Research article Special Issues

Analysis of soliton phenomena in (2+1)-dimensional Nizhnik-Novikov-Veselov model via a modified analytical technique

  • The present research applies an improved version of the modified Extended Direct Algebraic Method (mEDAM) called r+mEDAM to examine soliton phenomena in a notable mathematical model, namely the (2+1)-dimensional Nizhnik-Novikov-Veselov Model (NNVM), which possesses potential applications in exponentially localized structure interactions. The generalized hyperbolic and trigonometric functions are used to disclose a variety of soliton solutions, including kinks, anti-kink, bell-shaped and periodic soliton. Some 3D graphs are plotted for visual representations of these solutions which highlight their adaptability. The results provide a basis for practical usage and expansions to related mathematical models or physical systems. They also expand our understanding of the NNVM's dynamics, providing insights into its behavior and prospective applications.

    Citation: Saima Noor, Azzh Saad Alshehry, Asfandyar Khan, Imran Khan. Analysis of soliton phenomena in (2+1)-dimensional Nizhnik-Novikov-Veselov model via a modified analytical technique[J]. AIMS Mathematics, 2023, 8(11): 28120-28142. doi: 10.3934/math.20231439

    Related Papers:

    [1] Naveed Iqbal, Meshari Alesemi . Soliton dynamics in the $ (2+1) $-dimensional Nizhnik-Novikov-Veselov system via the Riccati modified extended simple equation method. AIMS Mathematics, 2025, 10(2): 3306-3333. doi: 10.3934/math.2025154
    [2] Abdulghani R. Alharbi . Traveling-wave and numerical solutions to a Novikov-Veselov system via the modified mathematical methods. AIMS Mathematics, 2023, 8(1): 1230-1250. doi: 10.3934/math.2023062
    [3] Noor Alam, Mohammad Safi Ullah, Jalil Manafian, Khaled H. Mahmoud, A. SA. Alsubaie, Hamdy M. Ahmed, Karim K. Ahmed, Soliman Al Khatib . Bifurcation analysis, chaotic behaviors, and explicit solutions for a fractional two-mode Nizhnik-Novikov-Veselov equation in mathematical physics. AIMS Mathematics, 2025, 10(3): 4558-4578. doi: 10.3934/math.2025211
    [4] Maheen Waqar, Khaled M. Saad, Muhammad Abbas, Miguel Vivas-Cortez, Waleed M. Hamanah . Diverse wave solutions for the (2+1)-dimensional Zoomeron equation using the modified extended direct algebraic approach. AIMS Mathematics, 2025, 10(6): 12868-12887. doi: 10.3934/math.2025578
    [5] Mohammad Alqudah, Safyan Mukhtar, Albandari W. Alrowaily, Sherif. M. E. Ismaeel, S. A. El-Tantawy, Fazal Ghani . Breather patterns and other soliton dynamics in (2+1)-dimensional conformable Broer-Kaup-Kupershmit system. AIMS Mathematics, 2024, 9(6): 13712-13749. doi: 10.3934/math.2024669
    [6] Naher Mohammed A. Alsafri, Hamad Zogan . Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661
    [7] Mohammad Alqudah, Safyan Mukhtar, Haifa A. Alyousef, Sherif M. E. Ismaeel, S. A. El-Tantawy, Fazal Ghani . Probing the diversity of soliton phenomena within conformable Estevez-Mansfield-Clarkson equation in shallow water. AIMS Mathematics, 2024, 9(8): 21212-21238. doi: 10.3934/math.20241030
    [8] Naveed Iqbal, Muhammad Bilal Riaz, Meshari Alesemi, Taher S. Hassan, Ali M. Mahnashi, Ahmad Shafee . Reliable analysis for obtaining exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation. AIMS Mathematics, 2024, 9(6): 16666-16686. doi: 10.3934/math.2024808
    [9] Wafaa B. Rabie, Hamdy M. Ahmed, Taher A. Nofal, Soliman Alkhatib . Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(11): 31882-31897. doi: 10.3934/math.20241532
    [10] Muhammad Bilal Riaz, Faiza Naseer, Muhammad Abbas, Magda Abd El-Rahman, Tahir Nazir, Choon Kit Chan . Solitary wave solutions of Sawada-Kotera equation using two efficient analytical methods. AIMS Mathematics, 2023, 8(12): 31268-31292. doi: 10.3934/math.20231601
  • The present research applies an improved version of the modified Extended Direct Algebraic Method (mEDAM) called r+mEDAM to examine soliton phenomena in a notable mathematical model, namely the (2+1)-dimensional Nizhnik-Novikov-Veselov Model (NNVM), which possesses potential applications in exponentially localized structure interactions. The generalized hyperbolic and trigonometric functions are used to disclose a variety of soliton solutions, including kinks, anti-kink, bell-shaped and periodic soliton. Some 3D graphs are plotted for visual representations of these solutions which highlight their adaptability. The results provide a basis for practical usage and expansions to related mathematical models or physical systems. They also expand our understanding of the NNVM's dynamics, providing insights into its behavior and prospective applications.



    The use of Differential Equations (DEs) is widespread in many fields, including engineering and mathematical physics [1,2,3,4,5]. In the investigation of nonlinear science, the explicit solutions of Nonlinear Partial Differential Equations (NPDEs) hold prominent position. The inverse scattering transform [6], the Bäcklund transformation method [7], the Darboux transformation [8], exp-function and Jacobi elliptic function method [9,10,11], (G'/G)-expansion method [12,13], Riccati mapping method [14], the unified method (UM) and its generalized form (GUM) [15,16] and the Hirota bilinear method [17,18,19,20], sech-function method [21], mEDAM [22] and many others [23,24,25,26,27,28,29,30,31,32] are a few efficient methods that have been developed to solve NPDEs. Among these techniques, mEDAM stands out as a very straightforward and practical method for finding precise soliton solutions for NPDEs [33,34,35].

    via Due to its occurrence in a variety of contexts, including shallow-water waves, nonlinear optics, plasma and Bose-Einstein condensates, soliton solutions have recently attracted a great deal of interest [36,37,38,39,40,41]. Helal, for instance, provides a thorough discussion of the soliton solutions for various well-known NPDEs, such as the KdV, mKdV, Sine-Gordon, and nonlinear Schrödinger equations, in [42]. By utilizing Wronskian determinants, Freeman's work [43] displays soliton solutions for three important nonlinear evolution equations: Kadomtsev-Petviashvili, nonlinear Schrödinger and Davey-Stewartson. This work reveals difficulties in the Davey-Stewartson case with phase variables linked to soliton count, necessitating different Bäcklund transformations. This illustrates the complexity of these equations' soliton solutions. Burger's, Zakharov-Kuznetsov (ZK) and Korteweg-de Vries (KdV) equations may be precisely solved using the exponential function approach, according to Shumaila et al. [44], which relies on a sequence of exponential functions. Wang et al. in [45] successfully deduced the three-component coupled Hirota hierarchy by employing the dressing method. Tian et al. [46] proposed an effective and direct approach to study the symmetry-preserving discretization for a class of generalized higher order equations, and proposed an open problem about symmetries and the multipliers of conservation law. In addition, Li and Tian [47] solved the Cauchy problem of the general n-component nonlinear Schrödinger equations, and gave the N-soliton solutions. Besides, a conjecture about the law of nonlinear wave propagation was proposed. Moreover, with respect to deriving the solutions of Wadati-Konno-Ichikawa equation and complex short pulse equation, Li et al. have done some interesting work by employing the steepest descent method [48]. They solved the long-time asymptotic behavior of the solutions of these equations, and proved the soliton resolution conjecture and the asymptotic stability of solutions of these equations.

    In this paper, we will explore and analyze the soliton solutions for (2+1)-dimensional NNVM using the r+mEDAM. This model is mathematically presented as [49]:

    ut+buyyy+auxxx+euy+dux3b(uw)y3a(uv)x=0,vyux=0,wxuy=0, (1.1)

    where u=u(x,y,t), v=v(x,y,t) & w=w(x,y,t) and are the components of the (dimensionless) velocity [50], a,b,d & e are constant coefficients. NNVM is the only known isotropic Lax extension of the Korteweg-de Vries (KdV) equation [51]. The NNVM is a theoretical physics and nonlinear dynamics mathematical model. It is largely used to describe specific types of integrable systems, most notably soliton theory and integrable hierarchies. Nizhnik, Novikov and Veselov proposed the model in the 1980s [52], and it has been intensively investigated in the field of mathematical physics. It is useful in understanding the behavior of many physical systems and has applications in domains such as fluid dynamics and plasma physics. For phenomena like shallow-water waves, lengthy internal waves and acoustic waves that occur in the world of incompressible fluids, the NNVM is important. An acoustic wave is a mechanical disturbance in an incompressible fluid that propagates as a pressure fluctuation without generating substantial density changes in the fluid [53,54,55]. Many academics have used various methods to investigate the NNVM. Utilizing different analytical methods, Osman et al. tackled this equation [56,57,58]. The inner parameter-dependent symmetry constraint of the KP equation is another source from which NNVM can be obtained [59].

    In view of this literature, our main goal of this work is to present another straightforward method r+mEDAM for creating different soliton solutions for NNVM, such as kink wave solutions, anti-kink wave solutions, periodic wave solutions and bell-shaped wave solutions. The suggested r+mEDAM for generating soliton solutions in the context of the NNVM is very resilient. This is due to its simple and efficient analytical method, which eliminates the need for linearization or sophisticated numerical procedures. The method's direct computations assure dependability and precision, while its ability to produce different families of soliton solutions gives significant insights into the NNVM model's underlying features. The r+mEDAM is a strong instrument for examining the complicated dynamics of acoustic waves in the world of incompressible fluid, with potential applications spanning numerous areas of shallow-water waves, lengthy internal waves and related sciences due to its simplicity and large solution space [60,61,62].

    The rest of this paper is structured as follows: In Section 2, we describe the r+mEDAM's operating procedure. In Section 3, we use the r+mEDAM to find soliton solutions for the (2+1)-dimensional NNVM problem. Section 4 focuses on the presentation of graphs and the discussion of these graphical representations. The last section presents an overview and a summary of the results of our investigation.

    In this part, we present the r+mEDAM method. Let us consider the PDE in the format described below [63,64]:

    E(u,v,w,ut,vx,wy,uxvt,wxuy)=0, (2.1)

    where u=u(x,y,t), v=v(x,y,t) & w=w(x,y,t).

    The following approaches are used to solve Eq (2.1):

    (1) A variable transformation is first carried out as follows:

    u(x,y,t)=U(σ),v(x,y,t)=V(σ),w(x,y,t)=W(σ),σ=μ(ct+x+y). (2.2)

    This transformation converts Eq (2.1) into the following NODE:

    F(U,U,V,V,W,W,UV,WU,VU,)=0, (2.3)

    where primes represents derivatives of U, V & W with respect to σ in Eq (2.2). For the purpose of figuring out the constant(s) of integration, (2.3) may occasionally be integrated once or more.

    (2) Then, we propose that Eq (2.3) contains the following solution (in our case):

    U(σ)=V(σ)=W(σ)=Ni=0si(r+A(σ))i. (2.4)

    The parameters si (where i=0,,N) are to be driven, and A(σ) satisfies the subsequent NODE:

    A(σ)=ln(λ)(j+kA(σ)+l(A(σ))2), (2.5)

    where λ0,1 & j,k,l are constants.

    (3) By seeking a homogeneous balance between the primary nonlinear component and the highest order derivative in Eq (2.3), we may get the positive integer N presented in Eq (2.4).

    (4) We first substitute Eq (2.4) into Eq (2.3), or the equation resulting from integrating (2.3), in order to build a polynomial expression in (A(σ)), and then we arrange all of the terms of (A(σ)) in the same order. The coefficients of this derivation polynomial are then equal to zero in order to determine a system of nonlinear algebraic equations in si (where i=0,,N) & other associated parameters.

    (5) This system of algebraic equations is resolved using the MAPLE software.

    (6) The analytical solutions for Eq (2.1), which are acquired from Eqs (2.4) and (2.3), are then produced by accounting for the unknown parameters and substituting the A(σ) solution into Eq (2.4). Using the generic solution of Eq (2.2), we may get the families of soliton solutions that are depicted below:

    Family 1: For Ω<0 & l0,

    A1(σ)=k2l+Ωtanλ(12Ωσ)2l,
    A2(σ)=k2lΩcotλ(12Ωσ)2l,
    A3(σ)=k2l+Ω(tanλ(Ωσ)±(pqsecλ(Ωσ)))2l,
    A4(σ)=k2lΩ(cotλ(Ωσ)±(pqcscλ(Ωσ)))2l,

    &

    A5(σ)=k2l+Ω(tanλ(14Ωσ)cotλ(14Ωσ))4c.

    Family 2: For Ω>0 & l0,

    A6(σ)=k2lΩtanhλ(12Ωσ)2l,
    A7(σ)=k2lΩcothλ(12Ωσ)2l,
    A8(σ)=k2lΩ(tanhλ(Ωσ)±(pqsechλ(Ωσ)))2l,
    A9(σ)=k2lΩ(cothλ(Ωσ)±(pqcschλ(Ωσ)))2l,

    &

    A10(σ)=k2lΩ(tanhλ(14Ωσ)cothλ(14Ωσ))4l.

    Family 3: For jl>0 & k=0,

    A11(σ)=jltanλ(jlσ),
    A12(σ)=jlcotλ(jlσ),
    A13(σ)=jl(tanλ(2jlσ)±(pqsecλ(2jlσ))),
    A14(σ)=jl(cotλ(2jlσ)±(pqcscλ(2jlσ))),

    &

    A15(σ)=12jl(tanλ(12jlσ)cotλ(12jlσ)).

    Family 4: For jl<0 & k=0,

    A16(σ)=jltanhλ(jlσ),
    A17(σ)=jlcothλ(jlσ),
    A18(σ)=jl(tanhλ(2jlσ)±(ipqsechλ(2jlσ))),
    A19(σ)=jl(cothλ(2jlσ)±(pqcschλ(2jlσ))),

    &

    A20(σ)=12jl(tanhλ(12jlσ)+cothλ(12jlσ)).

    Family 5: For l=j & k=0,

    A21(σ)=tanλ(jσ),
    A22(σ)=cotλ(jσ),
    A23(σ)=tanλ(2jσ)±(pqsecλ(2jσ)),
    A24(σ)=cotλ(2jσ)±(pqcscλ(2jσ)),

    &

    A25(σ)=12tanλ(12jσ)12cotλ(12jσ).

    Family 6: For l=j & k=0,

    A26(σ)=tanhλ(jσ),
    A27(σ)=cothλ(jσ),
    A28(σ)=tanhλ(2jσ)±(ipqsechλ(2jσ)),
    A29(σ)=cothλ(2jσ)±(pqcschλ(2jσ)),

    &

    A30(σ)=12tanhλ(12jσ)12cothλ(12jσ).

    Family 7: For J=0,

    A31(σ)=2j(kσlnλ+2)k2σlnλ.

    Family 8: For k=h, j=sh(s0) & l=0,

    A32(σ)=λσσs.

    Family 9: For k=l=0,

    A33(σ)=jσln(λ).

    Family 10: For k=j=0,

    A34(σ)=1lσln(λ).

    Family 11: For j=0, k0 & l0,

    A35(σ)=pkl(coshλ(kσ)sinhλ(kσ)+p),

    &

    A36(σ)=k(coshλ(kσ)+sinhλ(kσ))l(coshλ(kσ)+sinhλ(kσ)+q).

    Family 12: For k=h, l=sh(s0) & j=0,

    A37(σ)=pλσhpsqλσh,

    q,p>0 & are known as deformation parameters when Ω=k24jl is satisfied. The following is a description of the hyperbolic & trigonometric functions that are generalized:

    sinλ(σ)=pAiσqAiσ2i,cosλ(σ)=pAiσ+qAiσ2,secλ(σ)=1cosλ(σ),cscλ(σ)=1sinλ(σ),tanλ(σ)=sinλ(σ)cosλ(σ),cotλ(σ)=cosλ(σ)sinλ(σ).

    Similarly,

    sinhλ(σ)=pAσqAσ2,coshλ(σ)=pAσ+qAσ2,sechλ(σ)=1coshλ(σ),cschλ(σ)=1sinhλ(σ),tanhλ(σ)=sinhλ(σ)coshλ(σ),cothλ(σ)=coshλ(σ)sinhλ(σ).

    We are going to tackle NNVM with r+mEDAM in this part. We begin by transforming the variables as described in (2.3) in order to obtain the soliton solution for (1.1). The following system of NODEs is created by transforming (1.1):

    (c+e+d)U+μ2(b+a)U3[a(UV)+b(UW)]=0,μU=μV,μU=μW. (3.1)

    By integrating all equations in (3.1) w.r.t σ and keeping the constant of integration zero yields:

    (c+e+d)U+μ2(b+a)U3[a(UV)+b(UW)]=0,U=V,U=W. (3.2)

    Putting second & third parts of (3.2) in first part gives following single NODE:

    (c+e+d)U+μ2(b+a)U3(a+b)U2=0. (3.3)

    Establishing homogenous balance between highest order derivative U and nonlinear term U2 gives N+2=2N which implies N=2. By substituting N=2 in (), we get the following series form solution for (3.3):

    U(σ)=2i=0si(r+A(σ))i=s0+s1(r+A(σ))1+s2(r+A(σ))2. (3.4)

    By putting (3.4) in (3.3) and collecting all terms with same powers of A(σ), we get an expression in A(σ). Equating all coefficients to zero gives a system of nonlinear algebraic equations. Employing Maple and solving the system gives the following two cases of solutions:

    Case 1.

    s0=s0,s1=s0(2rl+k)jkr+lr2,s2=s0ljkr+lr2,μ=12ln(λ)s0l(jkr+lr2)c=2lje+4s0ajl+4s0bjl2ljd+2erkl+2drkl2el2r22dl2r2s0bk2s0ak22l(jkr+lr2). (3.5)

    Case 2.

    s0=s0,s1=6s0l(2rl+k)k2+2lj6rlk+6l2r2,s2=6s0l2k2+2lj6rlk+6l2r2,c=k2e3s0k2(a+b)+k2d+2lje+12s0ajl+12s0bjl+2ljd6erkl6drkl+6l2r2(e+d)k2+2lj6rlk+6l2r2,μ=3ln(λ)s0k2+2lj6rlk+6l2r2. (3.6)

    By taking Case 1 into account and using (2.3), (3.4) & the corresponding solution of (3.3), we get the following families of soliton solutions for (1.1):

    Family 1.1. For Ω<0 and l0,

    u1,1(t,x,y)=14s0(4lj+k2+Ω(tanλ(12Ωσ))2)l(jrk+lr2), (3.7)
    u1,2(t,x,y)=14s0(4lj+k2+Ω(cotλ(12Ωσ))2)l(jrk+lr2), (3.8)
    u1,3(t,x,y)=14s0(Ω2Ωsinλ(Ωσ)pqΩpq)l(cosλ(Ωσ))2(jrk+lr2), (3.9)
    u1,4(t,x,y)=14s0(Ω+2Ωcosλ(Ωσ)pq+Ωpq)l(1+(cosλ(Ωσ))2)(jrk+lr2), (3.10)

    and

    u1,5(t,x,y)=116s0(Ω4Ω(cosλ(14Ωσ))2+4Ω(cosλ(14Ωσ))4)(cosλ(1/4Ωσ))2(1+(cosλ(14Ωσ))2)l(jrk+lr2). (3.11)

    Family 1.2. For Ω>0 and l0,

    u1,6(t,x,y)=14s0(4ljk2+Ω(tanhλ(12Ωσ))2)l(jrk+lr2), (3.12)
    u1,7(t,x,y)=14s0(4ljk2+Ω(cothλ(12Ωσ))2)l(jrk+lr2), (3.13)
    u1,8(t,x,y)=14s0(Ω+2Ωsinhλ(Ωσ)pq+Ωpq)l(coshλ(Ωσ))2(jrk+lr2), (3.14)
    u1,9(t,x,y)=14s0(Ω+2Ωcoshλ(Ωσ)pq+Ωpq)l((coshλ(Ωσ))21)(jrk+lr2), (3.15)

    and

    u1,10(t,x,y)=116s0(Ω)(coshλ(14Ωσ))2((coshλ(14Ωσ))21)l(jrk+lr2). (3.16)

    Family 1.3. For jl>0 and k=0,

    u1,11(t,x,y)=s0j(1+(tanλ(ljσ))2)j+lr2, (3.17)
    u1,12(t,x,y)=s0j(1+(cotλ(ljσ))2)j+lr2, (3.18)
    u1,13(t,x,y)=s0j(1+2sinλ(2ljσ)pq+pq)(cosλ(2ljσ))2(j+lr2), (3.19)
    u1,14(t,x,y)=s0j(1+2cosλ(2ljσ)pq+pq)(1+(cosλ(2ljσ))2)(j+lr2), (3.20)

    and

    u1,15(t,x,y)=14js0(cosλ(12ljσ))2(1+(cosλ(12ljσ))2)(j+lr2). (3.21)

    Family 1.4. For jl<0 and k=0,

    u1,16(t,x,y)=s0j(1+(tanhλ(ljσ))2)j+lr2, (3.22)
    u1,17(t,x,y)=s0j(1+(cothλ(ljσ))2)j+lr2, (3.23)
    u1,18(t,x,y)=s0j(1+2sinhλ(2ljσ)ipq+i2pq)(coshλ(2ljσ))2(j+lr2), (3.24)
    u1,19(t,x,y)=s0j(1+2coshλ(2ljσ)pq+pq)((coshλ(2ljσ))21)(j+lr2), (3.25)

    and

    u1,20(t,x,y)=14js0(coshλ(12ljσ))2((coshλ(12ljσ))21)(j+lr2). (3.26)

    Family 1.5. For l=j and k=0,

    u1,21(t,x,y)=s0(1+r2)(cosλ(jσ))2, (3.27)
    u1,22(t,x,y)=s0(1+r2)(1+(cosλ(jσ))2), (3.28)
    u1,23(t,x,y)=s0(1+2sinλ(2jσ)pq+pq)(cosλ(2jσ))2(1+r2), (3.29)
    u1,24(t,x,y)=s0(1+2cosλ(2jσ)pq+pq)(1+(cosλ(2jσ))2)(1+r2), (3.30)

    and

    u1,25(t,x,y)=14s0(cosλ(12jσ))2(1+(cosλ(12jσ))2)(1+r2). (3.31)

    Family 1.6. For l=j and k=0,

    u1,26(t,x,y)=s0(1+r2)(coshλ(jσ))2, (3.32)
    u1,27(t,x,y)=s0(1+r2)((coshλ(jσ))21), (3.33)
    u1,28(t,x,y)=s0(1+2sinhλ(2jσ)ipq+i2pq)(coshλ(2jσ))2(1+r2), (3.34)
    u1,29(t,x,y)=s0(1+2coshλ(2jσ)pq+pq)((coshλ(2jσ))21)(1+r2), (3.35)

    and

    u1,30(t,x,y)=14s0(coshλ(12jσ))2((coshλ(12jσ))21)(1+r2). (3.36)

    Family 1.7. For Ω=0,

    u1,31(t,x,y)=s0(k4σ2(ln(λ))2j2k3σln(λ)j(kσln(λ)+2)+4l(j(kσln(λ)+2))2)k4σ2(ln(λ))2(jrk+lr2). (3.37)

    Family 1.8. For k=h, a=sh(s0) and l=0,

    u1,32(t,x,y)=s0+s0(r+λhσ)sr. (3.38)

    Family 1.9. For j=k=0,

    u1,33(t,x,y)=s0l2σ2(ln(λ))2r2. (3.39)

    Family 1.10. For j=0, k0 and l0,

    u1,34(t,x,y)=s0pk2(coshλ(kσ)sinhλ(kσ))l(coshλ(kσ)sinhλ(kσ)+p)2r(krl), (3.40)

    and

    u1,35(t,x,y)=s0k2q(coshλ(kσ)+sinhλ(kσ))l(coshλ(kσ)+sinhλ(kσ)+q)2r(krl). (3.41)

    Family 1.11. For k=h, l=sh(s0) and j=0,

    u1,36(t,x,y)=ps0(pλhσλ2hσr+λ2hσsp)(p+rλhσ)2r(1+sr). (3.42)

    where σ=s02ln(λ)((2lje+4s0ajl+4s0bjl2ljd+2erkl+2drkl2el2r22dl2r2s0bk2s0ak22(l(jkr+lr2))2)t+x+y).

    By taking Case 2 into account and using (2.2), (3.4) & the corresponding solution of (3), we get the following families of soliton solutions for (1.1):

    Family 2.1. For Ω<0 and l0,

    u2,1(t,x,y)=12s0(k24jl+3Ω(tanλ(12Ωσ))2)k2+2jl6rlk+6l2r2, (3.43)
    u2,2(t,x,y)=12s0(k24jl+3Ω(cotλ(12Ωσ))2)k2+2jl6rlk+6l2r2, (3.44)
    u2,3(t,x,y)=12s0(3Ω2Ω(cosλ(Ωσ))2+6Ωsinλ(Ωσ)pq+3Ωpq)(cosλ(Ωσ))2(k2+2jl6rlk+6l2r2), (3.45)
    u2,4(t,x,y)=12s0(Ω+2Ω(cosλ(Ωσ))2+6Ωcosλ(Ωσ)pq+3Ωpq)(1+(cosλ(Ωσ))2)(k2+2jl6rlk+6l2r2), (3.46)

    and

    u2,5(t,x,y)=18s0(3Ω12Ω(cosλ(14Ωσ))2+12Ω(cosλ(14Ωσ))4)(cosλ(1/4Ωσ))2(1+(cosλ(14Ωσ))2)(k2+2jl6rlk+6l2r2). (3.47)

    Family 2.2. For Ω>0 and l0,

    u2,6(t,x,y)=12s0(k2+4jl+3Ω(tanhλ(12Ωσ))2)k2+2jl6rlk+6l2r2, (3.48)
    u2,7(t,x,y)=12s0(k2+4jl+3Ω(cothλ(12Ωσ))2)k2+2jl6rlk+6l2r2, (3.49)
    u2,8(t,x,y)=12s0(2Ω(coshλ(Ωσ))23Ω+6Ωsinhλ(Ωσ)pq+3Ωpq)(coshλ(Ωσ))2(k2+2jl6rlk+6l2r2), (3.50)
    u2,9(t,x,y)=12s0(Ω+2Ω(coshλ(Ωσ))2+6Ωcoshλ(Ωσ)pq+3Ωpq)((coshλ(Ωσ))21)(k2+2jl6rlk+6l2r2), (3.51)

    and

    u2,10(t,x,y)=18s0(3Ω)(coshλ(14Ωσ))2((coshλ(14Ωσ))21)(k2+2jl6rlk+6l2r2). (3.52)

    Family 2.3. For jl>0 and k=0,

    u2,11(t,x,y)=s0j(1+3(tanλ(jlσ))2)j+3lr2, (3.53)
    u2,12(t,x,y)=s0j(1+3(cotλ(jlσ))2)j+3lr2, (3.54)
    u2,13(t,x,y)=s0j(2(cosλ(2jlσ))2+3+6sinλ(2jlσ)pq+3pq)(cosλ(2jlσ))2(j+3lr2), (3.55)
    u2,14(t,x,y)=s0j(1+2(cosλ(2jlσ))2+6cosλ(2jlσ)pq+3pq)(1+(cosλ(2jlσ))2)(j+3lr2), (3.56)

    and

    u2,15(t,x,y)=14s0j(8(cosλ(12jlσ))2+8(cosλ(12jlσ))4+3)(cosλ(12jlσ))2(1+(cosλ(1/2jlσ))2)(j+3lr2). (3.57)

    Family 2.4. For jl<0 and k=0,

    u2,16(t,x,y)=s0j(1+3(tanhλ(jlσ))2)j+3lr2, (3.58)
    u2,17(t,x,y)=s0j(1+3(cothλ(jlσ))2)j+3lr2, (3.59)
    u2,18(t,x,y)=s0j(2(coshλ(2jlσ))23+6sinhλ(2jlσ)ipq+3i2pq)(coshλ(2jlσ))2(j+3lr2), (3.60)
    u2,19(t,x,y)=s0j(2(coshλ(2jlσ))2+1+6coshλ(2jlσ)pq+3pq)((coshλ(2jlσ))21)(j+3lr2), (3.61)

    and

    u2,20(t,x,y)=14s0j(8(coshλ(12jlσ))48(coshλ(12jlσ))2+3)(coshλ(12jlσ))2((coshλ(1/2jlσ))21)(j+3lr2). (3.62)

    Family 2.5. For l=j and k=0,

    u2,21(t,x,y)=s0(2(cosλ(jσ))23)(1+3r2)(cosλ(jσ))2, (3.63)
    u2,22(t,x,y)=s0(1+2(cosλ(jσ))2)(1+3r2)(1+(cosλ(jσ))2), (3.64)
    u2,23(t,x,y)=s0(2(cosλ(2jσ))2+3+6sinλ(2jσ)pq+3pq)(cosλ(2jσ))2(1+3r2), (3.65)
    u2,24(t,x,y)=s0(1+2(cosλ(2jσ))2+6cosλ(2jσ)pq+3pq)(1+(cosλ(2jσ))2)(1+3r2), (3.66)

    and

    u2,25(t,x,y)=14s0(8(cosλ(12jσ))2+8(cosλ(12jσ))4+3)(cosλ(12jσ))2(1+(cosλ(12jσ))2)(1+3r2). (3.67)

    Family 2.6. For k=j and k=0,

    u2,26(t,x,y)=s0(2(coshλ(jσ))23)(1+3r2)(coshλ(jσ))2, (3.68)
    u2,27(t,x,y)=s0(2(coshλ(jσ))2+1)(1+3r2)((coshλ(jσ))21), (3.69)
    u2,28(t,x,y)=s0(2(coshλ(2jσ))23+6sinhλ(2jσ)ipq+3i2pq)(coshλ(2jσ))2(1+3r2), (3.70)
    u2,29(t,x,y)=s0(2(coshλ(2jσ))2+1+6coshλ(2jσ)pq+3pq)((coshλ(2jσ))21)(1+3r2), (3.71)

    and

    u2,30(t,x,y)=14s0(8(coshλ(12jσ))48(coshλ(12jσ))2+3)(coshλ(12jσ))2((coshλ(12jσ))21)(1+3r2). (3.72)

    Family 2.7. For Ω=0,

    u2,31(t,x,y)=s0((σln(λ))2(k6+2k4jl)12lk3σln(λ)jΦ+24l2(jΦ)2)k4σ2(ln(λ))2(k2+2jl6rlk+6l2r2), (3.73)

    where Φ=(kσln(λ)+2).

    Family 2.8. For k=j=0,

    u2,32(t,x,y)=s0l2σ2(ln(λ))2r2. (3.74)

    Family 2.9. For j=0, k0 and l0,

    u2,33(t,x,y)=s0k2(Ψ4coshλ(kσ)p+4sinhλ(kσ)p+2(coshλ(kσ))21+p2)(coshλ(kσ)sinhλ(kσ)+p)2(k26rlk+6l2r2), (3.75)

    and

    u2,34(t,x,y)=s0k2(Ψ+2(coshλ(kσ))214sinhλ(kσ)q+q24coshλ(kσ)q)(coshλ(kσ)+sinhλ(kσ)+q)2(k26rlk+6l2r2), (3.76)

    where Ψ=2coshλ(kσ)sinhλ(kσ).

    Family 2.10. For k=h, l=sh(s0) and j=0,

    u2,35(t,x,y)=s0(2prλhσ+6sp2λhσ+6s2p2λ2hσ6spλ2hσr+r2λ2hσ+p2)(p+rλhσ)2(16rs+6s2r2), (3.77)

    where σ=3s0ln(λ)((k2e3s0ak23s0bk2+k2d+2lje+12s0ajl+12s0bjl+2ljd6erkl6drkl+6el2r2+6dl2r2(k2+2lj6rlk+6l2r2)3)t+x+y).

    This section includes graphical depictions of the several wave forms seen in the system under study. Using the improved version of EDAM known as r+mEDAM, we extract and depict these wave structures in 3D formats. Different parameter choices provide clear and educational visualizations. Furthermore, it is notable that the findings of this work are novel, and to the best of our knowledge, there has never been any prior documentation in the literature of the use of these mathematical methods for the (2+1)-dimensional NNVM.

    The finding of many families of soliton solutions, including periodic, hyperbolic, rational, generalised trigonometric and hyperbolic families, is what makes our current work unique. Furthermore, our analytical methodology has the special benefit of allowing us to deduce solutions acquired by other analytical methods, such as the tan-method, (G'/G)-expansion method and subequation method, to name a few. Our results, for example, may be used to derive the three families of solitary solutions produced by the (G'/G)-expansion approach. Similarly, by substituting generalized trigonometric and hyperbolic functions for conventional trigonometric and hyperbolic functions, we may derive all solution families found using the tan-method. This adaptability in acquiring different answers improves our comprehension of the problem from numerous angles and broadens the usefulness of our discoveries in various settings.

    This has the potential to significantly improve our comprehension of how physical phenomena behave. These soliton solutions are anticipated to have a significant influence, altering how we describe and understand the fundamental physics of time evolution processes. Some results are illustrated visually in Figures 15, which show different solitary wave profiles. Wave phenomena such as kink waves, anti-kink waves, bell-shaped soliton and periodic waves are crucial in studying the NNVM and related mathematical frameworks. A kink wave is a form of wave disturbance or structure which involves an abrupt shift in the wave's shape or direction. Kink waves are frequently found in nonlinear wave systems where characteristics such as dispersion or nonlinearity impact the wave's behavior. The opposites of kinks, anti-kink waves, aid in the understanding of field interactions in NNVM model. A bell-shaped soliton is a solitary wave or localized pulse with a distinctive bell-shaped form. It is a self-sustaining wave that keeps its form as it moves across a medium. Periodic waves, which repeat their patterns on a regular basis, help to understand periodic behaviors and system stability in NNVM, such as periodic soliton solutions. These wave types allow us to gain a better grasp of the dynamics and interactions inside these mathematical models, hence improving our knowledge of the corresponding physical systems.

    Figure 1.  The 3D graph of u1,11 in (3.17) is depicted for j=1,k=0,l=3,λ=e,s0=5, r=10,a=3,b=5,d=10,e=1,t=20.
    Figure 2.  The 3D graph of u1,27 in (3.33) is designed for j=3,k=0,l=3,λ=e,s0=10, r=10,a=20,b=15,d=1,e=10,t=5.
    Figure 3.  The 3D of u1,31 in (3.37) is depicted for j=1,k=2,l=1,λ=3,s0=5,r=20, a=3,b=7,d=5,e=2,t=30.
    Figure 4.  The 3D graph of u2,5 in (3.47) is depicted for j=1,k=1,l=1,λ=e, s0=11,r=9,a=1,b=2,d=3,e=4,t=0.
    Figure 5.  The 3D graphs of u2,17 in (3.57) is depicted for j=11,k=0,l=21,λ=e, s0=30,r=5,a=25,b=12,d=34,e=54,t=50.

    Our research on the (2+1)-dimensional NNVM revealed important results. We have successfully discovered a wide spectrum of soliton solutions, including kinks, anti-kink, bell-shaped soliton and periodic wave solutions, using the r+mEDAM approach, all of which are critical to understanding the NNVM's behavior. The visual representations in the form of 3D graphs graphically highlight the approach's adaptability and usefulness. Furthermore, these discoveries add to our understanding of the dynamics of acoustic waves in incompressible fluids, with ramifications ranging from shallow-water waves to long interior waves and beyond. We emphasize the NNVM's critical position in theoretical physics and nonlinear dynamics, emphasizing its practical application and the promise for future advances in associated mathematical models and physical systems.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R183), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This work was supported by the Deanship of Scientific Research, the Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 4387).

    Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R183), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This work was supported by the Deanship of Scientific Research, the Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 4387).

    The authors declare that they have no competing interests.



    [1] K. Xu, Y. Guo, Y. Liu, X. Deng, Q. Chen, Z. Ma, 60-GHz compact dual-mode on-chip bandpass filter using GaAs technology, IEEE Electr. Device L., 42 (2021), 1120–1123. https://doi.org/10.1109/LED.2021.3091277 doi: 10.1109/LED.2021.3091277
    [2] H. Khan, R. Shah, P. Kumam, M. Arif, Analytical solutions of fractional-order heat and wave equations by the natural transform decomposition method, Entropy, 21 (2019), 597. https://doi.org/10.3390/e21060597 doi: 10.3390/e21060597
    [3] Z. Li, K. Wang, W. Li, S. Yan, F. Chen, S. Peng, Analysis of surface pressure pulsation characteristics of centrifugal pump magnetic liquid sealing film, Front. Energy, 10 (2022), 937299. https://doi.org/10.3389/fenrg.2022.937299 doi: 10.3389/fenrg.2022.937299
    [4] H. Khan, R. Shah, J. F. G. Aguilar, D. Baleanu, P. Kumam, Travelling waves solution for fractional-order biological population model, Math. Model. Nat. Pheno., 16 (2021), 32. https://doi.org/10.1051/mmnp/2021016 doi: 10.1051/mmnp/2021016
    [5] Z. Xiao, H. Fang, H. Jiang, J. Bai, V. Havyarimana, H. Chen, et al., Understanding private car aggregation effect via spatio-temporal analysis of trajectory data, IEEE T. Cybernetics, 53 (2023), 2346–2357. https://doi.org/10.1109/TCYB.2021.3117705 doi: 10.1109/TCYB.2021.3117705
    [6] M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, 149 (1991). https://doi.org/10.1017/CBO9780511623998
    [7] G. F. Yu, H. W. Tam, A vector asymmetrical NNV equation: Soliton solutions, bilinear Bäcklund transformation and Lax pair, J. Math. Anal. Appl., 344 (2008), 593–600. https://doi.org/10.1016/j.jmaa.2008.02.057 doi: 10.1016/j.jmaa.2008.02.057
    [8] V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Berlin: Springer, 17 (1991). https://doi.org/10.1007/978-3-662-00922-2
    [9] Y. L. Ma, Y. L. Li, Y. Y. Fu, A series of the solutions for the Heisenberg ferromagnetic spin chain equation, Math. Method. Appl. Sci., 41 (2018), 3316–3322. https://doi.org/10.1002/mma.4818 doi: 10.1002/mma.4818
    [10] Y. Ma, B. Li, C. Wang, A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method, Appl. Math. Comput., 211 (2009), 102–107. https://doi.org/10.1016/j.amc.2009.01.036 doi: 10.1016/j.amc.2009.01.036
    [11] B. Q. Li, Y. L. Ma, Periodic solutions and solitons to two complex short pulse (CSP) equations in optical fiber, Optik, 144 (2017), 149–155. https://doi.org/10.1016/j.ijleo.2017.06.114 doi: 10.1016/j.ijleo.2017.06.114
    [12] B. Q. Li, Y. L. Ma, Rich soliton structures for the Kraenkel-Manna-Merle (KMM) system in ferromagnetic materials, J. Supercond. Nov. Magn., 31 (2018), 1773–1778. https://doi.org/10.1007/s10948-017-4406-9 doi: 10.1007/s10948-017-4406-9
    [13] B. Li, Y. Ma, The non-traveling wave solutions and novel fractal soliton for the (2+1)-dimensional Broer-Kaup equations with variable coefficients, Commun. Nonlinear Sci., 16 (2011), 144–149. https://doi.org/10.1016/j.cnsns.2010.02.011 doi: 10.1016/j.cnsns.2010.02.011
    [14] M. Zhang, Y. L. Ma, B. Q. Li, Novel loop-like solitons for the generalized Vakhnenko equation, Chinese Phys. B, 22 (2013), 030511. https://doi.org/10.1088/1674-1056/22/3/030511 doi: 10.1088/1674-1056/22/3/030511
    [15] M. S. Osman, Nonlinear interaction of solitary waves described by multi-rational wave solutions of the (2+1)-dimensional Kadomtsev-Petviashvili equation with variable coefficients, Nonlinear Dynam., 87 (2017), 1209–1216. https://doi.org/10.1007/s11071-016-3110-9 doi: 10.1007/s11071-016-3110-9
    [16] H. I. A. Gawad, Towards a unified method for exact solutions of evolution equations. An application to reaction diffusion equations with finite memory transport, J. Stat. Phys., 147 (2012), 506–518. https://doi.org/10.1007/s10955-012-0467-0 doi: 10.1007/s10955-012-0467-0
    [17] R. Hirota, The direct method in soliton theory, Cambridge University Press, 155 (2004). https://doi.org/10.1017/CBO9780511543043
    [18] B. Q. Li, Y. L. Ma, Multiple-lump waves for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation arising from incompressible fluid, Comput. Math. Appl., 76 (2018), 204–214. https://doi.org/10.1016/j.camwa.2018.04.015 doi: 10.1016/j.camwa.2018.04.015
    [19] Y. L. Ma, B. Q. Li, Mixed lump and soliton solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, AIMS Math., 5 (2020), 1162–1176. https://doi.org/10.3934/math.2020080 doi: 10.3934/math.2020080
    [20] Y. L. Ma, A. M. Wazwaz, B. Q. Li, New extended Kadomtsev-Petviashvili equation: Multiple soliton solutions, breather, lump and interaction solutions, Nonlinear Dynam., 104 (2021), 1581–1594. https://doi.org/10.1007/s11071-021-06357-8 doi: 10.1007/s11071-021-06357-8
    [21] C. F. Wei, New solitary wave aolutions for the fractional Jaulent-Miodek hierarchy model, Fractals, 2023, 2350060. https://doi.org/10.1142/S0218348X23500603 doi: 10.1142/S0218348X23500603
    [22] S. M. M. Alizamini, H. Rezazadeh, K. Srinivasa, A. Bekir, New closed form solutions of the new coupled Konno-Oono equation using the new extended direct algebraic method, Pramana, 94 (2020), 1–12. https://doi.org/10.1007/s12043-020-1921-1 doi: 10.1007/s12043-020-1921-1
    [23] D. Chen, Q. Wang, Y. Li, Y. Li, H. Zhou, Y. Fan, A general linear free energy relationship for predicting partition coefficients of neutral organic compounds, Chemosphere, 247 (2020), 125869. https://doi.org/10.1016/j.chemosphere.2020.125869 doi: 10.1016/j.chemosphere.2020.125869
    [24] M. B. Hossen, H. O. Roshid, M. Z. Ali, Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2+1)-dimensional Breaking Soliton equation, Phys. Lett. A, 382 (2018), 1268–1274. https://doi.org/10.1016/j.physleta.2018.03.016 doi: 10.1016/j.physleta.2018.03.016
    [25] F. Huang, X. Y. Tang, S. Y. Lou, Exact solutions for a higher-order nonlinear Schrödinger equation in atmospheric dynamics, Commun. Theor. Phys., 45 (2006), 573. https://doi.org/10.1088/0253-6102/45/3/039 doi: 10.1088/0253-6102/45/3/039
    [26] Z. Wu, J. Cao, Y. Wang, Y. Wang, L. Zhang, J. Wu, hPSD: A Hybrid PU-learning-based spammer detection model for product reviews, IEEE T. Cybernetics, 50 (2020), 1595–1606. https://doi.org/10.1109/TCYB.2018.2877161 doi: 10.1109/TCYB.2018.2877161
    [27] W. Q. Peng, S. F. Tian, T. T. Zhang, Analysis on lump, lumpoff and rogue waves with predictability to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation, Phys. Lett. A, 382 (2018), 2701–2708. https://doi.org/10.1016/j.physleta.2018.08.002 doi: 10.1016/j.physleta.2018.08.002
    [28] H. Khan, S. Barak, P. Kumam, M. Arif, Analytical solutions of fractional Klein-Gordon and gas dynamics equations, via the (G'/G)-expansion method, Symmetry, 11 (2019), 566. https://doi.org/10.3390/sym11040566 doi: 10.3390/sym11040566
    [29] H. Khan, D. Baleanu, P. Kumam, J. F. Al-Zaidy, Families of travelling waves solutions for fractional-order extended shallow water wave equations, using an innovative analytical method, IEEE Access, 7 (2019), 107523–107532. https://doi.org/10.1109/ACCESS.2019.2933188 doi: 10.1109/ACCESS.2019.2933188
    [30] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating symmetric soliton solutions for the fractional coupled Konno-Onno system using improved versions of a novel analytical technique, Mathematics, 11 (2023), 2686. https://doi.org/10.3390/math11122686 doi: 10.3390/math11122686
    [31] R. Meng, X. Xiao, J. Wang, Rating the crisis of online public opinion using a multi-level index system, Int. Arab J. Inf. Techn., 19 (2022), 597–608. https://doi.org/10.34028/iajit/19/4/4 doi: 10.34028/iajit/19/4/4
    [32] M. M. Khater, Abundant wave solutions of the perturbed Gerdjikov-Ivanov equation in telecommunication industry, Mod. Phys. Lett. B, 35 (2021), 2150456. https://doi.org/10.1142/S021798492150456X doi: 10.1142/S021798492150456X
    [33] L. Yan, Y. H. Sun, Y. Qian, Z. Y. Sun, C. Z. Wang, Method of reaching consensus on probability of food safety based on the integration of finite credible data on block chain, IEEE Access, 9 (2021), 123764–123776. https://doi.org/10.1109/ACCESS.2021.3108178 doi: 10.1109/ACCESS.2021.3108178
    [34] C. Zong, Z. Wan, Container ship cell guide accuracy check technology based on improved 3D point cloud instance segmentation, Brodogradnja, 73 (2022), 23–35. https://doi.org/10.21278/brod73102 doi: 10.21278/brod73102
    [35] J. Xu, K. Guo, P. Z. H. Sun, Driving performance under violations of traffic rules: Novice vs. experienced drivers, IEEE T. Intell. Vehicl., 2022. https://doi.org/10.1109/TIV.2022.3200592 doi: 10.1109/TIV.2022.3200592
    [36] M. S. Iqbal, A. R. Seadawy, M. Z. Baber, Demonstration of unique problems from soliton solutions to nonlinear Selkov-Schnakenberg system, Chaos Soliton. Fract., 162 (2022), 112485. https://doi.org/10.1016/j.chaos.2022.112485 doi: 10.1016/j.chaos.2022.112485
    [37] C. Guo, J. Hu, Time base generator based practical predefined-time stabilization of high-order systems with unknown disturbance, IEEE T. Circuits-II, 2023. https://doi.org/10.1109/TCSII.2023.3242856 doi: 10.1109/TCSII.2023.3242856
    [38] W. Hereman, A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. Comput. Simulat., 43 (1997), 13–27. https://doi.org/10.1016/S0378-4754(96)00053-5 doi: 10.1016/S0378-4754(96)00053-5
    [39] Z. Zhao, Y. Chen, B. Han, Lump soliton, mixed lump stripe and periodic lump solutions of a (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation, Mod. Phys. Lett. B, 31 (2017), 1750157. https://doi.org/10.1142/S0217984917501573 doi: 10.1142/S0217984917501573
    [40] Q. Meng, Q. Ma, Y. Shi, Adaptive fixed-time stabilization for a class of uncertain nonlinear systems, IEEE T. Automat. Contr., 2023. https://doi.org/10.1109/TAC.2023.3244151 doi: 10.1109/TAC.2023.3244151
    [41] D. Chen, Q. Wang, Y. Li, Y. Li, H. Zhou, Y. Fan, A general linear free energy relationship for predicting partition coefficients of neutral organic compounds, Chemosphere, 247 (2020), 125869. https://doi.org/10.1016/j.chemosphere.2020.125869 doi: 10.1016/j.chemosphere.2020.125869
    [42] M. A. Helal, Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics, Chaos Soliton. Fract., 13 (2002), 1917–1929. https://doi.org/10.1016/S0960-0779(01)00189-8 doi: 10.1016/S0960-0779(01)00189-8
    [43] N. C. Freeman, Soliton solutions of non-linear evolution equations, IMA J. Appl. Math., 32 (1984), 125–145. https://doi.org/10.1093/imamat/32.1-3.125 doi: 10.1093/imamat/32.1-3.125
    [44] S. Javeed, K. S. Alimgeer, S. Nawaz, A. Waheed, M. Suleman, D. Baleanu, et al., Soliton solutions of mathematical physics models using the exponential function technique, Symmetry, 12 (2020), 176. https://doi.org/10.3390/sym12010176 doi: 10.3390/sym12010176
    [45] Z. Y. Wang, S. F. Tian, J. Cheng, The -dressing method and soliton solutions for the three-component coupled Hirota equations, J. Math. Phys., 62 (2021). https://doi.org/10.1063/5.0046806 doi: 10.1063/5.0046806
    [46] S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, P. Roy. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
    [47] Y. Li, S. F. Tian, J. J. Yang, Riemann-Hilbert problem and interactions of solitons in the component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
    [48] Z. Q. Li, S. F. Tian, J. J. Yang, On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. https://doi.org/10.1016/j.aim.2022.108639 doi: 10.1016/j.aim.2022.108639
    [49] T. Akturk, A. Kubal, Analysis of wave solutions of (2+1)-dimensional Nizhnik-Novikov-Veselov equation, Ordu Üniv. Bilim ve Teknoloji Dergisi, 11 (2021), 13–24.
    [50] P. G. Estévez, S. Leble, A wave equation in 2+1: Painlevé analysis and solutions, Inverse Probl., 11 (1995), 925. https://doi.org/10.1088/0266-5611/11/4/018 doi: 10.1088/0266-5611/11/4/018
    [51] Y. Ren, H. Zhang, New generalized hyperbolic functions and auto-Bäcklund transformation to find new exact solutions of the -dimensional NNV equation, Phys. Lett. A, 357 (2006), 438–448. https://doi.org/10.1016/j.physleta.2006.04.082 doi: 10.1016/j.physleta.2006.04.082
    [52] L. P. Nizhnik, Integration of multidimensional nonlinear equations by the method of the inverse problem, Dokl. Akademii Nauk, 254 (1980), 332–335.
    [53] X. Bai, Y. He, M. Xu, Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form, IEEE T. Aero. Elec. Sys., 57 (2021), 3279–3295. https://doi.org/10.1109/TAES.2021.3074204 doi: 10.1109/TAES.2021.3074204
    [54] Q. Liu, H. Peng, Z. Wang, Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis, J. Differ. Equations, 314 (2022), 251–286. https://doi.org/10.1016/j.jde.2022.01.021 doi: 10.1016/j.jde.2022.01.021
    [55] H. Jin, Z. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equations, 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
    [56] M. B. Hossen, H. O. Roshid, M. Z. Ali, Multi-soliton, breathers, lumps and interaction solution to the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation, Heliyon, 5, (2019). https://doi.org/10.1016/j.heliyon.2019.e02548 doi: 10.1016/j.heliyon.2019.e02548
    [57] A. M. Wazwaz, M. S. Osman, Analyzing the combined multi-waves polynomial solutions in a two-layer-liquid medium, Comput. Math. Appl., 76 (2018), 276–283. https://doi.org/10.1016/j.camwa.2018.04.018 doi: 10.1016/j.camwa.2018.04.018
    [58] M. S. Osman, H. I. A. Gawad, Multi-wave solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients, Eur. Phys. J. Plus, 130 (2015), 1–11. https://doi.org/10.1140/epjp/i2015-15215-1 doi: 10.1140/epjp/i2015-15215-1
    [59] S. Y. Lou, X. B. Hu, Infinitely many Lax pairs and symmetry constraints of the KP equation, J. Math. Phys., 38 (1997), 6401–6427. https://doi.org/10.1063/1.532219 doi: 10.1063/1.532219
    [60] P. Liu, J. P. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Cont. Dyn.-B, 18 (2013), 2597–2625. https://doi.org/ 10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597
    [61] H. Chen, W. Chen, X. Liu, X. Liu, Establishing the first hidden-charm pentaquark with strangeness, Eur. Phys. J. C, 81 (2021), 409. https://doi.org/10.1140/epjc/s10052-021-09196-4 doi: 10.1140/epjc/s10052-021-09196-4
    [62] Y. Zhang, Y. He, H. Wang, L. Sun, Y. Su, Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens, ACS Photonics, 8 (2021), 202–208. https://doi.org/10.1021/acsphotonics.0c01269 doi: 10.1021/acsphotonics.0c01269
    [63] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating families of soliton solutions for the complex structured coupled fractional Biswas-Arshed model in birefringent fibers using a novel analytical technique, Fractal Fract., 7 (2023), 491. https://doi.org/10.3390/fractalfract7070491 doi: 10.3390/fractalfract7070491
    [64] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
  • This article has been cited by:

    1. Naveed Iqbal, Muhammad Bilal Riaz, Meshari Alesemi, Taher S. Hassan, Ali M. Mahnashi, Ahmad Shafee, Reliable analysis for obtaining exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation, 2024, 9, 2473-6988, 16666, 10.3934/math.2024808
    2. Yeliang Xiao, Shoaib Barak, Manel Hleili, Kamal Shah, Exploring the dynamical behaviour of optical solitons in integrable kairat-II and kairat-X equations, 2024, 99, 0031-8949, 095261, 10.1088/1402-4896/ad6e34
    3. Raed Qahiti, Naher Mohammed A. Alsafri, Hamad Zogan, Abdullah A. Faqihi, Kink soliton solution of integrable Kairat-X equation via two integration algorithms, 2024, 9, 2473-6988, 30153, 10.3934/math.20241456
    4. Naher Mohammed A. Alsafri, Solitonic behaviors in the coupled Drinfeld-Sokolov-Wilson system with fractional dynamics, 2025, 10, 2473-6988, 4747, 10.3934/math.2025218
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1325) PDF downloads(53) Cited by(4)

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog