k2(R)⋯Mk1×km(R)0Mk2(R)⋯Mk2×km(R)⋮⋮⋱⋮00⋯Mkm(R)), |
where ˉk=(k1,k2,⋯,km) is an ordered m-vector of positive integers such that k1+k2+⋯+km=n.
A nest of a complex Hilbert space H is a chain N of closed subspaces of H containing {0} and H, which is closed under arbitrary intersections and closed linear span, and B(H) is the algebra of all bounded linear operators on H. The nest algebra associated with N is the algebra
AlgN={T∈B(H):TN⊆N, for all N∈N}. |
A nest N is called trivial if N={0,H}. It is clear that every nontrivial nest algebra is a triangular algebra and every finite dimensional nest algebra is isomorphic to a complex block upper triangular matrix algebra.
Corollary 2.2. Let Tˉkn(R) be a 2-torsion free block upper triangular matrix algebra, and D={dn}n∈N0 be a higher Jordan triple derivation on Tˉkn(R). Then, D={dn}n∈N0 is a higher derivation.
Corollary 2.3. Let N be a nontrivial nest of a complex Hilbert space H, AlgN a nest algebra, and D={dn}n∈N0 a higher Jordan triple derivation on AlgN. Then, D={dn}n∈N0 is a higher derivation.
The authors declare that they have not used artificial intelligence tools in the creation of this article.
This research is supported by the National Natural Science Foundation of China (No.11901451), Talent Project Foundation of Yunnan Provincial Science and Technology Department (No.202105AC160089), Natural Science Foundation of Yunnan Province (No.202101BA070001198), and Basic Research Foundation of Yunnan Education Department (No.2021J0915).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
R. Álvarez-Nodarse, J. Petronilho, N. R. Quintero, On some tridiagonal k-Toeplitz matrices: Algebraic and analytical aspects. Applications, J. Comput. Appl. Math., 184 (2005), 518–537. https://doi.org/10.1016/j.cam.2005.01.025 doi: 10.1016/j.cam.2005.01.025
![]() |
[2] |
J. Anderson, A secular equation for the eigenvalues of a diagonal matrix perturbation, Linear Algebra Appl., 246 (1996), 49–70. https://doi.org/10.1016/0024-3795(94)00314-9 doi: 10.1016/0024-3795(94)00314-9
![]() |
[3] | H. Aref, S. Balachandar, A First Course in Computational Fluid Dynamics, Cambridge: Cambridge University Press, 2018. https://doi.org/10.1017/9781316823736 |
[4] |
S. O. Asplund, Finite boundary value problems solved by Green's matrix, Math. Scand., 7 (1959), 49–56. https://doi.org/10.7146/math.scand.a-10560 doi: 10.7146/math.scand.a-10560
![]() |
[5] |
I. Bar-On, Interlacing properties of tridiagonal symmetric matrices with applications to parallel computing, SIAM J. Matrix Anal. Appl., 17 (1996), 548–562. https://doi.org/10.1137/S0895479893252003 doi: 10.1137/S0895479893252003
![]() |
[6] |
R. M. Beam, R. F. Warming, The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices, SIAM J. Sci. Comput., 14 (1993), 971–1006. https://doi.org/10.1137/0914059 doi: 10.1137/0914059
![]() |
[7] |
D. Bini, M. Capovani, Spectral and computational properties of band symmetric Toeplitz matrices, Linear Algebra Appl., 52/53 (1983), 99–126. https://doi.org/10.1016/0024-3795(83)80009-3 doi: 10.1016/0024-3795(83)80009-3
![]() |
[8] |
J. R. Bunch, C. P. Nielsen, D. C. Sorensen, Rank-one modification of the symmetric eigenproblem, Numer. Math., 31 (1978), 31–48. https://doi.org/10.1007/BF01396012 doi: 10.1007/BF01396012
![]() |
[9] | S. C. Chapra, Applied Numerical Methods with MATLABⓇ for Engineers and Scientists, 4th edition, New York: McGraw-Hill, 2018. |
[10] |
S. Demko, Inverses of band matrices and local convergence of spline projections, SIAM J. Numer. Anal., 14 (1977), 616–619. https://doi.org/10.1137/0714041 doi: 10.1137/0714041
![]() |
[11] |
S. E. Ekström, C. Garoni, A. Jozefiak, J. Perla, Eigenvalues and eigenvectors of tau matrices with applications to Markov processes and economics, Linear Algebra Appl., 627 (2021), 41–71. https://doi.org/10.1016/j.laa.2021.06.005 doi: 10.1016/j.laa.2021.06.005
![]() |
[12] |
M. Elouafi, An eigenvalue localization theorem for pentadiagonal symmetric Toeplitz matrices, Linear Algebra Appl., 435 (2011), 2986–2998. https://doi.org/10.1016/j.laa.2011.05.025 doi: 10.1016/j.laa.2011.05.025
![]() |
[13] |
D. Fasino, Spectral and structural properties of some pentadiagonal symmetric matrices, Calcolo, 25 (1988), 301–310. https://doi.org/10.1007/BF02575838 doi: 10.1007/BF02575838
