Research article

Non-global nonlinear mixed skew Jordan Lie triple derivations on prime -rings

  • Received: 04 December 2024 Revised: 07 March 2025 Accepted: 11 March 2025 Published: 02 April 2025
  • MSC : 16W10, 16W25

  • Let R be a 2-torsion free unital prime -ring containing a nontrivial symmetric idempotent and Zc(R) be the anti-symmetric center of R. We prove that if a map φ:RR satisfies φ([AB,C])=[φ(A)B,C]+[Aφ(B),C]+[AB,φ(C)] for any A,B,CR with ABC=0, then there exists an additive -derivation Θ of R and a nonlinear map g:RZc(R) such that φ(A)=Θ(A)+g(A) for any AR.

    Citation: Fenhong Li, Liang Kong, Chao Li. Non-global nonlinear mixed skew Jordan Lie triple derivations on prime -rings[J]. AIMS Mathematics, 2025, 10(4): 7795-7812. doi: 10.3934/math.2025357

    Related Papers:

    [1] Zhonghua Wang, Xiuhai Fei . Maps on $ C^\ast $-algebras are skew Lie triple derivations or homomorphisms at one point. AIMS Mathematics, 2023, 8(11): 25564-25571. doi: 10.3934/math.20231305
    [2] Faiza Shujat, Faarie Alharbi, Abu Zaid Ansari . Weak $ (p, q) $-Jordan centralizer and derivation on rings and algebras. AIMS Mathematics, 2025, 10(4): 8322-8330. doi: 10.3934/math.2025383
    [3] Omaima Alshanqiti, Ashutosh Pandey, Mani Shankar Pandey . A characterization of $ b $-generalized skew derivations on a Lie ideal in a prime ring. AIMS Mathematics, 2024, 9(12): 34184-34204. doi: 10.3934/math.20241628
    [4] Lili Ma, Qiang Li . Cohomology and its applications on multiplicative Hom-$ \delta $-Jordan Lie color triple systems. AIMS Mathematics, 2024, 9(9): 25936-25955. doi: 10.3934/math.20241267
    [5] Liang Kong, Chao Li . Non-global nonlinear skew Lie triple derivations on factor von Neumann algebras. AIMS Mathematics, 2022, 7(8): 13963-13976. doi: 10.3934/math.2022771
    [6] Wasim Ahmed, Amal S. Alali, Muzibur Rahman Mozumder . Characterization of $ (\alpha, \beta) $ Jordan bi-derivations in prime rings. AIMS Mathematics, 2024, 9(6): 14549-14557. doi: 10.3934/math.2024707
    [7] Gurninder S. Sandhu, Deepak Kumar . Correction: A note on derivations and Jordan ideals in prime rings. AIMS Mathematics, 2019, 4(3): 684-685. doi: 10.3934/math.2019.3.684
    [8] Gurninder S. Sandhu, Deepak Kumar . A note on derivations and Jordan ideals of prime rings. AIMS Mathematics, 2017, 2(4): 580-585. doi: 10.3934/Math.2017.4.580
    [9] Xiuhai Fei, Zhonghua Wang, Cuixian Lu, Haifang Zhang . Higher Jordan triple derivations on $ * $-type trivial extension algebras. AIMS Mathematics, 2024, 9(3): 6933-6950. doi: 10.3934/math.2024338
    [10] Ai-qun Ma, Lin Chen, Zijie Qin . Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras. AIMS Mathematics, 2023, 8(3): 6026-6035. doi: 10.3934/math.2023304
  • Let R be a 2-torsion free unital prime -ring containing a nontrivial symmetric idempotent and Zc(R) be the anti-symmetric center of R. We prove that if a map φ:RR satisfies φ([AB,C])=[φ(A)B,C]+[Aφ(B),C]+[AB,φ(C)] for any A,B,CR with ABC=0, then there exists an additive -derivation Θ of R and a nonlinear map g:RZc(R) such that φ(A)=Θ(A)+g(A) for any AR.



    Let A be an associative -algebra. For A,BA, denote by [A,B]=ABBA, [A,B]=ABBA and AB=AB+BA the Lie product, skew Lie product and skew Jordan product of A and B, respectively. A map δ:AA is called an additive derivation if δ(A+B)=δ(A)+δ(B) and δ(AB)=δ(A)B+Aδ(B) for all A,BA. Moreover, δ is called an additive -derivation if it is an additive derivation and satisfies δ(A)=δ(A) for all AA. A map φ:AA (without the additivity assumption) is called a nonlinear Lie derivation (resp. nonlinear Lie triple derivation) if φ([A,B])=[φ(A),B]+[A,φ(B)] for all A,BA (resp. φ([[A,B],C])=[[φ(A),B],C]+[[A,φ(B)],C]+[[A,B],φ(C)] for all A,B,CA). In the past years, nonlinear Lie derivations and Lie triple derivations on various algebras have been studied. Chen and Zhang [1], Yu and Zhang [11], and Yang [9] gave the structure of nonlinear Lie derivations on upper triangular matrices, triangular algebras, and incidence algebras, respectively. Ji, Liu, and Zhao [4] proved that every nonlinear Lie triple derivation on triangular algebras can be expressed as the sum of an additive derivation and a center value map vanishing on Lie triple products. A map φ:AA (without the additivity assumption) is called a nonlinear skew Jordan derivation (resp. nonlinear skew Jordan triple derivation) if φ(AB)=φ(A)B+Aφ(B) for all A,BA (resp. φ(ABC)=φ(A)BC+Aφ(B)C+ABφ(C) for all A,B,CA). Nonlinear skew Jordan derivations and skew Jordan triple derivations on various algebras also have been studied by some authors. Taghavi, Rohi, and Darvish [8], and Zhang [12] proved every nonlinear skew Jordan derivation on factor von Neumann algebras is an additive -derivation, respectively. Darvish et al.[2] proved that every nonlinear skew Jordan triple derivation on prime -algebras is an additive -derivation under some assumption. Recently, derivations (nonlinear maps) corresponding to (preserving) the new products of the mixture of (skew) Lie product and skew Jordan product have attracted the attention of several authors. Li and Zhang [6] studied nonlinear mixed Jordan triple -derivations on factor von Neumann algebras. Yang and Zhang [10] characterized nonlinear maps preserving the second mixed Lie triple products on factor von Neumann algebras. Zhou, Yang, and Zhang [15] proved that any map φ from a unital prime -algebra A to itself satisfying φ([[A,B],C])=[[φ(A),B],C]+[[A,φ(B)],C]+[[A,B],φ(C)] for all A,B,CA is an additive -derivation. Let A and B be two factors with dimA>4. Zhao, Li, and Chen [14] characterized the concrete structure of any bijective map φ:AB satisfying

    φ([AB,C])=[φ(A)φ(B),φ(C)]

    for all A,B,CA.

    The conditions under which linear (nonlinear) Lie (triple) derivations of operator algebras can be completely determined by the action on some proper subsets of these operator algebras were considered. Let M be a factor with dimM>1. Liu [7] investigated any linear map φ:MM satisfying φ([[A,B],C])=[[φ(A),B],C]+[[A,φ(B)],C]+[[A,B],φ(C)] for any A,B,CA with AB=0 (resp. AB=P, where P is a fixed non-trivial projection of M). Zhao and Hao [13] proved that if a nonlinear map φ from a finite von Neumann algebra M with no central summands of type I1 to itself satisfies δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)] for any A,B,CM with ABC=0, then δ=d+τ, where d is an additive derivation from M into itself and τ is a nonlinear map from M into its center such that τ([[A,B],C])=0 with ABC=0. In sequel, we introduce the notion of non-global nonlinear mixed skew Jordan Lie triple derivation. Let F:A×A×AA be a map and Q be a proper subset of A. If φ satisfies

    φ([AB,C])=[φ(A)B,C]+[Aφ(B),C]+[AB,φ(C)]

    for any A,B,CA with F(A,B,C)Q, then φ is called a non-global nonlinear mixed skew Jordan Lie triple derivation.

    A ring R is called a -ring if there is an additive map :RR satisfying (AB)=BA and (A)=A for all A,BR. R is called prime when for A,BR, if ARB={0}, then A=0 or B=0. Let Z(R) be the center of R and Zc(R)={AZ(R):A=A} be the anti-symmetric center of R. Motivated by the above-mentioned works, we will study the concrete structure of a kind of non-global nonlinear mixed skew Jordan Lie triple derivations φ on prime -rings R satisfying φ([AB,C])=[φ(A)B,C]+[Aφ(B),C]+[AB,φ(C)] for any A,B,CR with ABC=0.

    The main result is the following theorem:

    Theorem 2.1. Let R be a 2-torsion free unital prime -ring containing a nontrivial symmetric idempotent. If a map φ:RR satisfies

    φ([AB,C])=[φ(A)B,C]+[Aφ(B),C]+[AB,φ(C)]

    for any A,B,CR with ABC=0, then there exists an additive -derivation Θ of R and a nonlinear map g:RZc(R) such that

    φ(A)=Θ(A)+g(A)

    for any AR.

    Let PR be the nontrivial symmetric idempotent. Write P1=P, P2=IP1, Rij=PiRPj (i,j=1,2), then R = R11+R12+R21+R22. For every AR, A=A11+A12+A21+A22, where Aij Rij (i,j=1,2).

    Lemma 2.1. For every AiiRii,BijRij,CjiRji (1ij2), we have

    φ(Aii+Bij+Cji)=φ(Aii)+φ(Bij)+φ(Cji).

    Proof: Clearly, φ(0)=0. Let

    T=φ(Aii+Bij+Cji)φ(Aii)φ(Bij)φ(Cji).

    Next, we show that T=0. For any XijRij with 1ij2, since

    Xij(Aii+Bij+Cji)Pj=XijAiiPj=XijBijPj=XijCjiPj=0,

    and

    [XijAii,Pj]=[XijCji,Pj]=0.

    We have

    [φ(Xij)(Aii+Bij+Cji),Pj]+[Xijφ(Aii+Bij+Cji),Pj]+[Xij(Aii+Bij+Cji),φ(Pj)]=φ([Xij(Aii+Bij+Cji),Pj])=φ([XijAii,Pj])+φ([XijBij,Pj])+φ([XijCji,Pj])=[φ(Xij)(Aii+Bij+Cji),Pj]+[Xij(φ(Aii)+φ(Bij)+φ(Cji)),Pj]+[Xij(Aii+Bij+Cji),φ(Pj)].

    This implies that

    [XijT,Pj]=0. (2.1)

    Multiplying Eq (2.1) by Pj from the right, we have XijTPj=0. Hence, Tjj=0 by the primeness of R.

    From

    (Aii+Bij+Cji)XijPi=AiiXijPi=BijXijPi=CjiXijPi=0,

    and

    [BijXij,Pi]=[CjiXij,Pi]=0.

    We have

    [φ(Aii+Bij+Cji)Xij,Pi]+[(Aii+Bij+Cji)φ(Xij),Pi]+[(Aii+Bij+Cji)Xij,φ(Pi)]=φ([(Aii+Bij+Cji)Xij,Pi])=φ([AiiXij,Pi])+φ([BijXij,Pi])+φ([CjiXij,Pi])=[(φ(Aii)+φ(Bij)+φ(Cji))Xij,Pi]+[(Aii+Bij+Cji)φ(Xij),Pi]+[(Aii+Bij+Cji)Xij,φ(Pi)].

    It follows that

    [TXij,Pi]=0. (2.2)

    Multiplying Eq (2.2) by Pj from the right and by the fact that Tjj=0, we have PiTXij=0. Thus, Tii=0.

    Since

    (Aii+Bij+Cji)PjPi=AiiPjPi=BijPjPi=CjiPjPi=0,

    and

    [AiiPj,Pi]=[CjiPj,Pi]=0.

    We have

    [φ(Aii+Bij+Cji)Pj,Pi]+[(Aii+Bij+Cji)φ(Pj),Pi]+[(Aii+Bij+Cji)Pj,φ(Pi)]=φ([(Aii+Bij+Cji)Pj,Pi])=φ([AiiPj,Pi])+φ([BijPj,Pi])+φ([CjiPj,Pi])=[(φ(Aii)+φ(Bij)+φ(Cji))Pj,Pi]+[(Aii+Bij+Cji)φ(Pj),Pi]+[(Aii+Bij+Cji)Pj,φ(Pi)].

    Then,

    [TPj,Pi]=0. (2.3)

    Multiplying Eq (2.3) by Pi from the left, we obtain Tij=0.

    From

    (Aii+Bij+Cji)PiPj=AiiPiPj=BijPiPj=CjiPiPj=0,

    and

    [AiiPi,Pj]=[BijPi,Pj]=0.

    We have

    [φ(Aii+Bij+Cji)Pi,Pj]+[(Aii+Bij+Cji)φ(Pi),Pj]+[(Aii+Bij+Cji)Pi,φ(Pj)]=φ([(Aii+Bij+Cji)Pi,Pj])=φ([AiiPi,Pj])+φ([BijPi,Pj])+φ([CjiPi,Pj])=[(φ(Aii)+φ(Bij)+φ(Cji))Pi,Pj]+[(Aii+Bij+Cji)φ(Pi),Pj]+[(Aii+Bij+Cji)Pi,φ(Pj)].

    It follows that

    [TPi,Pj]=0. (2.4)

    Multiplying Eq (2.4) by Pj from the left, we obtain Tji=0. Therefore, T=0.

    Lemma 2.2. For every Aij,BijRij (1ij2), we have

    φ(Aij+Bij)=φ(Aij)+φ(Bij).

    Proof: Since (PiAij)(PjBij)Pi=0,

    PiPjPi=Pi(Bij)Pi=(Aij)PjPi=(Aij)(Bij)Pi=0,

    and

    [(PiAij)(PjBij),Pi]=Aij+Aij+Bij.

    We have from Lemma 2.1 that

    φ(Aij)+φ(Aij+Bij)=φ([(PiAij)(PjBij),Pi])=[φ(PiAij)(PjBij),Pi]+[(PiAij)φ(PjBij),Pi]+[(PiAij)(PjBij),φ(Pi)]=[(φ(Pi)+φ(Aij))(PjBij),Pi]+[(PiAij)(φ(Pj)+φ(Bij)),Pi]+[(PiAij)(PjBij),φ(Pi)]=φ([PiPj,Pi])+φ([Pi(Bij),Pi])+φ([(Aij)Pj,Pi])+φ([(Aij)(Bij),Pi])=φ(Bij)+φ(Aij+Aij)=φ(Aij)+φ(Aij)+φ(Bij).

    Then, φ(Aij+Bij)=φ(Aij)+φ(Bij).

    Lemma 2.3. For every Aii,BiiRii (i=1,2), we have

    φ(Aii+Bii)=φ(Aii)+φ(Bii).

    Proof: Let

    T=φ(Aii+Bii)φ(Aii)φ(Bii).

    Since

    Pj(Aii+Bii)Pj=PjAiiPj=PjBiiPj=0,

    and

    [PjAii,Pj]=0.

    We have

    [φ(Pj)(Aii+Bii),Pj]+[Pjφ(Aii+Bii),Pj]+[Pj(Aii+Bii),φ(Pj)]=φ([Pj(Aii+Bii),Pj])=φ([PjAii,Pj])+φ([PjBii,Pj])=[φ(Pj)(Aii+Bii),Pj]+[Pj(φ(Aii)+φ(Bii)),Pj]+[Pj(Aii+Bii),φ(Pj)].

    This gives that

    [PjT,Pj]=0. (2.5)

    Multiplying Eq (2.5) by Pi from the left, by Pi from the right, respectively, we obtain Tij=0, Tji=0, respectively.

    For any XijRij with 1ij2, since

    Xij(Aii+Bii)Pj=XijAiiPj=XijBiiPj=0,

    and

    [XijAii,Pj]=0.

    We have

    [φ(Xij)(Aii+Bii),Pj]+[Xijφ(Aii+Bii),Pj]+[Xij(Aii+Bii),φ(Pj)]=φ([Xij(Aii+Bii),Pj])=φ([XijAii,Pj])+φ([XijBii,Pj])=[φ(Xij)(Aii+Bii),Pj]+[Xij(φ(Aii)+φ(Bii)),Pj]+[Xij(Aii+Bii),φ(Pj)].

    It follows that

    [XijT,Pj]=0. (2.6)

    Multiplying Eq (2.6) by Pi from the left, we have XijTPj=0, and so Tjj=0.

    For any XjiRji with 1ij2, since

    Xji(Aii+Bii)Pj=XjiAiiPj=XjiBiiPj=0.

    We have from Lemmas 2.1 and 2.2 that

    [φ(Xji)(Aii+Bii),Pj]+[Xjiφ(Aii+Bii),Pj]+[Xji(Aii+Bii),φ(Pj)]=φ([Xji(Aii+Bii),Pj])=φ(AiiXji+BiiXjiXjiAiiXjiBii)=φ(AiiXjiXjiAii)+φ(BiiXjiXjiBii)=φ([XjiAii,Pj])+φ([XjiBii,Pj])=[φ(Xji)(Aii+Bii),Pj]+[Xji(φ(Aii)+φ(Bii)),Pj]+[Xji(Aii+Bii),φ(Pj)],

    which gives that

    [XjiT,Pj]=0. (2.7)

    Multiplying Eq (2.7) by Pi from the right, we have XjiTPi=0. Hence, Tii=0.

    Lemma 2.4. (a) φ(Pi)=φ(Pi) (i=1,2);

    (b) Piφ(Pi)Pj=Piφ(Pj)Pj (1ij2).

    Proof: (a) Let 1ij2. Since PjPiPj=0 and [PjPi,Pj]=0, we have

    0=φ([PjPi,Pj])=[φ(Pj)Pi,Pj]+[Pjφ(Pi),Pj]+[PjPi,φ(Pj)]=Piφ(Pj)PjPjφ(Pj)Pi+φ(Pi)PjPjφ(Pi). (2.8)

    Multiplying Eq (2.8) by Pi from the left and by Pj from the right, we obtain

    Piφ(Pj)Pj=Piφ(Pi)Pj. (2.9)

    It follows that

    Pjφ(Pj)Pi=Pjφ(Pi)Pi. (2.10)

    Multiplying Eq (2.8) by Pj from the left and by Pi from the right, we obtain

    Pjφ(Pj)Pi=Pjφ(Pi)Pi. (2.11)

    Comparing Eqs (2.10) and (2.11), we obtain

    Pjφ(Pi)Pi=Pjφ(Pi)Pi. (2.12)

    Since PjPjPi=0 and [PjPj,Pi]=0, we have

    0=φ([PjPj,Pi])=[φ(Pj)Pj,Pi]+[Pjφ(Pj),Pi]+[PjPj,φ(Pi)]=Pjφ(Pj)Pi2Piφ(Pj)Pj+Pjφ(Pj)Pi+2Pjφ(Pi)2φ(Pi)Pj. (2.13)

    Multiplying Eq (2.13) by Pi from the left and by Pj from the right, we have

    2(Piφ(Pj)Pj+Piφ(Pi)Pj)=0. (2.14)

    Since R is 2-torsion free, we have from Eq (2.14) that

    Piφ(Pj)Pj=Piφ(Pi)Pj. (2.15)

    From PiPiPj=0 and [PiPi,Pj]=0, we have

    0=φ([PiPi,Pj])=[φ(Pi)Pi,Pj]+[Piφ(Pi),Pj]+[PiPi,φ(Pj)]=Piφ(Pi)Pj2Pjφ(Pi)Pi+Piφ(Pi)Pj+2Piφ(Pj)2φ(Pj)Pi. (2.16)

    Multiplying Eq (2.16) by Pi from the left and by Pj from the right, then by Eq. (2.15), we have

    Piφ(Pi)Pj=Piφ(Pi)Pj. (2.17)

    For any XijRij with 1ij2, we have from XijPiPi=0 and [XijPi,Pi]=0 that

    0=φ([XijPi,Pi])=[φ(Xij)Pi,Pi]+[Xijφ(Pi),Pi]+[XijPi,φ(Pi)]=φ(Xij)Pi+Piφ(Xij)PiPiφ(Xij)PiPiφ(Xij)+Xijφ(Pi)Pi+φ(Pi)XijXijφ(Pi)Piφ(Pi)Xij. (2.18)

    Multiplying Eq (2.18) by Pi from the left and by Pj from the right, we have

    Piφ(Xij)Pj=Xijφ(Pi)Pj. (2.19)

    Multiplying Eq (2.18) by Pj from the left and by Pi from the right, we have Pjφ(Xij)Pi+Pjφ(Pi)Xij=0. Then,

    Piφ(Xij)Pj=Xijφ(Pi)Pj. (2.20)

    Comparing Eqs (2.19) and (2.20), we obtain Xij(Pjφ(Pi)PjPjφ(Pi)Pj)=0. It follows that

    Pjφ(Pi)Pj=Pjφ(Pi)Pj. (2.21)

    From PiPiXij=0 and [PiPi,Xij]=2Xij, we have

    φ(2Xij)=φ([PiPi,Xij])=[φ(Pi)Pi,Xij]+[Piφ(Pi),Xij]+[PiPi,φ(Xij)]=φ(Pi)Xij+Piφ(Pi)XijXijφ(Pi)Pi+Piφ(Pi)Xij+φ(Pi)XijXijφ(Pi)Pi+2Piφ(Xij)2φ(Xij)Pi. (2.22)

    Multiplying Eq (2.22) by Pi from the left and by Pj from the right, we have

    Piφ(2Xij)Pj=3Piφ(Pi)Xij+Piφ(Pi)Xij+2Piφ(Xij)Pj. (2.23)

    It follows from Eq (2.23) and Lemma 2.2 that 3Piφ(Pi)Xij+Piφ(Pi)Xij=0, and so

    3Piφ(Pi)Pi+Piφ(Pi)Pi=0. (2.24)

    For any XjiRji with 1ij2, since PiXjiPi=0 and [PiXji,Pi]=Xji, we have

    φ(Xji)=φ([PiXji,Pi])=[φ(Pi)Xji,Pi]+[Piφ(Xji),Pi]+[PiXji,φ(Pi)]=Xjiφ(Pi)PiPiφ(Pi)Xji+φ(Xji)PiPiφ(Xji)+Xjiφ(Pi). (2.25)

    Multiplying Eq (2.25) by Pj from the left and by Pi from the right, we have Xji(Piφ(Pi)Pi+Piφ(Pi)Pi)=0. Then,

    Piφ(Pi)Pi=Piφ(Pi)Pi. (2.26)

    By Eqs (2.24) and (2.26), we obtain that 2Piφ(Pi)Pi=0. Then by R is 2-torsion free, we obtain

    Piφ(Pi)Pi=Piφ(Pi)Pi. (2.27)

    From Eqs (2.12), (2.17), (2.21), and (2.27), we can see that φ(Pi)=φ(Pi).

    (b) It follows from Eq (2.9) and (a) that (b) holds.

    Lemma 2.5. Pjφ(Pi)Pj=0 (1ij2).

    Proof: For any XijRij with 1ij2, since PjXijPj=0 and [PjXij,Pj]=Xij, we have

    φ(Xij)=φ([PjXij,Pj])=[φ(Pj)Xij,Pj]+[Pjφ(Xij),Pj]+[PjXij,φ(Pj)]=Xijφ(Pj)PjPjφ(Pj)Xij+φ(Xij)PjPjφ(Xij)+Xijφ(Pj). (2.28)

    Multiplying Eq (2.28) by Pj from the left and by Pi from the right, we obtain 2Pjφ(Xij)Pi=0, and so,

    Pjφ(Xij)Pi=0. (2.29)

    Combining Eqs (2.19) and (2.29), we have Xijφ(Pi)Pj=0. It follows that Pjφ(Pi)Pj=0.

    Lemma 2.6. Piφ(Pi)Pi=0 (i=1,2).

    Proof: For any XijRij with 1ij2, since

    PiXijPi=0,[PiXij,Pi]=Xij,

    we have from Lemma 2.4 that

    φ(Xij)=φ([PiXij,Pi])=[φ(Pi)Xij,Pi]+[Piφ(Xij),Pi]+[PiXij,φ(Pi)]=Xijφ(Pi)PiPiφ(Pi)XijXijφ(Pi)+φ(Xij)PiPiφ(Xij)+Xijφ(Pi)φ(Pi)Xij. (2.30)

    Multiplying Eq (2.30) by Pi from the left and by Pj from the right, we have

    Piφ(Xij)Pj=2Piφ(Pi)XijPiφ(Xij)Pj. (2.31)

    It follows from Eq (2.31) and Lemma 2.2 that 2Piφ(Pi)Xij=0, and so Piφ(Pi)Xij=0. Hence, Piφ(Pi)Pi=0.

    Let T=P1φ(P1)P2P2φ(P1)P1. Then, T=T by Lemma 2.4. We define a map Φ:RR by

    Φ(A)=φ(A)[A,T]

    for all AR.

    Remark 2.1. It is easy to check that Φ also satisfies

    Φ([AB,C])=[Φ(A)B,C]+[AΦ(B),C]+[AB,Φ(C)]

    for any A,B,CR with ABC=0. By Lemmas 2.1–2.6, it follows that

    (a) For every AiiRii,BijRij,CjiRji (1ij2), we have

    Φ(Aii+Bij+Cji)=Φ(Aii)+Φ(Bij)+Φ(Cji).

    (b) For every Aij,BijRij (1ij2), we have

    Φ(Aij+Bij)=Φ(Aij)+Φ(Bij).

    (c) For every Aii,BiiRii (i=1,2), we have

    Φ(Aii+Bii)=Φ(Aii)+Φ(Bii).

    (d) Φ(Pi)=0 (i=1,2).

    Lemma 2.7.  Φ(Rij)Rij (1ij2).

    Proof: Let AijRij with 1ij2. From AijPiPi=0,[AijPi,Pi]=0 and Φ(Pi)=0, we have

    0=Φ([AijPi,Pi])=[Φ(Aij)Pi,Pi]=Φ(Aij)Pi+PiΦ(Aij)PiPiΦ(Aij)PiPiΦ(Aij). (2.32)

    Multiplying Eq (2.32) by Pj from the left, we obtain PjΦ(Aij)Pi=0.

    Since Pj(Aij)Pi=0,[Pj(Aij),Pi]=Aij and Φ(Pi)=Φ(Pj)=0, we have

    Φ(Aij)=Φ([Pj(Aij),Pi])=[PjΦ(Aij),Pi]=PjΦ(Aij)PiPiΦ(Aij)Pj. (2.33)

    Multiplying Eq (2.33) by Pi from both sides, by Pj from both sides, respectively, we have PiΦ(Aij)Pi=0, PjΦ(Aij)Pj=0, respectively. Therefore, Φ(Rij)Rij.

    Lemma 2.8. Φ(Rii)Rii (i=1,2).

    Proof: It follows from PiAiiPj=0,[PiAii,Pj]=0 and Φ(Pi)=Φ(Pj)=0 that

    0=Φ([PiAii,Pj])=[PiΦ(Aii),Pj]=PiΦ(Aii)PjPjΦ(Aii)Pi. (2.34)

    Multiplying Eq (2.34) by Pi from the left, by Pj from the left, respectively, we have PiΦ(Aii)Pj=0, PjΦ(Aii)Pi=0, respectively.

    For any XijRij with 1ij2, since XijAiiPj=0,[XijAii,Pj]=0 and Φ(Pj)=0, we have

    0=Φ([XijAii,Pj])=[Φ(Xij)Aii,Pj]+[XijΦ(Aii),Pj]=AiiΦ(Xij)PjPjΦ(Xij)Aii+XijΦ(Aii)PjPjΦ(Aii)Xij. (2.35)

    Multiplying Eq (2.35) by Pi from the left, and by Lemma 2.7, we have

    XijΦ(Aii)Pj=Aii(PjΦ(Xij)Pi)=0.

    Then, PjΦ(Aii)Pj=0. Hence, Φ(Rii)Rii.

    Lemma 2.9. For every AiiRii,BijRij,CjiRji,DjjRjj (1ij2), we have

    (a) Φ(Aii+Bij+Djj)=Φ(Aii)+Φ(Bij)+Φ(Djj);

    (b) Φ(Aii+Cji+Djj)=Φ(Aii)+Φ(Cji)+Φ(Djj).

    Proof: (a) Let

    T=Φ(Aii+Bij+Djj)Φ(Aii)Φ(Bij)Φ(Djj).

    Since

    Pj(Aii+Bij+Djj)Pi=PjAiiPi=PjBijPi=PjDjjPi=0,

    and

    [PjAii,Pi]=[PjDjj,Pi]=0,Φ(Pi)=Φ(Pj)=0.

    We have

    [PjΦ(Aii+Bij+Djj),Pi]=Φ([Pj(Aii+Bij+Djj),Pi])=Φ([PjAii,Pi])+Φ([PjBij,Pi])+Φ([PjDjj,Pi])=[PjΦ(Aii),Pi]+[PjΦ(Bij),Pi]+[PjΦ(Djj),Pi]=[Pj(Φ(Aii)+Φ(Bij)+Φ(Djj)),Pi].

    This implies that

    [PjT,Pi]=0. (2.36)

    Multiplying Eq (2.36) by Pi from the left, by Pj from the left, respectively, we have Tij=0, Tji=0, respectively.

    For any XijRij with 1ij2, from

    Xij(Aii+Bij+Djj)Pi=XijAiiPi=XijBijPi=XijDjjPi=0,

    and

    [XijAii,Pi]=[XijBij,Pi]=0,Φ(Pi)=0.

    We have

    [Φ(Xij)(Aii+Bij+Djj),Pi]+[XijΦ(Aii+Bij+Djj),Pi]=Φ([Xij(Aii+Bij+Djj),Pi])=Φ([XijAii,Pi])+Φ([XijBij,Pi])+Φ([XijDjj,Pi])=[Φ(Xij)(Aii+Bij+Djj),Pi]+[Xij(Φ(Aii)+Φ(Bij)+Φ(Djj)),Pi],

    which implies that

    [XijT,Pi]=0. (2.37)

    Multiplying Eq (2.37) by Pj from the right, we obtain XijTPj=0, and so Tjj=0.

    For any XjiRji with 1ij2, since

    (Aii+Bij+Djj)XjiPj=AiiXjiPj=BijXjiPj=DjjXjiPj=0,

    and

    [BijXji,Pj]=0,[(Aii+Djj)Xji,Pj]=XjiAiiDjjXji,Φ(Pj)=0.

    We have from Remark 2.1 (b) that

    [Φ(Aii+Bij+Djj)Xji,Pj]+[(Aii+Bij+Djj)Φ(Xji),Pj]=Φ([(Aii+Bij+Djj)Xji,Pj])=Φ([(Aii+Djj)Xji,Pj])+Φ([BijXji,Pj])=Φ(XjiAii)+Φ(DjjXji)+Φ([BijXji,Pj])=Φ([AiiXji,Pj])+Φ([BijXji,Pj])+Φ([DjjXji,Pj])=[(Φ(Aii)+Φ(Bij)+Φ(Djj))Xji,Pj]+[(Aii+Bij+Djj)Φ(Xji),Pj].

    It follows that

    [TXji,Pj]=0. (2.38)

    Multiplying Eq (2.38) by Pi from the right and by the fact that Tjj=0, we obtain XjiTPi=0 and so Tii=0. Hence, T=0.

    (b) Similarly, we can show that (b) holds.

    Lemma 2.10. For AR, there exists a map g:RZc(R) such that

    Φ(A)g(A)=Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj).

    Proof: For AR, write A=2i,j=1Aij. Let

    T=Φ(Aii+Aij+Aji+Ajj)Φ(Aii)Φ(Aij)Φ(Aji)Φ(Ajj). (2.39)

    For any XijRij with 1ij2, since

    PjXij(Aii+Aij+Aji+Ajj)=0,
    PjXijAii=PjXijAij=PjXijAji=PjXijAjj=0,Φ(Pj)=0,

    and

    [PjXij,Aii+Aij+Aji+Ajj]=XijAji+XijAjjAiiXijAjiXij.

    We have from Lemma 2.9 and Remark 2.1 (b) that

    [PjΦ(Xij),Aii+Aij+Aji+Ajj]+[PjXij,Φ(Aii+Aij+Aji+Ajj)]=Φ([PjXij,Aii+Aij+Aji+Ajj])=Φ(XijAji)+Φ(XijAjj)+Φ(AiiXij)+Φ(AjiXij)=Φ(AiiXij)+Φ(AjiXij+XijAji)+Φ(XijAjj)=Φ([PjXij,Aii])+Φ([PjXij,Aij])+Φ([PjXij,Aji])+Φ([PjXij,Ajj])=[PjΦ(Xij),Aii+Aij+Aji+Ajj]+[PjXij,Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj)].

    It follows that

    [PjXij,T]=0. (2.40)

    Multiplying Eq (2.40) by Pi from the right, we obtain XijTPi=0. Then, Tji=0. Multiplying Eq (2.40) by Pi from the left and by Pj from the right, we have PiTXij=XijTPj. It follows from [5, Lemma 1.6] that Tii+TjjZ(R). Similarly, we can show that Tij=0.

    Since (Aii+Aij+Aji+Ajj)PiXij=0,

    AiiPiXij=AijPiXij=AjiPiXij=AjjPiXij=0,Φ(Pi)=0,

    and

    [(Aii+Aij+Aji+Ajj)Pi,Xij]=AiiXij+AjiXij+AiiXijXijAji.

    We have from Lemma 2.9 that

    [Φ(Aii+Aij+Aji+Ajj)Pi,Xij]+[(Aii+Aij+Aji+Ajj)Pi,Φ(Xij)]=Φ([(Aii+Aij+Aji+Ajj)Pi,Xij])=Φ(AiiXij+AiiXij)+Φ(AjiXijXijAji)=Φ([AiiPi,Xij])+Φ([AijPi,Xij])+Φ([AjiPi,Xij])+Φ([AjjPi,Xij])=[(Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj)Pi,Xij]+[(Aii+Aij+Aji+Ajj)Pi,Φ(Xij)],

    which implies that

    [TPi,Xij]=0. (2.41)

    Multiplying Eq (2.41) by Pi from the left and by Pj from the right, we have PiTXij+PiTXij=0, and so Tii=Tii. Similarly, Tjj=Tjj. It follows that Tii+TjjZc(R) by Tii+TjjZ(R). Define a map g:RZc(R) by

    g(A)=Tii+Tjj. (2.42)

    Combining Eqs (2.39) and (2.42), we can obtain the desired result.

    Lemma 2.11. For every Aii,BiiRii,Aij,BijRij,BjiRji,BjjRjj (1ij2), we have

    (a) Φ(AiiBij)=Φ(Aii)Bij+AiiΦ(Bij);

    (b) Φ(AiiBii)=Φ(Aii)Bii+AiiΦ(Bii);

    (c) Φ(AijBji)=Φ(Aij)Bji+AijΦ(Bji);

    (d) Φ(AijBjj)=Φ(Aij)Bjj+AijΦ(Bjj).

    Proof: (a) Since

    AiiBij(Pi)=0,[AiiBij,Pi]=AiiBij,

    we have from Remark 2.1 (c), (d), and Lemmas 2.7 and 2.8 that

    Φ(AiiBij)=Φ([AiiBij,Pi])=[Φ(Aii)Bij,Pi]+[AiiΦ(Bij),Pi]=Φ(Aii)Bij+AiiΦ(Bij).

    (b) For any XijRij with 1ij2, it follows from (a) that

    Φ(AiiBii)Xij+AiiBiiΦ(Xij)=Φ(AiiBiiXij)=Φ(Aii)BiiXij+AiiΦ(BiiXij)=Φ(Aii)BiiXij+AiiΦ(Bii)Xij+AiiBiiΦ(Xij).

    This yields that (Φ(AiiBii)Φ(Aii)BiiAiiΦ(Bii))Xij=0. Hence, (b) holds by Lemma 2.8.

    (c) For any XijRij with 1ij2, since AijBjiXij=0 and [AijBji,Xij]=AijBjiXij, we have from (a) and Lemma 2.7 that

    Φ(AijBji)Xij+AijBjiΦ(Xij)=Φ(AijBjiXij)=Φ([AijBji,Xij])=[Φ(Aij)Bji,Xij]+[AijΦ(Bji),Xij]+[AijBji,Φ(Xij)]=Φ(Aij)BjiXij+AijΦ(Bji)Xij+AijBjiΦ(Xij).

    Then, (Φ(AijBji)Φ(Aij)BjiAijΦ(Bji))Xij=0, and so (c) holds by Lemmas 2.7 and 2.8.

    (d) For any XjiRji with 1ij2, we have from (a) and (c) that

    Φ(AijBjj)Xji+AijBjjΦ(Xji)=Φ(AijBjjXji)=Φ(Aij)BjjXji+AijΦ(BjjXji)=Φ(Aij)BjjXji+AijΦ(Bjj)Xji+AijBjjΦ(Xji).

    It follows that (Φ(AijBjj)Φ(Aij)BjjAijΦ(Bjj))Xji=0. Then, (d) holds by Lemmas 2.7 and 2.8.

    Lemma 2.12. For every AijRij (i,j=1,2), we have

    Φ(Aij)=Φ(Aij).

    Proof: Let 1ij2. Since AijPj(Pi)=0,[AijPj,Pi]=AijAij, we have from Remark 2.1 (a), (b), (d), and Lemma 2.7 that

    Φ(Aij)Φ(Aij)=Φ([AijPj,Pi])=[Φ(Aij)Pj,Pi]=Φ(Aij)Φ(Aij).

    Hence, Φ(Aij)=Φ(Aij).

    For any XijRij with 1ij2, since AiiPiXij=0,[AiiPi,Xij]=AiiXij+AiiXij, we have from Remark 2.1 (a), (b), and Lemmas 2.7, 2.8, and 2.11 that

    Φ(Aii)Xij+AiiΦ(Xij)+Φ(Aii)Xij+AiiΦ(Xij)=Φ(AiiXij)+Φ(AiiXij)=Φ([AiiPi,Xij])=[Φ(Aii)Pi,Xij]+[AiiPi,Φ(Xij)]=Φ(Aii)Xij+Φ(Aii)Xij+AiiΦ(Xij)+AiiΦ(Xij).

    It follows that (Φ(Aii)Φ(Aii))Xij=0. Then, Φ(Aii)=Φ(Aii) by Lemma 2.8.

    Proof of Theorem 2.1: We define a map Ψ:RR by

    Ψ(A)=Φ(A)g(A)

    for all AR. For every A,BR, let A=2i,j=1Aij, B=2i,j=1Bij. From Remark 2.1 (b), (c), and Lemma 2.10, we have

    Ψ(A+B)=Φ(A+B)g(A+B)=Φ(Pi(A+B)Pi)+Φ(Pi(A+B)Pj)+Φ(Pj(A+B)Pi)+Φ(Pj(A+B)Pj)+g(A+B)g(A+B)=Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj)+Φ(Bii)+Φ(Bij)+Φ(Bji)+Φ(Bjj)=Φ(A)g(A)+Φ(B)g(B)=Ψ(A)+Ψ(B).

    Hence, Ψ is additive on R. Next, it follows from Remark 2.1 (b), (c), and Lemmas 2.7, 2.8, 2.10, and 2.11 that

    Ψ(AB)=Φ(AB)g(AB)=Φ(Pi(AB)Pi)+Φ(Pi(AB)Pj)+Φ(Pj(AB)Pi)+Φ(Pj(AB)Pj)+g(AB)g(AB)=Φ(AiiBii+AijBji)+Φ(AiiBij+AijBjj)+Φ(AjiBii+AjjBji)+Φ(AjiBij+AjjBjj)=Φ(AiiBii)+Φ(AijBji)+Φ(AiiBij)+Φ(AijBjj)+Φ(AjiBii)+Φ(AjjBji)+Φ(AjiBij)+Φ(AjjBjj)=(Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj))(Bii+Bij+Bji+Bjj)+(Aii+Aij+Aji+Ajj)(Φ(Bii)+Φ(Bij)+Φ(Bji)+Φ(Bjj))=(Φ(A)g(A))B+A(Φ(B)g(B))=Ψ(A)B+AΨ(B).

    It follows that Ψ is an additive derivation on R. Moreover, we have from Lemmas 2.10 and 2.12 that

    Ψ(A)=(Φ(A)g(A))=(Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj)+g(A))g(A)=Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj)=Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj)=Φ(A)g(A)=Ψ(A).

    Consequently, Ψ is an additive -derivation on R. By the definitions of Φ and Ψ, we can see that φ(A)=Θ(A)+g(A), where Θ(A)=Ψ(A)+[A,T] is an additive -derivation.

    As applications of Theorem 2.1, we have the following corollaries.

    Corollary 2.1. Let A be a factor von Neumann algebra acting on a complex Hilbert space H with dimA > 1. If a map φ:AA satisfies φ([AB,C])=[φ(A)B,C]+[Aφ(B),C]+[AB,φ(C)] for any A,B,CA with ABC=0, then there exists an additive -derivation Θ of A and a nonlinear map g:AiRI such that φ(A)=Θ(A)+g(A) for any AA.

    Corollary 2.2. Let H be an infinite dimensional complex Hilbert space and B(H) be the algebra of all linear bounded operators on H. If a map φ:B(H)B(H) satisfies φ([AB,C])=[φ(A)B,C]+[Aφ(B),C]+[AB,φ(C)] for any A,B,CB(H) with ABC=0, then there exists TB(H) satisfying T+T=0 and a nonlinear map g:B(H)iRI such that

    φ(A)=ATTA+g(A)

    for any AB(H).

    Proof: It follows from Theorem 2.1 that there exists an additive -derivation Θ of B(H) and a nonlinear map g:B(H)iRI such that φ(A)=Θ(A)+g(A) for any AB(H). By the result of [3], Θ is linear and, so it is inner. Hence, there exists SB(H) such that Θ(A)=ASSA for any AB(H). Therefore,

    ASSA=Θ(A)=Θ(A)=SAAS

    for all AB(H). From this, we can see that S+S=λI for some λR. Write T=S12λI and so T+T=0. Hence φ(A)=ATTA+g(A) for any AB(H).

    Corollary 2.3. Let A be a standard operator algebra on an infinite dimensional complex Hilbert space H with dimA > 1, which is closed under the adjoint operation and contains a nontrivial projection. If a map φ:AA satisfies φ([AB,C])=[φ(A)B,C]+[Aφ(B),C]+[AB,φ(C)] for any A,B,CA with ABC=0, then there exists an additive -derivation Θ of A and a nonlinear map g:AiRI such that φ(A)=Θ(A)+g(A) for any AA.

    In this paper, we characterized the structure of a specific type of non-global nonlinear mixed skew Jordan Lie triple derivations on prime -rings. Moreover, we applied the above result to factor von Neumann algebras and standard operator algebras.

    Fenhong Li: Writing–original draft, writing–review & editing; Liang Kong: Writing–original draft, writing–review & editing, funding acquisition; Chao Li: Writing–original draft, writing–review & editing. All authors are contributed equally. All authors have read and approved the final version of the manuscript for publication.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article

    The authors wish to thank the anonymous referees for their valuable comments and suggestions that improved the presentation of the paper. This research is supported by the Scientific Research Project of Shangluo University (21SKY104, 22KYPY05), and the Shaanxi Provincial Natural Science Basic Research Program (2024JC-YBMS-062).

    The authors declare that there are no conflicts of interest.



    [1] L. Chen, J. H. Zhang, Nonlinear Lie derivations on upper triangular matrices, Linear Multilinear A., 56 (2008), 725–730. https://doi.org/10.1080/03081080701688119 doi: 10.1080/03081080701688119
    [2] V. Darvish, M. Nouri, M. Razeghi, A. Taghavi, Nonlinear -Jordan triple derivation on prime -algebras, Rocky Mountain J. Math., 50 (2020), 543–549. https://doi.org/10.1216/rmj.2020.50.543 doi: 10.1216/rmj.2020.50.543
    [3] D. G. Han, Additive derivations of nest algebras, P. Am. Math. Soc., 119 (1993), 1165–1169. https://doi.org/10.2307/2159979 doi: 10.2307/2159979
    [4] P. S. Ji, R. R. Liu, Y. Z. Zhao, Nonlinear Lie triple derivations of triangular algebras, Linear Multilinear A., 60 (2012), 1155–1164. https://doi.org/10.1080/03081087.2011.652109 doi: 10.1080/03081087.2011.652109
    [5] W. Jing, F. Y. Lu, Lie derivable mappings on prime rings, Linear Multilinear A., 60 (2012), 167–180. https://doi.org/10.1080/03081087.2011.576343 doi: 10.1080/03081087.2011.576343
    [6] C. J. Li, D. F. Zhang, Nonlinear mixed Jordan triple -derivations on factor von Neumann algebras, Filomat, 36 (2022), 2637–2644. https://doi.org/10.2298/FIL2208637L doi: 10.2298/FIL2208637L
    [7] L. Liu, Lie triple derivations on factor von Neumann algebras, B. Korean Math. Soc., 52 (2015), 581–591. https://doi.org/10.4134/BKMS.2015.52.2.581 doi: 10.4134/BKMS.2015.52.2.581
    [8] A. Taghavi, H. Rohi, V. Darvish, Non-linear -Jordan derivations on von Neumann algebras, Linear Multilinear A., 64 (2016), 426–439. https://doi.org/10.1080/03081087.2015.1043855 doi: 10.1080/03081087.2015.1043855
    [9] Y. P. Yang, Nonlinear Lie derivations on incidence algebras, Oper. Matrices, 15 (2021), 275–292. https://doi.org/10.7153/oam-2021-15-19 doi: 10.7153/oam-2021-15-19
    [10] Z. J. Yang, J. H. Zhang, Nonlinear maps preserving the second mixed Lie triple products on factor von Neumann algebras, Linear Multilinear A., 68 (2020), 377–390. https://doi.org/10.1080/03081087.2018.1506732 doi: 10.1080/03081087.2018.1506732
    [11] W. Y. Yu, J. H. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl., 432 (2010), 2953–2960. https://doi.org/10.1016/j.laa.2009.12.042 doi: 10.1016/j.laa.2009.12.042
    [12] F. J. Zhang, Nonlinear skew Jordan derivable maps on factor von Neumann algebras, Linear Multilinear A., 64 (2016), 2090–2103. https://doi.org/10.1080/03081087.2016.1139035 doi: 10.1080/03081087.2016.1139035
    [13] X. P. Zhao, H. X. Hao, Non-global nonlinear Lie triple derivable maps on finite von Neumann algebras, Bull. Iran. Math. Soc., 47 (2021), 307–322. https://doi.org/10.1007/s41980-020-00493-4 doi: 10.1007/s41980-020-00493-4
    [14] Y. Y. Zhao, C. J. Li, Q. Y. Chen, Nonlinear maps preserving mixed product on factors, Bull. Iran. Math. Soc., 47 (2021), 1325–1335. https://doi.org/10.1007/s41980-020-00444-z doi: 10.1007/s41980-020-00444-z
    [15] Y. Zhou, Z. J. Yang, J. H. Zhang, Nonlinear mixed Lie triple derivations on prime -algebras, Commun. Algebra, 47 (2019), 4791–4796. https://doi.org/10.1080/00927872.2019.1596277 doi: 10.1080/00927872.2019.1596277
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(350) PDF downloads(70) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog