Let R be a 2-torsion free unital prime ∗-ring containing a nontrivial symmetric idempotent and Zc(R) be the anti-symmetric center of R. We prove that if a map φ:R→R satisfies φ([A∙B,C])=[φ(A)∙B,C]+[A∙φ(B),C]+[A∙B,φ(C)] for any A,B,C∈R with ABC∗=0, then there exists an additive ∗-derivation Θ of R and a nonlinear map g:R→Zc(R) such that φ(A)=Θ(A)+g(A) for any A∈R.
Citation: Fenhong Li, Liang Kong, Chao Li. Non-global nonlinear mixed skew Jordan Lie triple derivations on prime ∗-rings[J]. AIMS Mathematics, 2025, 10(4): 7795-7812. doi: 10.3934/math.2025357
[1] | Zhonghua Wang, Xiuhai Fei . Maps on $ C^\ast $-algebras are skew Lie triple derivations or homomorphisms at one point. AIMS Mathematics, 2023, 8(11): 25564-25571. doi: 10.3934/math.20231305 |
[2] | Faiza Shujat, Faarie Alharbi, Abu Zaid Ansari . Weak $ (p, q) $-Jordan centralizer and derivation on rings and algebras. AIMS Mathematics, 2025, 10(4): 8322-8330. doi: 10.3934/math.2025383 |
[3] | Omaima Alshanqiti, Ashutosh Pandey, Mani Shankar Pandey . A characterization of $ b $-generalized skew derivations on a Lie ideal in a prime ring. AIMS Mathematics, 2024, 9(12): 34184-34204. doi: 10.3934/math.20241628 |
[4] | Lili Ma, Qiang Li . Cohomology and its applications on multiplicative Hom-$ \delta $-Jordan Lie color triple systems. AIMS Mathematics, 2024, 9(9): 25936-25955. doi: 10.3934/math.20241267 |
[5] | Liang Kong, Chao Li . Non-global nonlinear skew Lie triple derivations on factor von Neumann algebras. AIMS Mathematics, 2022, 7(8): 13963-13976. doi: 10.3934/math.2022771 |
[6] | Wasim Ahmed, Amal S. Alali, Muzibur Rahman Mozumder . Characterization of $ (\alpha, \beta) $ Jordan bi-derivations in prime rings. AIMS Mathematics, 2024, 9(6): 14549-14557. doi: 10.3934/math.2024707 |
[7] | Gurninder S. Sandhu, Deepak Kumar . Correction: A note on derivations and Jordan ideals in prime rings. AIMS Mathematics, 2019, 4(3): 684-685. doi: 10.3934/math.2019.3.684 |
[8] | Gurninder S. Sandhu, Deepak Kumar . A note on derivations and Jordan ideals of prime rings. AIMS Mathematics, 2017, 2(4): 580-585. doi: 10.3934/Math.2017.4.580 |
[9] | Xiuhai Fei, Zhonghua Wang, Cuixian Lu, Haifang Zhang . Higher Jordan triple derivations on $ * $-type trivial extension algebras. AIMS Mathematics, 2024, 9(3): 6933-6950. doi: 10.3934/math.2024338 |
[10] | Ai-qun Ma, Lin Chen, Zijie Qin . Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras. AIMS Mathematics, 2023, 8(3): 6026-6035. doi: 10.3934/math.2023304 |
Let R be a 2-torsion free unital prime ∗-ring containing a nontrivial symmetric idempotent and Zc(R) be the anti-symmetric center of R. We prove that if a map φ:R→R satisfies φ([A∙B,C])=[φ(A)∙B,C]+[A∙φ(B),C]+[A∙B,φ(C)] for any A,B,C∈R with ABC∗=0, then there exists an additive ∗-derivation Θ of R and a nonlinear map g:R→Zc(R) such that φ(A)=Θ(A)+g(A) for any A∈R.
Let A be an associative ∗-algebra. For A,B∈A, denote by [A,B]=AB−BA, [A,B]∗=AB−BA∗ and A∙B=AB+BA∗ the Lie product, skew Lie product and skew Jordan product of A and B, respectively. A map δ:A→A is called an additive derivation if δ(A+B)=δ(A)+δ(B) and δ(AB)=δ(A)B+Aδ(B) for all A,B∈A. Moreover, δ is called an additive ∗-derivation if it is an additive derivation and satisfies δ(A∗)=δ(A)∗ for all A∈A. A map φ:A→A (without the additivity assumption) is called a nonlinear Lie derivation (resp. nonlinear Lie triple derivation) if φ([A,B])=[φ(A),B]+[A,φ(B)] for all A,B∈A (resp. φ([[A,B],C])=[[φ(A),B],C]+[[A,φ(B)],C]+[[A,B],φ(C)] for all A,B,C∈A). In the past years, nonlinear Lie derivations and Lie triple derivations on various algebras have been studied. Chen and Zhang [1], Yu and Zhang [11], and Yang [9] gave the structure of nonlinear Lie derivations on upper triangular matrices, triangular algebras, and incidence algebras, respectively. Ji, Liu, and Zhao [4] proved that every nonlinear Lie triple derivation on triangular algebras can be expressed as the sum of an additive derivation and a center value map vanishing on Lie triple products. A map φ:A→A (without the additivity assumption) is called a nonlinear skew Jordan derivation (resp. nonlinear skew Jordan triple derivation) if φ(A∙B)=φ(A)∙B+A∙φ(B) for all A,B∈A (resp. φ(A∙B∙C)=φ(A)∙B∙C+A∙φ(B)∙C+A∙B∙φ(C) for all A,B,C∈A). Nonlinear skew Jordan derivations and skew Jordan triple derivations on various algebras also have been studied by some authors. Taghavi, Rohi, and Darvish [8], and Zhang [12] proved every nonlinear skew Jordan derivation on factor von Neumann algebras is an additive ∗-derivation, respectively. Darvish et al.[2] proved that every nonlinear skew Jordan triple derivation on prime ∗-algebras is an additive ∗-derivation under some assumption. Recently, derivations (nonlinear maps) corresponding to (preserving) the new products of the mixture of (skew) Lie product and skew Jordan product have attracted the attention of several authors. Li and Zhang [6] studied nonlinear mixed Jordan triple ∗-derivations on factor von Neumann algebras. Yang and Zhang [10] characterized nonlinear maps preserving the second mixed Lie triple products on factor von Neumann algebras. Zhou, Yang, and Zhang [15] proved that any map φ from a unital prime ∗-algebra A to itself satisfying φ([[A,B]∗,C])=[[φ(A),B]∗,C]+[[A,φ(B)]∗,C]+[[A,B]∗,φ(C)] for all A,B,C∈A is an additive ∗-derivation. Let A and B be two factors with dimA>4. Zhao, Li, and Chen [14] characterized the concrete structure of any bijective map φ:A→B satisfying
φ([A∙B,C])=[φ(A)∙φ(B),φ(C)] |
for all A,B,C∈A.
The conditions under which linear (nonlinear) Lie (triple) derivations of operator algebras can be completely determined by the action on some proper subsets of these operator algebras were considered. Let M be a factor with dimM>1. Liu [7] investigated any linear map φ:M→M satisfying φ([[A,B],C])=[[φ(A),B],C]+[[A,φ(B)],C]+[[A,B],φ(C)] for any A,B,C∈A with AB=0 (resp. AB=P, where P is a fixed non-trivial projection of M). Zhao and Hao [13] proved that if a nonlinear map φ from a finite von Neumann algebra M with no central summands of type I1 to itself satisfies δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)] for any A,B,C∈M with ABC=0, then δ=d+τ, where d is an additive derivation from M into itself and τ is a nonlinear map from M into its center such that τ([[A,B],C])=0 with ABC=0. In sequel, we introduce the notion of non-global nonlinear mixed skew Jordan Lie triple derivation. Let F:A×A×A→A be a map and Q be a proper subset of A. If φ satisfies
φ([A∙B,C])=[φ(A)∙B,C]+[A∙φ(B),C]+[A∙B,φ(C)] |
for any A,B,C∈A with F(A,B,C)∈Q, then φ is called a non-global nonlinear mixed skew Jordan Lie triple derivation.
A ring R is called a ∗-ring if there is an additive map ∗:R→R satisfying (AB)∗=B∗A∗ and (A∗)∗=A for all A,B∈R. R is called prime when for A,B∈R, if ARB={0}, then A=0 or B=0. Let Z(R) be the center of R and Zc(R)={A∈Z(R):A∗=−A} be the anti-symmetric center of R. Motivated by the above-mentioned works, we will study the concrete structure of a kind of non-global nonlinear mixed skew Jordan Lie triple derivations φ on prime ∗-rings R satisfying φ([A∙B,C])=[φ(A)∙B,C]+[A∙φ(B),C]+[A∙B,φ(C)] for any A,B,C∈R with ABC∗=0.
The main result is the following theorem:
Theorem 2.1. Let R be a 2-torsion free unital prime ∗-ring containing a nontrivial symmetric idempotent. If a map φ:R→R satisfies
φ([A∙B,C])=[φ(A)∙B,C]+[A∙φ(B),C]+[A∙B,φ(C)] |
for any A,B,C∈R with ABC∗=0, then there exists an additive ∗-derivation Θ of R and a nonlinear map g:R→Zc(R) such that
φ(A)=Θ(A)+g(A) |
for any A∈R.
Let P∈R be the nontrivial symmetric idempotent. Write P1=P, P2=I−P1, Rij=PiRPj (i,j=1,2), then R = R11+R12+R21+R22. For every A∈R, A=A11+A12+A21+A22, where Aij∈ Rij (i,j=1,2).
Lemma 2.1. For every Aii∈Rii,Bij∈Rij,Cji∈Rji (1≤i≠j≤2), we have
φ(Aii+Bij+Cji)=φ(Aii)+φ(Bij)+φ(Cji). |
Proof: Clearly, φ(0)=0. Let
T=φ(Aii+Bij+Cji)−φ(Aii)−φ(Bij)−φ(Cji). |
Next, we show that T=0. For any Xij∈Rij with 1≤i≠j≤2, since
Xij(Aii+Bij+Cji)P∗j=XijAiiP∗j=XijBijP∗j=XijCjiP∗j=0, |
and
[Xij∙Aii,Pj]=[Xij∙Cji,Pj]=0. |
We have
[φ(Xij)∙(Aii+Bij+Cji),Pj]+[Xij∙φ(Aii+Bij+Cji),Pj]+[Xij∙(Aii+Bij+Cji),φ(Pj)]=φ([Xij∙(Aii+Bij+Cji),Pj])=φ([Xij∙Aii,Pj])+φ([Xij∙Bij,Pj])+φ([Xij∙Cji,Pj])=[φ(Xij)∙(Aii+Bij+Cji),Pj]+[Xij∙(φ(Aii)+φ(Bij)+φ(Cji)),Pj]+[Xij∙(Aii+Bij+Cji),φ(Pj)]. |
This implies that
[Xij∙T,Pj]=0. | (2.1) |
Multiplying Eq (2.1) by Pj from the right, we have XijTPj=0. Hence, Tjj=0 by the primeness of R.
From
(Aii+Bij+Cji)XijP∗i=AiiXijP∗i=BijXijP∗i=CjiXijP∗i=0, |
and
[Bij∙Xij,Pi]=[Cji∙Xij,Pi]=0. |
We have
[φ(Aii+Bij+Cji)∙Xij,Pi]+[(Aii+Bij+Cji)∙φ(Xij),Pi]+[(Aii+Bij+Cji)∙Xij,φ(Pi)]=φ([(Aii+Bij+Cji)∙Xij,Pi])=φ([Aii∙Xij,Pi])+φ([Bij∙Xij,Pi])+φ([Cji∙Xij,Pi])=[(φ(Aii)+φ(Bij)+φ(Cji))∙Xij,Pi]+[(Aii+Bij+Cji)∙φ(Xij),Pi]+[(Aii+Bij+Cji)∙Xij,φ(Pi)]. |
It follows that
[T∙Xij,Pi]=0. | (2.2) |
Multiplying Eq (2.2) by Pj from the right and by the fact that Tjj=0, we have PiTXij=0. Thus, Tii=0.
Since
(Aii+Bij+Cji)PjP∗i=AiiPjP∗i=BijPjP∗i=CjiPjP∗i=0, |
and
[Aii∙Pj,Pi]=[Cji∙Pj,Pi]=0. |
We have
[φ(Aii+Bij+Cji)∙Pj,Pi]+[(Aii+Bij+Cji)∙φ(Pj),Pi]+[(Aii+Bij+Cji)∙Pj,φ(Pi)]=φ([(Aii+Bij+Cji)∙Pj,Pi])=φ([Aii∙Pj,Pi])+φ([Bij∙Pj,Pi])+φ([Cji∙Pj,Pi])=[(φ(Aii)+φ(Bij)+φ(Cji))∙Pj,Pi]+[(Aii+Bij+Cji)∙φ(Pj),Pi]+[(Aii+Bij+Cji)∙Pj,φ(Pi)]. |
Then,
[T∙Pj,Pi]=0. | (2.3) |
Multiplying Eq (2.3) by Pi from the left, we obtain Tij=0.
From
(Aii+Bij+Cji)PiP∗j=AiiPiP∗j=BijPiP∗j=CjiPiP∗j=0, |
and
[Aii∙Pi,Pj]=[Bij∙Pi,Pj]=0. |
We have
[φ(Aii+Bij+Cji)∙Pi,Pj]+[(Aii+Bij+Cji)∙φ(Pi),Pj]+[(Aii+Bij+Cji)∙Pi,φ(Pj)]=φ([(Aii+Bij+Cji)∙Pi,Pj])=φ([Aii∙Pi,Pj])+φ([Bij∙Pi,Pj])+φ([Cji∙Pi,Pj])=[(φ(Aii)+φ(Bij)+φ(Cji))∙Pi,Pj]+[(Aii+Bij+Cji)∙φ(Pi),Pj]+[(Aii+Bij+Cji)∙Pi,φ(Pj)]. |
It follows that
[T∙Pi,Pj]=0. | (2.4) |
Multiplying Eq (2.4) by Pj from the left, we obtain Tji=0. Therefore, T=0.
Lemma 2.2. For every Aij,Bij∈Rij (1≤i≠j≤2), we have
φ(Aij+Bij)=φ(Aij)+φ(Bij). |
Proof: Since (Pi−Aij)(Pj−Bij)P∗i=0,
PiPjP∗i=Pi(−Bij)P∗i=(−Aij)PjP∗i=(−Aij)(−Bij)P∗i=0, |
and
[(Pi−Aij)∙(Pj−Bij),Pi]=−A∗ij+Aij+Bij. |
We have from Lemma 2.1 that
φ(−A∗ij)+φ(Aij+Bij)=φ([(Pi−Aij)∙(Pj−Bij),Pi])=[φ(Pi−Aij)∙(Pj−Bij),Pi]+[(Pi−Aij)∙φ(Pj−Bij),Pi]+[(Pi−Aij)∙(Pj−Bij),φ(Pi)]=[(φ(Pi)+φ(−Aij))∙(Pj−Bij),Pi]+[(Pi−Aij)∙(φ(Pj)+φ(−Bij)),Pi]+[(Pi−Aij)∙(Pj−Bij),φ(Pi)]=φ([Pi∙Pj,Pi])+φ([Pi∙(−Bij),Pi])+φ([(−Aij)∙Pj,Pi])+φ([(−Aij)∙(−Bij),Pi])=φ(Bij)+φ(−A∗ij+Aij)=φ(−A∗ij)+φ(Aij)+φ(Bij). |
Then, φ(Aij+Bij)=φ(Aij)+φ(Bij).
Lemma 2.3. For every Aii,Bii∈Rii (i=1,2), we have
φ(Aii+Bii)=φ(Aii)+φ(Bii). |
Proof: Let
T=φ(Aii+Bii)−φ(Aii)−φ(Bii). |
Since
Pj(Aii+Bii)P∗j=PjAiiP∗j=PjBiiP∗j=0, |
and
[Pj∙Aii,Pj]=0. |
We have
[φ(Pj)∙(Aii+Bii),Pj]+[Pj∙φ(Aii+Bii),Pj]+[Pj∙(Aii+Bii),φ(Pj)]=φ([Pj∙(Aii+Bii),Pj])=φ([Pj∙Aii,Pj])+φ([Pj∙Bii,Pj])=[φ(Pj)∙(Aii+Bii),Pj]+[Pj∙(φ(Aii)+φ(Bii)),Pj]+[Pj∙(Aii+Bii),φ(Pj)]. |
This gives that
[Pj∙T,Pj]=0. | (2.5) |
Multiplying Eq (2.5) by Pi from the left, by Pi from the right, respectively, we obtain Tij=0, Tji=0, respectively.
For any Xij∈Rij with 1≤i≠j≤2, since
Xij(Aii+Bii)P∗j=XijAiiP∗j=XijBiiP∗j=0, |
and
[Xij∙Aii,Pj]=0. |
We have
[φ(Xij)∙(Aii+Bii),Pj]+[Xij∙φ(Aii+Bii),Pj]+[Xij∙(Aii+Bii),φ(Pj)]=φ([Xij∙(Aii+Bii),Pj])=φ([Xij∙Aii,Pj])+φ([Xij∙Bii,Pj])=[φ(Xij)∙(Aii+Bii),Pj]+[Xij∙(φ(Aii)+φ(Bii)),Pj]+[Xij∙(Aii+Bii),φ(Pj)]. |
It follows that
[Xij∙T,Pj]=0. | (2.6) |
Multiplying Eq (2.6) by Pi from the left, we have XijTPj=0, and so Tjj=0.
For any Xji∈Rji with 1≤i≠j≤2, since
Xji(Aii+Bii)P∗j=XjiAiiP∗j=XjiBiiP∗j=0. |
We have from Lemmas 2.1 and 2.2 that
[φ(Xji)∙(Aii+Bii),Pj]+[Xji∙φ(Aii+Bii),Pj]+[Xji∙(Aii+Bii),φ(Pj)]=φ([Xji∙(Aii+Bii),Pj])=φ(AiiX∗ji+BiiX∗ji−XjiAii−XjiBii)=φ(AiiX∗ji−XjiAii)+φ(BiiX∗ji−XjiBii)=φ([Xji∙Aii,Pj])+φ([Xji∙Bii,Pj])=[φ(Xji)∙(Aii+Bii),Pj]+[Xji∙(φ(Aii)+φ(Bii)),Pj]+[Xji∙(Aii+Bii),φ(Pj)], |
which gives that
[Xji∙T,Pj]=0. | (2.7) |
Multiplying Eq (2.7) by Pi from the right, we have XjiTPi=0. Hence, Tii=0.
Lemma 2.4. (a) φ(Pi)∗=φ(Pi) (i=1,2);
(b) Piφ(Pi)Pj=−Piφ(Pj)Pj (1≤i≠j≤2).
Proof: (a) Let 1≤i≠j≤2. Since PjPiP∗j=0 and [Pj∙Pi,Pj]=0, we have
0=φ([Pj∙Pi,Pj])=[φ(Pj)∙Pi,Pj]+[Pj∙φ(Pi),Pj]+[Pj∙Pi,φ(Pj)]=Piφ(Pj)∗Pj−Pjφ(Pj)Pi+φ(Pi)Pj−Pjφ(Pi). | (2.8) |
Multiplying Eq (2.8) by Pi from the left and by Pj from the right, we obtain
Piφ(Pj)∗Pj=−Piφ(Pi)Pj. | (2.9) |
It follows that
Pjφ(Pj)Pi=−Pjφ(Pi)∗Pi. | (2.10) |
Multiplying Eq (2.8) by Pj from the left and by Pi from the right, we obtain
Pjφ(Pj)Pi=−Pjφ(Pi)Pi. | (2.11) |
Comparing Eqs (2.10) and (2.11), we obtain
Pjφ(Pi)∗Pi=Pjφ(Pi)Pi. | (2.12) |
Since PjPjP∗i=0 and [Pj∙Pj,Pi]=0, we have
0=φ([Pj∙Pj,Pi])=[φ(Pj)∙Pj,Pi]+[Pj∙φ(Pj),Pi]+[Pj∙Pj,φ(Pi)]=Pjφ(Pj)∗Pi−2Piφ(Pj)Pj+Pjφ(Pj)Pi+2Pjφ(Pi)−2φ(Pi)Pj. | (2.13) |
Multiplying Eq (2.13) by Pi from the left and by Pj from the right, we have
2(Piφ(Pj)Pj+Piφ(Pi)Pj)=0. | (2.14) |
Since R is 2-torsion free, we have from Eq (2.14) that
Piφ(Pj)Pj=−Piφ(Pi)Pj. | (2.15) |
From PiPiP∗j=0 and [Pi∙Pi,Pj]=0, we have
0=φ([Pi∙Pi,Pj])=[φ(Pi)∙Pi,Pj]+[Pi∙φ(Pi),Pj]+[Pi∙Pi,φ(Pj)]=Piφ(Pi)∗Pj−2Pjφ(Pi)Pi+Piφ(Pi)Pj+2Piφ(Pj)−2φ(Pj)Pi. | (2.16) |
Multiplying Eq (2.16) by Pi from the left and by Pj from the right, then by Eq. (2.15), we have
Piφ(Pi)∗Pj=Piφ(Pi)Pj. | (2.17) |
For any Xij∈Rij with 1≤i≠j≤2, we have from XijPiP∗i=0 and [Xij∙Pi,Pi]=0 that
0=φ([Xij∙Pi,Pi])=[φ(Xij)∙Pi,Pi]+[Xij∙φ(Pi),Pi]+[Xij∙Pi,φ(Pi)]=φ(Xij)Pi+Piφ(Xij)∗Pi−Piφ(Xij)Pi−Piφ(Xij)∗+Xijφ(Pi)Pi+φ(Pi)X∗ij−Xijφ(Pi)−Piφ(Pi)X∗ij. | (2.18) |
Multiplying Eq (2.18) by Pi from the left and by Pj from the right, we have
Piφ(Xij)∗Pj=−Xijφ(Pi)Pj. | (2.19) |
Multiplying Eq (2.18) by Pj from the left and by Pi from the right, we have Pjφ(Xij)Pi+Pjφ(Pi)X∗ij=0. Then,
Piφ(Xij)∗Pj=−Xijφ(Pi)∗Pj. | (2.20) |
Comparing Eqs (2.19) and (2.20), we obtain Xij(Pjφ(Pi)Pj−Pjφ(Pi)∗Pj)=0. It follows that
Pjφ(Pi)∗Pj=Pjφ(Pi)Pj. | (2.21) |
From PiPiX∗ij=0 and [Pi∙Pi,Xij]=2Xij, we have
φ(2Xij)=φ([Pi∙Pi,Xij])=[φ(Pi)∙Pi,Xij]+[Pi∙φ(Pi),Xij]+[Pi∙Pi,φ(Xij)]=φ(Pi)Xij+Piφ(Pi)∗Xij−Xijφ(Pi)Pi+Piφ(Pi)Xij+φ(Pi)Xij−Xijφ(Pi)Pi+2Piφ(Xij)−2φ(Xij)Pi. | (2.22) |
Multiplying Eq (2.22) by Pi from the left and by Pj from the right, we have
Piφ(2Xij)Pj=3Piφ(Pi)Xij+Piφ(Pi)∗Xij+2Piφ(Xij)Pj. | (2.23) |
It follows from Eq (2.23) and Lemma 2.2 that 3Piφ(Pi)Xij+Piφ(Pi)∗Xij=0, and so
3Piφ(Pi)Pi+Piφ(Pi)∗Pi=0. | (2.24) |
For any Xji∈Rji with 1≤i≠j≤2, since PiXjiP∗i=0 and [Pi∙Xji,Pi]=Xji, we have
φ(Xji)=φ([Pi∙Xji,Pi])=[φ(Pi)∙Xji,Pi]+[Pi∙φ(Xji),Pi]+[Pi∙Xji,φ(Pi)]=Xjiφ(Pi)∗Pi−Piφ(Pi)Xji+φ(Xji)Pi−Piφ(Xji)+Xjiφ(Pi). | (2.25) |
Multiplying Eq (2.25) by Pj from the left and by Pi from the right, we have Xji(Piφ(Pi)∗Pi+Piφ(Pi)Pi)=0. Then,
Piφ(Pi)∗Pi=−Piφ(Pi)Pi. | (2.26) |
By Eqs (2.24) and (2.26), we obtain that 2Piφ(Pi)Pi=0. Then by R is 2-torsion free, we obtain
Piφ(Pi)∗Pi=Piφ(Pi)Pi. | (2.27) |
From Eqs (2.12), (2.17), (2.21), and (2.27), we can see that φ(Pi)∗=φ(Pi).
(b) It follows from Eq (2.9) and (a) that (b) holds.
Lemma 2.5. Pjφ(Pi)Pj=0 (1≤i≠j≤2).
Proof: For any Xij∈Rij with 1≤i≠j≤2, since PjXijP∗j=0 and [Pj∙Xij,Pj]=Xij, we have
φ(Xij)=φ([Pj∙Xij,Pj])=[φ(Pj)∙Xij,Pj]+[Pj∙φ(Xij),Pj]+[Pj∙Xij,φ(Pj)]=Xijφ(Pj)∗Pj−Pjφ(Pj)Xij+φ(Xij)Pj−Pjφ(Xij)+Xijφ(Pj). | (2.28) |
Multiplying Eq (2.28) by Pj from the left and by Pi from the right, we obtain 2Pjφ(Xij)Pi=0, and so,
Pjφ(Xij)Pi=0. | (2.29) |
Combining Eqs (2.19) and (2.29), we have Xijφ(Pi)Pj=0. It follows that Pjφ(Pi)Pj=0.
Lemma 2.6. Piφ(Pi)Pi=0 (i=1,2).
Proof: For any Xij∈Rij with 1≤i≠j≤2, since
PiXijP∗i=0,[Pi∙Xij,Pi]=−Xij, |
we have from Lemma 2.4 that
φ(−Xij)=φ([Pi∙Xij,Pi])=[φ(Pi)∙Xij,Pi]+[Pi∙φ(Xij),Pi]+[Pi∙Xij,φ(Pi)]=Xijφ(Pi)Pi−Piφ(Pi)Xij−Xijφ(Pi)+φ(Xij)Pi−Piφ(Xij)+Xijφ(Pi)−φ(Pi)Xij. | (2.30) |
Multiplying Eq (2.30) by Pi from the left and by Pj from the right, we have
Piφ(−Xij)Pj=−2Piφ(Pi)Xij−Piφ(Xij)Pj. | (2.31) |
It follows from Eq (2.31) and Lemma 2.2 that 2Piφ(Pi)Xij=0, and so Piφ(Pi)Xij=0. Hence, Piφ(Pi)Pi=0.
Let T=P1φ(P1)P2−P2φ(P1)P1. Then, T∗=−T by Lemma 2.4. We define a map Φ:R→R by
Φ(A)=φ(A)−[A,T] |
for all A∈R.
Remark 2.1. It is easy to check that Φ also satisfies
Φ([A∙B,C])=[Φ(A)∙B,C]+[A∙Φ(B),C]+[A∙B,Φ(C)] |
for any A,B,C∈R with ABC∗=0. By Lemmas 2.1–2.6, it follows that
(a) For every Aii∈Rii,Bij∈Rij,Cji∈Rji (1≤i≠j≤2), we have
Φ(Aii+Bij+Cji)=Φ(Aii)+Φ(Bij)+Φ(Cji). |
(b) For every Aij,Bij∈Rij (1≤i≠j≤2), we have
Φ(Aij+Bij)=Φ(Aij)+Φ(Bij). |
(c) For every Aii,Bii∈Rii (i=1,2), we have
Φ(Aii+Bii)=Φ(Aii)+Φ(Bii). |
(d) Φ(Pi)=0 (i=1,2).
Lemma 2.7. Φ(Rij)⊆Rij (1≤i≠j≤2).
Proof: Let Aij∈Rij with 1≤i≠j≤2. From AijPiP∗i=0,[Aij∙Pi,Pi]=0 and Φ(Pi)=0, we have
0=Φ([Aij∙Pi,Pi])=[Φ(Aij)∙Pi,Pi]=Φ(Aij)Pi+PiΦ(Aij)∗Pi−PiΦ(Aij)Pi−PiΦ(Aij)∗. | (2.32) |
Multiplying Eq (2.32) by Pj from the left, we obtain PjΦ(Aij)Pi=0.
Since Pj(−Aij)P∗i=0,[Pj∙(−Aij),Pi]=Aij and Φ(Pi)=Φ(Pj)=0, we have
Φ(Aij)=Φ([Pj∙(−Aij),Pi])=[Pj∙Φ(−Aij),Pi]=PjΦ(−Aij)Pi−PiΦ(−Aij)Pj. | (2.33) |
Multiplying Eq (2.33) by Pi from both sides, by Pj from both sides, respectively, we have PiΦ(Aij)Pi=0, PjΦ(Aij)Pj=0, respectively. Therefore, Φ(Rij)⊆Rij.
Lemma 2.8. Φ(Rii)⊆Rii (i=1,2).
Proof: It follows from PiAiiP∗j=0,[Pi∙Aii,Pj]=0 and Φ(Pi)=Φ(Pj)=0 that
0=Φ([Pi∙Aii,Pj])=[Pi∙Φ(Aii),Pj]=PiΦ(Aii)Pj−PjΦ(Aii)Pi. | (2.34) |
Multiplying Eq (2.34) by Pi from the left, by Pj from the left, respectively, we have PiΦ(Aii)Pj=0, PjΦ(Aii)Pi=0, respectively.
For any Xij∈Rij with 1≤i≠j≤2, since XijAiiP∗j=0,[Xij∙Aii,Pj]=0 and Φ(Pj)=0, we have
0=Φ([Xij∙Aii,Pj])=[Φ(Xij)∙Aii,Pj]+[Xij∙Φ(Aii),Pj]=AiiΦ(Xij)∗Pj−PjΦ(Xij)Aii+XijΦ(Aii)Pj−PjΦ(Aii)X∗ij. | (2.35) |
Multiplying Eq (2.35) by Pi from the left, and by Lemma 2.7, we have
XijΦ(Aii)Pj=−Aii(PjΦ(Xij)Pi)∗=0. |
Then, PjΦ(Aii)Pj=0. Hence, Φ(Rii)⊆Rii.
Lemma 2.9. For every Aii∈Rii,Bij∈Rij,Cji∈Rji,Djj∈Rjj (1≤i≠j≤2), we have
(a) Φ(Aii+Bij+Djj)=Φ(Aii)+Φ(Bij)+Φ(Djj);
(b) Φ(Aii+Cji+Djj)=Φ(Aii)+Φ(Cji)+Φ(Djj).
Proof: (a) Let
T=Φ(Aii+Bij+Djj)−Φ(Aii)−Φ(Bij)−Φ(Djj). |
Since
Pj(Aii+Bij+Djj)P∗i=PjAiiP∗i=PjBijP∗i=PjDjjP∗i=0, |
and
[Pj∙Aii,Pi]=[Pj∙Djj,Pi]=0,Φ(Pi)=Φ(Pj)=0. |
We have
[Pj∙Φ(Aii+Bij+Djj),Pi]=Φ([Pj∙(Aii+Bij+Djj),Pi])=Φ([Pj∙Aii,Pi])+Φ([Pj∙Bij,Pi])+Φ([Pj∙Djj,Pi])=[Pj∙Φ(Aii),Pi]+[Pj∙Φ(Bij),Pi]+[Pj∙Φ(Djj),Pi]=[Pj∙(Φ(Aii)+Φ(Bij)+Φ(Djj)),Pi]. |
This implies that
[Pj∙T,Pi]=0. | (2.36) |
Multiplying Eq (2.36) by Pi from the left, by Pj from the left, respectively, we have Tij=0, Tji=0, respectively.
For any Xij∈Rij with 1≤i≠j≤2, from
Xij(Aii+Bij+Djj)P∗i=XijAiiP∗i=XijBijP∗i=XijDjjP∗i=0, |
and
[Xij∙Aii,Pi]=[Xij∙Bij,Pi]=0,Φ(Pi)=0. |
We have
[Φ(Xij)∙(Aii+Bij+Djj),Pi]+[Xij∙Φ(Aii+Bij+Djj),Pi]=Φ([Xij∙(Aii+Bij+Djj),Pi])=Φ([Xij∙Aii,Pi])+Φ([Xij∙Bij,Pi])+Φ([Xij∙Djj,Pi])=[Φ(Xij)∙(Aii+Bij+Djj),Pi]+[Xij∙(Φ(Aii)+Φ(Bij)+Φ(Djj)),Pi], |
which implies that
[Xij∙T,Pi]=0. | (2.37) |
Multiplying Eq (2.37) by Pj from the right, we obtain XijTPj=0, and so Tjj=0.
For any Xji∈Rji with 1≤i≠j≤2, since
(Aii+Bij+Djj)XjiP∗j=AiiXjiP∗j=BijXjiP∗j=DjjXjiP∗j=0, |
and
[Bij∙Xji,Pj]=0,[(Aii+Djj)∙Xji,Pj]=−XjiA∗ii−DjjXji,Φ(Pj)=0. |
We have from Remark 2.1 (b) that
[Φ(Aii+Bij+Djj)∙Xji,Pj]+[(Aii+Bij+Djj)∙Φ(Xji),Pj]=Φ([(Aii+Bij+Djj)∙Xji,Pj])=Φ([(Aii+Djj)∙Xji,Pj])+Φ([Bij∙Xji,Pj])=Φ(−XjiA∗ii)+Φ(−DjjXji)+Φ([Bij∙Xji,Pj])=Φ([Aii∙Xji,Pj])+Φ([Bij∙Xji,Pj])+Φ([Djj∙Xji,Pj])=[(Φ(Aii)+Φ(Bij)+Φ(Djj))∙Xji,Pj]+[(Aii+Bij+Djj)∙Φ(Xji),Pj]. |
It follows that
[T∙Xji,Pj]=0. | (2.38) |
Multiplying Eq (2.38) by Pi from the right and by the fact that Tjj=0, we obtain XjiT∗Pi=0 and so Tii=0. Hence, T=0.
(b) Similarly, we can show that (b) holds.
Lemma 2.10. For A∈R, there exists a map g:R→Zc(R) such that
Φ(A)−g(A)=Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj). |
Proof: For A∈R, write A=∑2i,j=1Aij. Let
T=Φ(Aii+Aij+Aji+Ajj)−Φ(Aii)−Φ(Aij)−Φ(Aji)−Φ(Ajj). | (2.39) |
For any Xij∈Rij with 1≤i≠j≤2, since
PjXij(Aii+Aij+Aji+Ajj)∗=0, |
PjXijA∗ii=PjXijA∗ij=PjXijA∗ji=PjXijA∗jj=0,Φ(Pj)=0, |
and
[Pj∙Xij,Aii+Aij+Aji+Ajj]=XijAji+XijAjj−AiiXij−AjiXij. |
We have from Lemma 2.9 and Remark 2.1 (b) that
[Pj∙Φ(Xij),Aii+Aij+Aji+Ajj]+[Pj∙Xij,Φ(Aii+Aij+Aji+Ajj)]=Φ([Pj∙Xij,Aii+Aij+Aji+Ajj])=Φ(XijAji)+Φ(XijAjj)+Φ(−AiiXij)+Φ(−AjiXij)=Φ(−AiiXij)+Φ(−AjiXij+XijAji)+Φ(XijAjj)=Φ([Pj∙Xij,Aii])+Φ([Pj∙Xij,Aij])+Φ([Pj∙Xij,Aji])+Φ([Pj∙Xij,Ajj])=[Pj∙Φ(Xij),Aii+Aij+Aji+Ajj]+[Pj∙Xij,Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj)]. |
It follows that
[Pj∙Xij,T]=0. | (2.40) |
Multiplying Eq (2.40) by Pi from the right, we obtain XijTPi=0. Then, Tji=0. Multiplying Eq (2.40) by Pi from the left and by Pj from the right, we have PiTXij=XijTPj. It follows from [5, Lemma 1.6] that Tii+Tjj∈Z(R). Similarly, we can show that Tij=0.
Since (Aii+Aij+Aji+Ajj)PiX∗ij=0,
AiiPiX∗ij=AijPiX∗ij=AjiPiX∗ij=AjjPiX∗ij=0,Φ(Pi)=0, |
and
[(Aii+Aij+Aji+Ajj)∙Pi,Xij]=AiiXij+AjiXij+A∗iiXij−XijAji. |
We have from Lemma 2.9 that
[Φ(Aii+Aij+Aji+Ajj)∙Pi,Xij]+[(Aii+Aij+Aji+Ajj)∙Pi,Φ(Xij)]=Φ([(Aii+Aij+Aji+Ajj)∙Pi,Xij])=Φ(AiiXij+A∗iiXij)+Φ(AjiXij−XijAji)=Φ([Aii∙Pi,Xij])+Φ([Aij∙Pi,Xij])+Φ([Aji∙Pi,Xij])+Φ([Ajj∙Pi,Xij])=[(Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj)∙Pi,Xij]+[(Aii+Aij+Aji+Ajj)∙Pi,Φ(Xij)], |
which implies that
[T∙Pi,Xij]=0. | (2.41) |
Multiplying Eq (2.41) by Pi from the left and by Pj from the right, we have PiTXij+PiT∗Xij=0, and so Tii=−T∗ii. Similarly, Tjj=−T∗jj. It follows that Tii+Tjj∈Zc(R) by Tii+Tjj∈Z(R). Define a map g:R→Zc(R) by
g(A)=Tii+Tjj. | (2.42) |
Combining Eqs (2.39) and (2.42), we can obtain the desired result.
Lemma 2.11. For every Aii,Bii∈Rii,Aij,Bij∈Rij,Bji∈Rji,Bjj∈Rjj (1≤i≠j≤2), we have
(a) Φ(AiiBij)=Φ(Aii)Bij+AiiΦ(Bij);
(b) Φ(AiiBii)=Φ(Aii)Bii+AiiΦ(Bii);
(c) Φ(AijBji)=Φ(Aij)Bji+AijΦ(Bji);
(d) Φ(AijBjj)=Φ(Aij)Bjj+AijΦ(Bjj).
Proof: (a) Since
AiiBij(−Pi)∗=0,[Aii∙Bij,−Pi]=AiiBij, |
we have from Remark 2.1 (c), (d), and Lemmas 2.7 and 2.8 that
Φ(AiiBij)=Φ([Aii∙Bij,−Pi])=[Φ(Aii)∙Bij,−Pi]+[Aii∙Φ(Bij),−Pi]=Φ(Aii)Bij+AiiΦ(Bij). |
(b) For any Xij∈Rij with 1≤i≠j≤2, it follows from (a) that
Φ(AiiBii)Xij+AiiBiiΦ(Xij)=Φ(AiiBiiXij)=Φ(Aii)BiiXij+AiiΦ(BiiXij)=Φ(Aii)BiiXij+AiiΦ(Bii)Xij+AiiBiiΦ(Xij). |
This yields that (Φ(AiiBii)−Φ(Aii)Bii−AiiΦ(Bii))Xij=0. Hence, (b) holds by Lemma 2.8.
(c) For any Xij∈Rij with 1≤i≠j≤2, since AijBjiX∗ij=0 and [Aij∙Bji,Xij]=AijBjiXij, we have from (a) and Lemma 2.7 that
Φ(AijBji)Xij+AijBjiΦ(Xij)=Φ(AijBjiXij)=Φ([Aij∙Bji,Xij])=[Φ(Aij)∙Bji,Xij]+[Aij∙Φ(Bji),Xij]+[Aij∙Bji,Φ(Xij)]=Φ(Aij)BjiXij+AijΦ(Bji)Xij+AijBjiΦ(Xij). |
Then, (Φ(AijBji)−Φ(Aij)Bji−AijΦ(Bji))Xij=0, and so (c) holds by Lemmas 2.7 and 2.8.
(d) For any Xji∈Rji with 1≤i≠j≤2, we have from (a) and (c) that
Φ(AijBjj)Xji+AijBjjΦ(Xji)=Φ(AijBjjXji)=Φ(Aij)BjjXji+AijΦ(BjjXji)=Φ(Aij)BjjXji+AijΦ(Bjj)Xji+AijBjjΦ(Xji). |
It follows that (Φ(AijBjj)−Φ(Aij)Bjj−AijΦ(Bjj))Xji=0. Then, (d) holds by Lemmas 2.7 and 2.8.
Lemma 2.12. For every Aij∈Rij (i,j=1,2), we have
Φ(A∗ij)=Φ(Aij)∗. |
Proof: Let 1≤i≠j≤2. Since AijPj(Pi)∗=0,[Aij∙Pj,Pi]=A∗ij−Aij, we have from Remark 2.1 (a), (b), (d), and Lemma 2.7 that
Φ(A∗ij)−Φ(Aij)=Φ([Aij∙Pj,Pi])=[Φ(Aij)∙Pj,Pi]=Φ(Aij)∗−Φ(Aij). |
Hence, Φ(A∗ij)=Φ(Aij)∗.
For any Xij∈Rij with 1≤i≠j≤2, since AiiPiX∗ij=0,[Aii∙Pi,Xij]=AiiXij+A∗iiXij, we have from Remark 2.1 (a), (b), and Lemmas 2.7, 2.8, and 2.11 that
Φ(Aii)Xij+AiiΦ(Xij)+Φ(A∗ii)Xij+A∗iiΦ(Xij)=Φ(AiiXij)+Φ(A∗iiXij)=Φ([Aii∙Pi,Xij])=[Φ(Aii)∙Pi,Xij]+[Aii∙Pi,Φ(Xij)]=Φ(Aii)Xij+Φ(Aii)∗Xij+AiiΦ(Xij)+A∗iiΦ(Xij). |
It follows that (Φ(A∗ii)−Φ(Aii)∗)Xij=0. Then, Φ(A∗ii)=Φ(Aii)∗ by Lemma 2.8.
Proof of Theorem 2.1: We define a map Ψ:R→R by
Ψ(A)=Φ(A)−g(A) |
for all A∈R. For every A,B∈R, let A=∑2i,j=1Aij, B=∑2i,j=1Bij. From Remark 2.1 (b), (c), and Lemma 2.10, we have
Ψ(A+B)=Φ(A+B)−g(A+B)=Φ(Pi(A+B)Pi)+Φ(Pi(A+B)Pj)+Φ(Pj(A+B)Pi)+Φ(Pj(A+B)Pj)+g(A+B)−g(A+B)=Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj)+Φ(Bii)+Φ(Bij)+Φ(Bji)+Φ(Bjj)=Φ(A)−g(A)+Φ(B)−g(B)=Ψ(A)+Ψ(B). |
Hence, Ψ is additive on R. Next, it follows from Remark 2.1 (b), (c), and Lemmas 2.7, 2.8, 2.10, and 2.11 that
Ψ(AB)=Φ(AB)−g(AB)=Φ(Pi(AB)Pi)+Φ(Pi(AB)Pj)+Φ(Pj(AB)Pi)+Φ(Pj(AB)Pj)+g(AB)−g(AB)=Φ(AiiBii+AijBji)+Φ(AiiBij+AijBjj)+Φ(AjiBii+AjjBji)+Φ(AjiBij+AjjBjj)=Φ(AiiBii)+Φ(AijBji)+Φ(AiiBij)+Φ(AijBjj)+Φ(AjiBii)+Φ(AjjBji)+Φ(AjiBij)+Φ(AjjBjj)=(Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj))(Bii+Bij+Bji+Bjj)+(Aii+Aij+Aji+Ajj)(Φ(Bii)+Φ(Bij)+Φ(Bji)+Φ(Bjj))=(Φ(A)−g(A))B+A(Φ(B)−g(B))=Ψ(A)B+AΨ(B). |
It follows that Ψ is an additive derivation on R. Moreover, we have from Lemmas 2.10 and 2.12 that
Ψ(A)∗=(Φ(A)−g(A))∗=(Φ(Aii)+Φ(Aij)+Φ(Aji)+Φ(Ajj)+g(A))∗−g(A)∗=Φ(Aii)∗+Φ(Aij)∗+Φ(Aji)∗+Φ(Ajj)∗=Φ(A∗ii)+Φ(A∗ij)+Φ(A∗ji)+Φ(A∗jj)=Φ(A∗)−g(A∗)=Ψ(A∗). |
Consequently, Ψ is an additive ∗-derivation on R. By the definitions of Φ and Ψ, we can see that φ(A)=Θ(A)+g(A), where Θ(A)=Ψ(A)+[A,T] is an additive ∗-derivation.
As applications of Theorem 2.1, we have the following corollaries.
Corollary 2.1. Let A be a factor von Neumann algebra acting on a complex Hilbert space H with dimA > 1. If a map φ:A→A satisfies φ([A∙B,C])=[φ(A)∙B,C]+[A∙φ(B),C]+[A∙B,φ(C)] for any A,B,C∈A with ABC∗=0, then there exists an additive ∗-derivation Θ of A and a nonlinear map g:A→iRI such that φ(A)=Θ(A)+g(A) for any A∈A.
Corollary 2.2. Let H be an infinite dimensional complex Hilbert space and B(H) be the algebra of all linear bounded operators on H. If a map φ:B(H)→B(H) satisfies φ([A∙B,C])=[φ(A)∙B,C]+[A∙φ(B),C]+[A∙B,φ(C)] for any A,B,C∈B(H) with ABC∗=0, then there exists T∈B(H) satisfying T+T∗=0 and a nonlinear map g:B(H)→iRI such that
φ(A)=AT−TA+g(A) |
for any A∈B(H).
Proof: It follows from Theorem 2.1 that there exists an additive ∗-derivation Θ of B(H) and a nonlinear map g:B(H)→iRI such that φ(A)=Θ(A)+g(A) for any A∈B(H). By the result of [3], Θ is linear and, so it is inner. Hence, there exists S∈B(H) such that Θ(A)=AS−SA for any A∈B(H). Therefore,
A∗S−SA∗=Θ(A∗)=Θ(A)∗=S∗A∗−A∗S∗ |
for all A∈B(H). From this, we can see that S+S∗=λI for some λ∈R. Write T=S−12λI and so T+T∗=0. Hence φ(A)=AT−TA+g(A) for any A∈B(H).
Corollary 2.3. Let A be a standard operator algebra on an infinite dimensional complex Hilbert space H with dimA > 1, which is closed under the adjoint operation and contains a nontrivial projection. If a map φ:A→A satisfies φ([A∙B,C])=[φ(A)∙B,C]+[A∙φ(B),C]+[A∙B,φ(C)] for any A,B,C∈A with ABC∗=0, then there exists an additive ∗-derivation Θ of A and a nonlinear map g:A→iRI such that φ(A)=Θ(A)+g(A) for any A∈A.
In this paper, we characterized the structure of a specific type of non-global nonlinear mixed skew Jordan Lie triple derivations on prime ∗-rings. Moreover, we applied the above result to factor von Neumann algebras and standard operator algebras.
Fenhong Li: Writing–original draft, writing–review & editing; Liang Kong: Writing–original draft, writing–review & editing, funding acquisition; Chao Li: Writing–original draft, writing–review & editing. All authors are contributed equally. All authors have read and approved the final version of the manuscript for publication.
The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article
The authors wish to thank the anonymous referees for their valuable comments and suggestions that improved the presentation of the paper. This research is supported by the Scientific Research Project of Shangluo University (21SKY104, 22KYPY05), and the Shaanxi Provincial Natural Science Basic Research Program (2024JC-YBMS-062).
The authors declare that there are no conflicts of interest.
[1] |
L. Chen, J. H. Zhang, Nonlinear Lie derivations on upper triangular matrices, Linear Multilinear A., 56 (2008), 725–730. https://doi.org/10.1080/03081080701688119 doi: 10.1080/03081080701688119
![]() |
[2] |
V. Darvish, M. Nouri, M. Razeghi, A. Taghavi, Nonlinear ∗-Jordan triple derivation on prime ∗-algebras, Rocky Mountain J. Math., 50 (2020), 543–549. https://doi.org/10.1216/rmj.2020.50.543 doi: 10.1216/rmj.2020.50.543
![]() |
[3] |
D. G. Han, Additive derivations of nest algebras, P. Am. Math. Soc., 119 (1993), 1165–1169. https://doi.org/10.2307/2159979 doi: 10.2307/2159979
![]() |
[4] |
P. S. Ji, R. R. Liu, Y. Z. Zhao, Nonlinear Lie triple derivations of triangular algebras, Linear Multilinear A., 60 (2012), 1155–1164. https://doi.org/10.1080/03081087.2011.652109 doi: 10.1080/03081087.2011.652109
![]() |
[5] |
W. Jing, F. Y. Lu, Lie derivable mappings on prime rings, Linear Multilinear A., 60 (2012), 167–180. https://doi.org/10.1080/03081087.2011.576343 doi: 10.1080/03081087.2011.576343
![]() |
[6] |
C. J. Li, D. F. Zhang, Nonlinear mixed Jordan triple ∗-derivations on factor von Neumann algebras, Filomat, 36 (2022), 2637–2644. https://doi.org/10.2298/FIL2208637L doi: 10.2298/FIL2208637L
![]() |
[7] |
L. Liu, Lie triple derivations on factor von Neumann algebras, B. Korean Math. Soc., 52 (2015), 581–591. https://doi.org/10.4134/BKMS.2015.52.2.581 doi: 10.4134/BKMS.2015.52.2.581
![]() |
[8] |
A. Taghavi, H. Rohi, V. Darvish, Non-linear ∗-Jordan derivations on von Neumann algebras, Linear Multilinear A., 64 (2016), 426–439. https://doi.org/10.1080/03081087.2015.1043855 doi: 10.1080/03081087.2015.1043855
![]() |
[9] |
Y. P. Yang, Nonlinear Lie derivations on incidence algebras, Oper. Matrices, 15 (2021), 275–292. https://doi.org/10.7153/oam-2021-15-19 doi: 10.7153/oam-2021-15-19
![]() |
[10] |
Z. J. Yang, J. H. Zhang, Nonlinear maps preserving the second mixed Lie triple products on factor von Neumann algebras, Linear Multilinear A., 68 (2020), 377–390. https://doi.org/10.1080/03081087.2018.1506732 doi: 10.1080/03081087.2018.1506732
![]() |
[11] |
W. Y. Yu, J. H. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl., 432 (2010), 2953–2960. https://doi.org/10.1016/j.laa.2009.12.042 doi: 10.1016/j.laa.2009.12.042
![]() |
[12] |
F. J. Zhang, Nonlinear skew Jordan derivable maps on factor von Neumann algebras, Linear Multilinear A., 64 (2016), 2090–2103. https://doi.org/10.1080/03081087.2016.1139035 doi: 10.1080/03081087.2016.1139035
![]() |
[13] |
X. P. Zhao, H. X. Hao, Non-global nonlinear Lie triple derivable maps on finite von Neumann algebras, Bull. Iran. Math. Soc., 47 (2021), 307–322. https://doi.org/10.1007/s41980-020-00493-4 doi: 10.1007/s41980-020-00493-4
![]() |
[14] |
Y. Y. Zhao, C. J. Li, Q. Y. Chen, Nonlinear maps preserving mixed product on factors, Bull. Iran. Math. Soc., 47 (2021), 1325–1335. https://doi.org/10.1007/s41980-020-00444-z doi: 10.1007/s41980-020-00444-z
![]() |
[15] |
Y. Zhou, Z. J. Yang, J. H. Zhang, Nonlinear mixed Lie triple derivations on prime ∗-algebras, Commun. Algebra, 47 (2019), 4791–4796. https://doi.org/10.1080/00927872.2019.1596277 doi: 10.1080/00927872.2019.1596277
![]() |