Let $ \mathcal{R} $ be a 2-torsion free unital prime $ \ast $-ring containing a nontrivial symmetric idempotent and $ Z_{c}(\mathcal {R}) $ be the anti-symmetric center of $ \mathcal {R} $. We prove that if a map $ \varphi:\mathcal{R}\rightarrow \mathcal{R} $ satisfies $ \varphi([A\bullet B, C]) = [\varphi(A)\bullet B, C]+[A\bullet\varphi(B), C] +[A\bullet B, \varphi(C)] $ for any $ A, B, C\in \mathcal{R} $ with $ ABC^{\ast} = 0 $, then there exists an additive $ \ast $-derivation $ \Theta $ of $ \mathcal{R} $ and a nonlinear map $ g:\mathcal{R}\rightarrow Z_{c}(\mathcal {R}) $ such that $ \varphi(A) = \Theta(A)+g(A) $ for any $ A\in \mathcal{R} $.
Citation: Fenhong Li, Liang Kong, Chao Li. Non-global nonlinear mixed skew Jordan Lie triple derivations on prime $ \ast $-rings[J]. AIMS Mathematics, 2025, 10(4): 7795-7812. doi: 10.3934/math.2025357
Let $ \mathcal{R} $ be a 2-torsion free unital prime $ \ast $-ring containing a nontrivial symmetric idempotent and $ Z_{c}(\mathcal {R}) $ be the anti-symmetric center of $ \mathcal {R} $. We prove that if a map $ \varphi:\mathcal{R}\rightarrow \mathcal{R} $ satisfies $ \varphi([A\bullet B, C]) = [\varphi(A)\bullet B, C]+[A\bullet\varphi(B), C] +[A\bullet B, \varphi(C)] $ for any $ A, B, C\in \mathcal{R} $ with $ ABC^{\ast} = 0 $, then there exists an additive $ \ast $-derivation $ \Theta $ of $ \mathcal{R} $ and a nonlinear map $ g:\mathcal{R}\rightarrow Z_{c}(\mathcal {R}) $ such that $ \varphi(A) = \Theta(A)+g(A) $ for any $ A\in \mathcal{R} $.
| [1] |
L. Chen, J. H. Zhang, Nonlinear Lie derivations on upper triangular matrices, Linear Multilinear A., 56 (2008), 725–730. https://doi.org/10.1080/03081080701688119 doi: 10.1080/03081080701688119
|
| [2] |
V. Darvish, M. Nouri, M. Razeghi, A. Taghavi, Nonlinear $\ast$-Jordan triple derivation on prime $\ast$-algebras, Rocky Mountain J. Math., 50 (2020), 543–549. https://doi.org/10.1216/rmj.2020.50.543 doi: 10.1216/rmj.2020.50.543
|
| [3] |
D. G. Han, Additive derivations of nest algebras, P. Am. Math. Soc., 119 (1993), 1165–1169. https://doi.org/10.2307/2159979 doi: 10.2307/2159979
|
| [4] |
P. S. Ji, R. R. Liu, Y. Z. Zhao, Nonlinear Lie triple derivations of triangular algebras, Linear Multilinear A., 60 (2012), 1155–1164. https://doi.org/10.1080/03081087.2011.652109 doi: 10.1080/03081087.2011.652109
|
| [5] |
W. Jing, F. Y. Lu, Lie derivable mappings on prime rings, Linear Multilinear A., 60 (2012), 167–180. https://doi.org/10.1080/03081087.2011.576343 doi: 10.1080/03081087.2011.576343
|
| [6] |
C. J. Li, D. F. Zhang, Nonlinear mixed Jordan triple $\ast$-derivations on factor von Neumann algebras, Filomat, 36 (2022), 2637–2644. https://doi.org/10.2298/FIL2208637L doi: 10.2298/FIL2208637L
|
| [7] |
L. Liu, Lie triple derivations on factor von Neumann algebras, B. Korean Math. Soc., 52 (2015), 581–591. https://doi.org/10.4134/BKMS.2015.52.2.581 doi: 10.4134/BKMS.2015.52.2.581
|
| [8] |
A. Taghavi, H. Rohi, V. Darvish, Non-linear $\ast$-Jordan derivations on von Neumann algebras, Linear Multilinear A., 64 (2016), 426–439. https://doi.org/10.1080/03081087.2015.1043855 doi: 10.1080/03081087.2015.1043855
|
| [9] |
Y. P. Yang, Nonlinear Lie derivations on incidence algebras, Oper. Matrices, 15 (2021), 275–292. https://doi.org/10.7153/oam-2021-15-19 doi: 10.7153/oam-2021-15-19
|
| [10] |
Z. J. Yang, J. H. Zhang, Nonlinear maps preserving the second mixed Lie triple products on factor von Neumann algebras, Linear Multilinear A., 68 (2020), 377–390. https://doi.org/10.1080/03081087.2018.1506732 doi: 10.1080/03081087.2018.1506732
|
| [11] |
W. Y. Yu, J. H. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl., 432 (2010), 2953–2960. https://doi.org/10.1016/j.laa.2009.12.042 doi: 10.1016/j.laa.2009.12.042
|
| [12] |
F. J. Zhang, Nonlinear skew Jordan derivable maps on factor von Neumann algebras, Linear Multilinear A., 64 (2016), 2090–2103. https://doi.org/10.1080/03081087.2016.1139035 doi: 10.1080/03081087.2016.1139035
|
| [13] |
X. P. Zhao, H. X. Hao, Non-global nonlinear Lie triple derivable maps on finite von Neumann algebras, Bull. Iran. Math. Soc., 47 (2021), 307–322. https://doi.org/10.1007/s41980-020-00493-4 doi: 10.1007/s41980-020-00493-4
|
| [14] |
Y. Y. Zhao, C. J. Li, Q. Y. Chen, Nonlinear maps preserving mixed product on factors, Bull. Iran. Math. Soc., 47 (2021), 1325–1335. https://doi.org/10.1007/s41980-020-00444-z doi: 10.1007/s41980-020-00444-z
|
| [15] |
Y. Zhou, Z. J. Yang, J. H. Zhang, Nonlinear mixed Lie triple derivations on prime $\ast$-algebras, Commun. Algebra, 47 (2019), 4791–4796. https://doi.org/10.1080/00927872.2019.1596277 doi: 10.1080/00927872.2019.1596277
|