![]() |
[14] |
C. F. Fischer, R. A. Usmani, Properties of some tridiagonal matrices and their application to boundary value problems, SIAM J. Numer. Anal., 6 (1969), 127–142. https://doi.org/10.1137/0706014 doi: 10.1137/0706014
![]() |
[15] |
C. M. da Fonseca, J. Petronilho, Explicit inverses of some tridiagonal matrices, Linear Algebra Appl., 325 (2001), 7–21. https://doi.org/10.1016/S0024-3795(00)00289-5 doi: 10.1016/S0024-3795(00)00289-5
![]() |
[16] |
C. M. da Fonseca, On the location of the eigenvalues of Jacobi matrices, Appl. Math. Lett., 19 (2006), 1168–1174. https://doi.org/10.1016/j.aml.2005.11.029 doi: 10.1016/j.aml.2005.11.029
![]() |
[17] |
S. Friedland, A. A. Melkman, On the eigenvalues of non-negative Jacobi matrices, Linear Algebra Appl., 25 (1979), 239–253. https://doi.org/10.1016/0024-3795(79)90021-1 doi: 10.1016/0024-3795(79)90021-1
![]() |
[18] | C. Garoni, S. Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and Applications, Cham: Springer Cham, 2017. https://doi.org/10.1007/978-3-319-53679-8 |
[19] |
M. J. C. Gover, The eigenproblem of a tridiagonal 2-Toeplitz matrix, Linear Algebra Appl., 197/198 (1994), 63–78. https://doi.org/10.1016/0024-3795(94)90481-2 doi: 10.1016/0024-3795(94)90481-2
![]() |
[20] |
S. Haley, Solution of band matrix equations by projection-recurrence, Linear Algebra Appl., 32 (1980), 33–48. https://doi.org/10.1016/0024-3795(80)90005-1 doi: 10.1016/0024-3795(80)90005-1
![]() |
[21] | D. A. Harville, Matrix Algebra From a Statistician's Perspective, New York: Springer-Verlag, 1997. https://doi.org/10.1007/b98818 |
[22] | J. D. Hoffman, Numerical Methods for Engineers and Scientists, 2ed edition, New York: Marcel Dekker, 2001. https://doi.org/10.1201/9781315274508 |
[23] | R. A. Horn, C. R. Johnson, Matrix Analysis, 2ed edition, New York: Cambridge University Press, 2013. https://doi.org/10.1017/CBO9781139020411 |
[24] |
A. J. Keeping, Band matrices arising from finite difference approximations to a third order partial differential equation, SIAM J. Numer. Anal., 7 (1970), 142–156. https://doi.org/10.1137/0707010 doi: 10.1137/0707010
![]() |
[25] |
S. Kouachi, Eigenvalues and eigenvectors of some tridiagonal matrices with non-constant diagonal entries, Appl. Math., 35 (2008), 107–120. https://doi.org/10.4064/am35-1-7 doi: 10.4064/am35-1-7
![]() |
[26] |
S. Kouachi, Explicit eigenvalues of some perturbed heptadiagonal matrices via recurrent sequences, Lobachevskii J. Math., 36 (2015), 28–37. https://doi.org/10.1134/S1995080215010096 doi: 10.1134/S1995080215010096
![]() |
[27] |
D. Kulkarni, D. Schmidt, S. K. Tsui, Eigenvalues of tridiagonal pseudo-Toeplitz matrices, Linear Algebra Appl., 297 (1999), 63–80. https://doi.org/10.1016/S0024-3795(99)00114-7 doi: 10.1016/S0024-3795(99)00114-7
![]() |
[28] |
A. Luati, T. Proietti, On the spectral properties of matrices associated with trend filters, Econom. Theory, 26 (2010), 1247–1261. https://doi.org/10.1017/S0266466609990715 doi: 10.1017/S0266466609990715
![]() |
[29] |
K. S. Miller, On the inverse of the sum of matrices, Math. Mag., 54 (1981), 67–72. https://doi.org/10.1080/0025570X.1981.11976898 doi: 10.1080/0025570X.1981.11976898
![]() |
[30] | S. Pissanetsky, Sparse Matrix Technology, London: Academic Press, 1984. https://doi.org/10.1016/C2013-0-11311-6 |
[31] |
T. Proietti, A. Harvey, A Beveridge–Nelson smoother, Econom. Lett., 67 (2000), 139–146. https://doi.org/10.1016/S0165-1765(99)00276-1 doi: 10.1016/S0165-1765(99)00276-1
![]() |
[32] |
M. S. Solary, Finding eigenvalues for heptadiagonal symmetric Toeplitz matrices, J. Math. Anal. Appl., 402 (2013), 719–730. https://doi.org/10.1016/j.jmaa.2013.02.008 doi: 10.1016/j.jmaa.2013.02.008
![]() |
[33] |
R. A. Usmani, T. H. Andres, D. J. Walton, Error estimation in the integration of ordinary differential equations, Int. J. Comput. Math., 5 (1975), 241–256. https://doi.org/10.1080/00207167608803115 doi: 10.1080/00207167608803115
![]() |
[34] | L. Wasserman, All of Nonparametric Statistics, New York: Springer Science+Business Media, 2006. https://doi.org/10.1007/0-387-30623-4 |
[35] |
A. R. Willms, Analytic results for the eigenvalues of certain tridiagonal matrices, SIAM J. Matrix Anal. Appl., 30 (2008), 639–656. https://doi.org/10.1137/070695411 doi: 10.1137/070695411
![]() |