Research article

Cohomology and its applications on multiplicative Hom-δ-Jordan Lie color triple systems

  • Received: 01 June 2024 Revised: 16 August 2024 Accepted: 27 August 2024 Published: 06 September 2024
  • MSC : 17B56, 17B61, 17B75

  • The theory of cohomologies on multiplicative Hom-δ-Jordan Lie color triple systems is given. As an application, deformations and extensions on the multiplicative Hom-δ-Jordan Lie color triple system are characterized in view of relevant cohomology.

    Citation: Lili Ma, Qiang Li. Cohomology and its applications on multiplicative Hom-δ-Jordan Lie color triple systems[J]. AIMS Mathematics, 2024, 9(9): 25936-25955. doi: 10.3934/math.20241267

    Related Papers:

    [1] Hamed Azizollahi, Marion Darbas, Mohamadou M. Diallo, Abdellatif El Badia, Stephanie Lohrengel . EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity. Mathematical Biosciences and Engineering, 2018, 15(4): 905-932. doi: 10.3934/mbe.2018041
    [2] Hatim Solayman Migdadi, Nesreen M. Al-Olaimat, Omar Meqdadi . Inference and optimal design for the k-level step-stress accelerated life test based on progressive Type-I interval censored power Rayleigh data. Mathematical Biosciences and Engineering, 2023, 20(12): 21407-21431. doi: 10.3934/mbe.2023947
    [3] Cuicui Cai, Maosheng Fu, Xianmeng Meng, Chaochuan Jia, Mingjing Pei . Indoor high-precision visible light positioning system using Jaya algorithm. Mathematical Biosciences and Engineering, 2023, 20(6): 10358-10375. doi: 10.3934/mbe.2023454
    [4] Zhaohai Liu, Houguang Liu, Jie Wang, Jianhua Yang, Jingbin Hao, Shanguo Yang . Analysis of design parameters of round-window stimulating type electromagnetic transducer by a nonlinear lumped parameter model of implanted human ear. Mathematical Biosciences and Engineering, 2022, 19(3): 2453-2470. doi: 10.3934/mbe.2022113
    [5] Ming Meng, Luyang Dai, Qingshan She, Yuliang Ma, Wanzeng Kong . Crossing time windows optimization based on mutual information for hybrid BCI. Mathematical Biosciences and Engineering, 2021, 18(6): 7919-7935. doi: 10.3934/mbe.2021392
    [6] Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks . The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences and Engineering, 2009, 6(2): 261-282. doi: 10.3934/mbe.2009.6.261
    [7] Zizhuo Wu, Qingshan She, Zhelong Hou, Zhenyu Li, Kun Tian, Yuliang Ma . Multi-source online transfer algorithm based on source domain selection for EEG classification. Mathematical Biosciences and Engineering, 2023, 20(3): 4560-4573. doi: 10.3934/mbe.2023211
    [8] Bei Liu, Hongzi Bai, Wei Chen, Huaquan Chen, Zhen Zhang . Automatic detection method of epileptic seizures based on IRCMDE and PSO-SVM. Mathematical Biosciences and Engineering, 2023, 20(5): 9349-9363. doi: 10.3934/mbe.2023410
    [9] Yanghan Ou, Siqin Sun, Haitao Gan, Ran Zhou, Zhi Yang . An improved self-supervised learning for EEG classification. Mathematical Biosciences and Engineering, 2022, 19(7): 6907-6922. doi: 10.3934/mbe.2022325
    [10] Sakorn Mekruksavanich, Wikanda Phaphan, Anuchit Jitpattanakul . Epileptic seizure detection in EEG signals via an enhanced hybrid CNN with an integrated attention mechanism. Mathematical Biosciences and Engineering, 2025, 22(1): 73-105. doi: 10.3934/mbe.2025004
  • The theory of cohomologies on multiplicative Hom-δ-Jordan Lie color triple systems is given. As an application, deformations and extensions on the multiplicative Hom-δ-Jordan Lie color triple system are characterized in view of relevant cohomology.





    [1] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, New York: Academic Press, 1978. https://doi.org/10.1090/gsm/034
    [2] S. Okubo, Introdution to Octonion and other non-associative algebras in Physics, Cambridge: Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511524479
    [3] K. Yamaguti, On the cohomology space of Lie triple system, Kumamoto J. Sci. Ser. A, 5 (1960), 44–52.
    [4] F. Kubo, Y. Taniguchi, A controlling cohomology of the deformation theory of Lie triple systems, J. Algebra, 278 (2004), 242–250. https://doi.org/10.1016/j.jalgebra.2004.01.005 doi: 10.1016/j.jalgebra.2004.01.005
    [5] T. Zhang, Notes on cohomologies of Lie triple systems, J. Lie Theory, 24 (2014), 909–929.
    [6] S. Okubo, Parastatistics as Lie supertriple systems, J. Math. Phys., 35 (1994), 2785–2803. https://doi.org/10.1063/1.530486 doi: 10.1063/1.530486
    [7] S. Okubo, N. Kamiya, Jordan-Lie superalgebra and Jordan-Lie triple system, J. Algebra, 198 (1997), 388–411. https://doi.org/10.1006/jabr.1997.7144 doi: 10.1006/jabr.1997.7144
    [8] S. Okubo, N. Kamiya, Quasi-classical Lie superalgebras and Lie supertriple systems, Commun. Algebra, 30 (2002), 3825–3850. https://doi.org/10.1081/AGB-120005822 doi: 10.1081/AGB-120005822
    [9] N. Kamiya, S. Okubo, A construction of simple Jordan superalgebra of F type from a Jordan-Lie triple system, Ann. Mat. Pura. Appl. IV Ser., 181 (2002), 339–348. https://doi.org/10.1007/s102310100045 doi: 10.1007/s102310100045
    [10] L. Ma, L. Chen, On δ-Jordan Lie triple systems, Linear Multilinear A., 65 (2017), 731–751. https://doi.org/10.1080/03081087.2016.1202184 doi: 10.1080/03081087.2016.1202184
    [11] S. Wang, X. Zhang, S. Guo, Derivations and deformations of δ-Jordan Lie supertriple systems, Adv. Math. Phys., 2019 (2019), 3295462. https://doi.org/10.1155/2019/3295462 doi: 10.1155/2019/3295462
    [12] F. Ammar, S. Mabrouk, A. Makhlouf, Cohomology and deformations of Hom-algebras, J. Lie Theory, 21 (2011), 813–836.
    [13] L. Ma, L. Chen, J. Zhao, δ-Hom-Jordan Lie superalgebras, Commun. Algebra, 46 (2018), 1668–1697. https://doi.org/10.1080/00927872.2017.1354008 doi: 10.1080/00927872.2017.1354008
    [14] D. Yau, On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geom. Phys., 62 (2012), 506–522. https://doi.org/10.1016/j.geomphys.2011.11.006 doi: 10.1016/j.geomphys.2011.11.006
    [15] B. Sun, L. Chen, Y. Liu, T-extensions and abelian extensions of Hom-Lie color algebras, Rev. Union. Mat. Argent., 59 (2018), 123–142. https://doi.org/10.33044/revuma.v59n1a06 doi: 10.33044/revuma.v59n1a06
    [16] L. Chen, Y. Yi, M. Chen, Y. Tang, Cohomology and 1-parameter formal deformations of Hom-δ-Lie triple systems, Adv. Appl. Clifford Algebras, 29 (2019), 63. https://doi.org/10.1007/s00006-019-0982-z doi: 10.1007/s00006-019-0982-z
    [17] Q. Li, L. Ma, Central extensions and Nijenhuis operators of Hom-δ-Jordan Lie triple systems, Adv. Math. Phys., 2022 (2022), 2706774. https://doi.org/10.1155/2022/2706774 doi: 10.1155/2022/2706774
    [18] Y. Ma, L. Chen, J. Lin, Central extensions and deformations of Hom-Lie triple systems, Commun. Algebra, 46 (2018), 1212–1230. https://doi.org/10.1080/00927872.2017.1339063 doi: 10.1080/00927872.2017.1339063
    [19] Q. Li, L. Ma, Nijenhuis operators and abelian extensions of Hom-δ-Jordan Lie supertriple systems, Mathematics, 11 (2023), 871. https://doi.org/10.3390/math11040871 doi: 10.3390/math11040871
    [20] D. Gaparayi, S. Attan, A. N. Issa, Hom-Lie-Yamaguti superalgebras, Korean J. Math., 27 (2019), 175–192. https://doi.org/10.11568/kjm.2019.27.1.175 doi: 10.11568/kjm.2019.27.1.175
    [21] J. Zhao, L. Chen, L. Ma, Representations and T-extensions of Hom-Jordan-Lie algebras, Commun. Algebra, 44 (2016), 2786–2812. https://doi.org/10.1080/00927872.2015.1065843 doi: 10.1080/00927872.2015.1065843
    [22] T. Zhang, J. Li, Representations and cohomologies of Hom-Lie-Yamaguti algebras with applications, Colloq. Math., 148 (2017), 131–155. https://doi.org/10.4064/cm6903-6-2016 doi: 10.4064/cm6903-6-2016
    [23] Q. Li, L. Ma, 1-parameter formal deformations and abelian extensions of Lie color triple systems, Electron. Res. Arch., 30 (2022), 2524–2539. https://doi.org/10.3934/era.2022129 doi: 10.3934/era.2022129
    [24] Q. Li, L. Ma, 1-parameter formal deformations, Nijenhuis operators and abelian extensions of δ-Lie color triple systems, Topol. Appl., 328 (2023), 108458. https://doi.org/10.1016/j.topol.2023.108458 doi: 10.1016/j.topol.2023.108458
    [25] J. Feldvoss, Representations of Lie color algebras, Adv. Math., 157 (2001), 95–137. https://doi.org/10.1006/aima.2000.1942 doi: 10.1006/aima.2000.1942
  • This article has been cited by:

    1. Guillermo F. Umbricht, Diana Rubio, Optimal Estimation of Thermal Diffusivity in a Thermal Energy Transfer Problem with Heat Generation, Convection Dissipation and Lateral Heat Flow, 2021, 16, 2224-347X, 222, 10.37394/232013.2021.16.21
    2. Guillermo Federico Umbricht, Diana Rubio, Regularization techniques for estimating the space-dependent source in an n-dimensional linear parabolic equation using space-dependent noisy data, 2024, 172, 08981221, 47, 10.1016/j.camwa.2024.07.029
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(850) PDF downloads(28) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog