This paper presents an innovative approach to solve q-fractional partial differential equations through a combination of two semi-analytical techniques: The Residual Power Series Method (RPSM) and the Homotopy Analysis Method (HAM). Both methods are extended to obtain approximations for q-fractional partial differential equations (q-FPDEs). These equations are significant in q-calculus, which has gained attention due to its relevance in engineering applications, particularly in quantum mechanics. In this study, we solve linear and nonlinear q-FPDEs and obtain the closed-form solutions, which confirm the validity of the utilized methods. The results are further illustrated through two-dimensional and three-dimensional graphs, thus highlighting the interaction between parameters, particularly the fractional parameter, the q-calculus parameter, and time.
Citation: Khalid K. Ali, Mohamed S. Mohamed, M. Maneea. A novel approach to q-fractional partial differential equations: Unraveling solutions through semi-analytical methods[J]. AIMS Mathematics, 2024, 9(12): 33442-33466. doi: 10.3934/math.20241596
[1] | Yeyang Jiang, Zhihua Liao, Di Qiu . The existence of entire solutions of some systems of the Fermat type differential-difference equations. AIMS Mathematics, 2022, 7(10): 17685-17698. doi: 10.3934/math.2022974 |
[2] | Hong Li, Keyu Zhang, Hongyan Xu . Solutions for systems of complex Fermat type partial differential-difference equations with two complex variables. AIMS Mathematics, 2021, 6(11): 11796-11814. doi: 10.3934/math.2021685 |
[3] | Minghui Zhang, Jianbin Xiao, Mingliang Fang . Entire solutions for several Fermat type differential difference equations. AIMS Mathematics, 2022, 7(7): 11597-11613. doi: 10.3934/math.2022646 |
[4] | Zhenguang Gao, Lingyun Gao, Manli Liu . Entire solutions of two certain types of quadratic trinomial q-difference differential equations. AIMS Mathematics, 2023, 8(11): 27659-27669. doi: 10.3934/math.20231415 |
[5] | Wenju Tang, Keyu Zhang, Hongyan Xu . Results on the solutions of several second order mixed type partial differential difference equations. AIMS Mathematics, 2022, 7(2): 1907-1924. doi: 10.3934/math.2022110 |
[6] | Zhiyong Xu, Junfeng Xu . Solutions to some generalized Fermat-type differential-difference equations. AIMS Mathematics, 2024, 9(12): 34488-34503. doi: 10.3934/math.20241643 |
[7] | Guowei Zhang . The exact transcendental entire solutions of complex equations with three quadratic terms. AIMS Mathematics, 2023, 8(11): 27414-27438. doi: 10.3934/math.20231403 |
[8] | Hong Yan Xu, Zu Xing Xuan, Jun Luo, Si Min Liu . On the entire solutions for several partial differential difference equations (systems) of Fermat type in C2. AIMS Mathematics, 2021, 6(2): 2003-2017. doi: 10.3934/math.2021122 |
[9] | Nan Li, Jiachuan Geng, Lianzhong Yang . Some results on transcendental entire solutions to certain nonlinear differential-difference equations. AIMS Mathematics, 2021, 6(8): 8107-8126. doi: 10.3934/math.2021470 |
[10] | Fengrong Zhang, Linlin Wu, Jing Yang, Weiran Lü . On entire solutions of certain type of nonlinear differential equations. AIMS Mathematics, 2020, 5(6): 6124-6134. doi: 10.3934/math.2020393 |
This paper presents an innovative approach to solve q-fractional partial differential equations through a combination of two semi-analytical techniques: The Residual Power Series Method (RPSM) and the Homotopy Analysis Method (HAM). Both methods are extended to obtain approximations for q-fractional partial differential equations (q-FPDEs). These equations are significant in q-calculus, which has gained attention due to its relevance in engineering applications, particularly in quantum mechanics. In this study, we solve linear and nonlinear q-FPDEs and obtain the closed-form solutions, which confirm the validity of the utilized methods. The results are further illustrated through two-dimensional and three-dimensional graphs, thus highlighting the interaction between parameters, particularly the fractional parameter, the q-calculus parameter, and time.
The Keller and Segel model in [22] was introduced in 1970, and the mathematical study of this system has extensively developed the parabolic-parabolic equations in [13,24,28,36,39] and the parabolic-elliptic equations in [2,3,7,14,15,37]. This model is used to describe the chemotaxis-aggregation phenomena in nature.
Cells and microorganisms usually live in fluid, so it is particularly important to consider the interaction of fluids with them. In view of this idea, Tuval et al. considered the experiment of the collective behavior of \emph{Bacillus subtilis} in [49]. Then, a large number of related results of global solvability for chemotaxis-fluid were investigated in recent years. For example, we can see the researches of introducing the Keller-Segel equations in [1,20,34,46,55,78], the Keller-Segel-Navier-Stokes equations in [5,6,9,10,21,25,27,31,41,42,43,47,51,52,53,54,56,57,58,62,63,64,66,67,68,69,70,71,73,76,77,79], the rotational flux term in [5,21,31,51,58,59,64,79], the nonlinear diffusion in [8,11,41,48,73], the logistic source in [12,47,54,62,78], the singular sensitivity in [13,14,15,24,52,65,75] etc. These papers on global existence and boundedness analysis gave a good theoretical and guiding significance for our understanding of biological growth of cells. Due to the global existence of the solution, we do not have to worry about the occurrence of sudden change and other unexpected results, and can achieve the purpose of guiding experiments with theory.
Recently, a macroscopic model called the spatial Solow-Swan was proposed by Juchem Neto et al. in [16,17,18] for describing economic growth phenomena under capital induction and labor migration. Very recently, Li-Li [26] investigated global boundedness of the following model
{nt=Δn−χ∇⋅(n∇c)+μ1n−μ2n2,x∈Ω,t>0,ct=Δc−c+μ3cαn1−α,x∈Ω,t>0. |
Assuming that the dynamic behavior of microscopic particles also meets the above macroscopic model, it is necessary to consider the Keller-Segel-Solow-Swan model. For the above model, there are two difficulties: the first equation contains cross diffusion term ∇⋅(n∇c), and the second contains the Cobb-Douglas function μ3cαn1−α. Therefore, it becomes very interesting to use the corresponding mathematical theory to deal with this problem. Recently, more results in [29,30,32,33,60,72,74] have turned their attention to the indirect signal production model under multi-signal, and the researches on the global solvability of this model have become very important.
Compared with the chemical substance concentration term of the indirect signal model, we found that the system became more difficult to control after adding Cobb-Douglas term. We can explain it by Sturm's comparison theorem in [44] as follows:
y′(t)+y=μ3‖cαw1−α‖L1(Ω)≤12y+(2μ1α3)α1−α‖w‖L1(Ω)forallα∈(0,1), |
where y=‖c‖L1(Ω) and w are the concentrations of another chemical involved in the reaction, which is given in the following model (1.1). Let
y′(t)+12y=2α1−α‖w‖L1(Ω)forallα∈(0,1). |
If α=0, the above system degenerates into an indirect signal model, and if α>0 increase, then the corresponding solution will be raised. When we assume that the differential equation of the indirect signal model c is
˜y′+˜y=‖˜w‖L1(Ω) |
and assume that they have the same initial data and velocity, namely, y(0)=˜y(0),˙y(0)=˙˜y(0), as wall as suppose that y(a)=y(b)=y(0), then we have a≤b and
y(s1)˜y(s1)≥y(s0)˜y(s0)andy(s1)≥˜y(s1)forall0<s0<s1<a. |
This shows that the distance between the two solutions increases gradually during the evolution. Motivated by the above works, we think that the relationship between cells and chemicals also meets the operating mechanism in the Solow-Swan model. In this paper, we let Ω⊂RN(N=2,3) be a bounded domain smooth boundary with outer norm vector ν and investigate the following chemotaxis-fluid-Solow-Swan system:
{nt+u⋅∇n=Δn−χ∇⋅(n∇c)+μ1n−μ2nk,x∈Ω,t>0,ct+u⋅∇c=Δc−c+μ3cαw1−α,x∈Ω,t>0,wt+u⋅∇w=Δw−w+n,x∈Ω,t>0,ut+κ(u⋅∇u)=Δu−∇P+n∇Φ,∇⋅u=0,x∈Ω,t>0,∂n∂ν=∂c∂ν=∂w∂ν=0,u=0,x∈∂Ω,t>0,n(x,0)=n0(x),c(x,0)=c0(x),u(x,0)=u0(x),x∈Ω. | (1.1) |
Here, the unknowns n=n(t,x),c=c(t,x) and w=w(t,x) denote the cell density and the two concentrations of chemical substance, respectively. u=u(t,x) represents the fluid velocity field, and P=P(t,x) denotes the associated pressure. The scalar valued function Φ=Φ(x) is given and it accounts the effects of external forces such as gravity or centrifugal forces. The parameters satisfy χ>0,k≥N,μ1∈R,μ2≥0,μ3>0,α∈(0,1),κ∈{0,1}. Moser-Trudinger inequality [4,38,50] has natural advantage as a priori estimate for dealing with two-dimensional critical cases, and Winkler [68] has promoted it and provided a better version. For the three-dimensional case, we control it with help of the order of logistic source and the estimate of heat semigroup. Based on these results, we describe the work of this paper. For the convenience of this paper, we let
m0:=∫Ωn0dx>0. |
We assume that potential function Φ fulfills
Φ∈W2,∞(Ω) | (1.2) |
and that the initial data n0,c0,w0,u0 satisfies
{n0∈C0(ˉΩ)isnonnegativewithn0≢0,c0∈W1,∞(Ω)isnonnegative,w0∈W1,∞(Ω)isnonnegative,andu0∈W2,2(Ω;R2)∩W1,20,σ,N=2oru0∈W2,224(Ω;R3)∩W1,20,σ,N=3, | (1.3) |
where W1,20,σ:=W1,20(Ω;RN)∩L2σ(Ω), with L2σ:={φ∈L2(Ω;RN)|∇⋅φ=0inD(Ω)} denoting the space of all solenoidal vector fields in L2(Ω;RN).
Under this assumption, our main results on global boundedness and asymptotic behavior of the initial-boundary value problems (1.1) and (1.3) can be formulated as follows.
Theorem 1.1. Let Ω⊂RN(N=2,3) be a bounded domain with smooth boundary and Φ comply with (1.2), and suppose that n0,c0,w0, and u0 satisfy (1.3), and if N=2,μ1∈R,μ2>0 or μ1=0,μ2≥0 and if N=3,μ1∈R,μ2>0, then there exist functions (n,c,w,u,P) satisfying
{n∈C0(ˉΩ×[0,∞))∩C2,1(ˉΩ×(0,∞)),c∈C0(ˉΩ×[0,∞))∩C2,1(ˉΩ×(0,∞)),w∈C0(ˉΩ×[0,∞))∩C2,1(ˉΩ×(0,∞)),u∈C0(ˉΩ×[0,∞))∩C2,1(ˉΩ×(0,∞)),P∈C1,0(ˉΩ×[0,∞)) |
and fulfill n>0,c>0 and w>0 in ˉΩ×[0,∞).
Theorem 1.2. Let Ω⊂RN(N=2,3) be a bounded domain with smooth boundary, and let (n,c,w,u,Φ) satisfy the conditions of Theorem 1.1.
(I) If μ1<0,μ2≥0, then there exist C>0, suitable small δ>0, and t⋆>1 satisfying
‖n‖L∞(Ω)≤Ceμ1N+1t |
and
‖c‖W1,q(Ω)≤Cemax{δ−1,μ1}⋅N(N+1)q⋅tand‖w‖W1,q(Ω)≤Cemax{−1,μ1}⋅N(N+1)q⋅t |
as well as
‖u‖W1,∞(Ω)≤Ce−δtforallt>t⋆. |
If μ1=0,μ2<0, then there exist C>0, suitable small δ>0, and t⋆>1 fulfilling
‖n‖L∞(Ω)≤e−1N+1μ2|Ω|1k−1∫t0‖n(⋅,s)‖k−1L1(Ω)ds |
and
‖c‖W1,q(Ω)≤Cemax{δ−1,−μ2|Ω|1k−1∫t0‖n(⋅,s)‖k−1L1(Ω)ds}⋅N(N+1)q⋅tand‖w‖W1,q(Ω)≤c2emax{−1,−μ2|Ω|1k−1∫t0‖n(⋅,s)‖k−1L1(Ω)ds}⋅N(N+1)q⋅t |
as well as
‖u‖W1,∞(Ω)≤Ce−δtforallt>t⋆. |
Remark 1.1. For notational convenience, we do not explain the constants of Ci,i=1,2,⋯,40 and CGN in the following. Here, CGN is Gagliardo-Nirenberg constant.
First of all, we give the local existence result. This proof is based on the Banach's fixed point theorem in a bounded closed set in L∞((0,T);C0(ˉΩ)×(W1,q(Ω))2×D(Aγ)) for all γ∈(12,1) and suitably small T, where A is the realization of the stokes operator in the solenoidal subspace. Additionally, here we omit the details of the proof, which can be found in [1,20,63]. For the positive solutions, we can obtain them using the principle of comparison. Because n_≡0 is a sub-solution of the first equation in (1.1) and n(x,0)≥0, we have n(x,t)≥0. Furthermore, we can obtain n(x,t)>0 due to n0(x)≢0. Therefore, we can get w(x,t)>0 and c(x,t)>0, respectively.
Lemma 2.1. Let Ω⊂RN(N=2,3) be a bounded domain with smooth boundary and Φ comply with (1.2), and suppose that n0,c0,w0, and u0 satisfy (1.3), then there exist functions
{n∈C0(ˉΩ×[0,Tmax))∩C2,1(ˉΩ×(0,Tmax)),c∈C0(ˉΩ×[0,Tmax))∩C2,1(ˉΩ×(0,Tmax)),w∈C0(ˉΩ×[0,Tmax))∩C2,1(ˉΩ×(0,Tmax)),u∈C0(ˉΩ×[0,Tmax))∩C2,1(ˉΩ×(0,Tmax)),P∈C1,0(ˉΩ×[0,Tmax)) |
and fulfill n>0,c>0 and w>0 in ˉΩ×[0,Tmax). Moreover, if Tmax<∞, then for all q>N,γ∈(12,1) we have
limt→Tmaxsup(‖n(⋅,t)‖L∞(Ω)+‖c(⋅,t)‖W1,q(Ω)+‖w(⋅,t)‖W1,q(Ω)+‖Aγu(⋅,t)‖L2(Ω))=∞. |
For the treatment of the global existence for two-dimensional Keller-Segel-Navier-Stokes-Solow-Swan system, we adopt the following Moser-Trudinger inequalities.
Lemma 3.1. ([68]) Suppose that Ω⊂R2 is a bounded domain with smooth boundary. Then for all ϵ>0 there exists M=M(ϵ,Ω)>0 such that if 0≢ϕ∈C0(ˉΩ) is nonnegative and ψ∈W1,2(Ω), then for each a>0,
∫Ωϕ|ψ|dx≤1a∫Ωϕlnϕˉϕdx+(1+ϵ)a8π⋅{∫Ωϕdx}⋅∫Ω|∇ψ|2dx+Ma⋅{∫Ωϕdx}⋅{∫Ω|ψ|dx}2+Ma∫Ωϕdx, | (3.1) |
where ˉϕ:=1|Ω|∫Ωϕdx.
Lemma 3.2. ([68]) Suppose that Ω⊂R2 is a bounded domain with smooth boundary, and let 0≢ϕ∈C0(ˉΩ) is nonnegative. Then for any choice of ϵ>0,
∫Ωϕln(ϕ+1)dx≤1+ϵ2π⋅{∫Ωϕdx}⋅∫Ω|∇ϕ|2(ϕ+1)2dx+4M⋅{∫Ωϕdx}3+{M−lnˉϕ}⋅∫Ωϕdx, |
where M=M(ϵ,Ω)>0 is as in Lemma 3.1.
Next, we give the required a prior estimates.
Lemma 3.3. Assume that (1.3) holds. Then we have
∫Ωn(x,t)dx=m0 | (3.2) |
and
∫Ωc(x,t)dx≤∫Ωc0(x)dx+C0(m0+{∫Ωw0(x)dx}⋅e−t) |
as well as
∫Ωw(x,t)dx≤m0+{∫Ωw0(x)dx}⋅e−t. | (3.3) |
Proof. Since μ1=μ2=0, we integrate the first equation of (1.1) to get (3.2) and integrate the third equation of (1.1) and use the ODE argument to obtain (3.3). Then, using the similar method for the second equation of (1.1), we can complete the proof of the Lemma 3.3.
Lemma 3.4. Suppose that (1.3) holds. Then for all T∈(0,Tmax) there exists C(T)>0 such that
∫Ω(c2(x,t)+w2(x,t))dx≤C(T) | (3.4) |
and
∫T0∫Ω(|∇c(x,t)|2+|∇w(x,t)|2+|∇n(x,t)|2(n+1)2)dxdt≤C(T) | (3.5) |
as well as
∫T0∫Ωn(x,t)lnn(x,t)ˉn0dxdt≤C(T). | (3.6) |
Proof. We first integrate by parts in the first equation from (1.1) and use ∇⋅u=0 and the Young's inequality to deduce that
−ddt∫Ωln(n+1)dx=−∫Ωntn+1dx=−∫Ω1n+1[Δn−χ∇⋅(n∇c)−u⋅∇n]dx=−∫Ω|∇n|2(n+1)2dx+χ∫Ωn∇n⋅∇c(n+1)2dx≤−12∫Ω|∇n|2(n+1)2dx+χ22∫Ωn2(n+1)2|∇c|2dx≤−12∫Ω|∇n|2(n+1)2dx+χ22∫Ω|∇c|2dx. | (3.7) |
Multiplying the second equation of (1.1) by c, we have
12ddt∫Ωc2dx=∫Ωc(Δc−c+μ3cαw1−α−u⋅∇c)=−∫Ω|∇c|2dx−∫Ωc2dx+μ3∫Ωc1+αw1−αdx≤−∫Ω|∇c|2dx−∫Ωc2dx+μ3‖c1+α‖L21+α(Ω)‖w1−α‖L21−α(Ω)=−∫Ω|∇c|2dx−∫Ωc2dx+μ3‖c‖1+αL2(Ω)‖w‖1−αL2(Ω)≤−∫Ω|∇c|2dx−12∫Ωc2dx+C1‖w‖2L2(Ω). | (3.8) |
Multiplying (3.8) by χ2 and then substituting it into (3.7), we have
ddt(−∫Ωln(n+1)dx+χ22∫Ωc2dx)+χ22(∫Ωc2dx+∫Ω|∇c|2dx)+12∫Ω|∇n|2(n+1)2dx≤χ2C1‖w‖2L2(Ω). | (3.9) |
For the right hand side of (3.9), using the Gagliardo-Nirenberg inequality and Young's inequality, we have
ddt(−∫Ωln(n+1)dx+χ22∫Ωc2dx)+χ22(∫Ωc2dx+∫Ω∇c|2dx)+12∫Ω|∇n|2(n+1)2dx≤2χ2C1CGN(‖w‖L1(Ω)‖∇w‖L2(Ω)+‖w‖2L1(Ω))≤ϵ1‖∇w‖2L2(Ω)+C2, | (3.10) |
where ϵ1>0 is small enough and to be determined.
Multiplying the third equation of (1.1) by w, one has
12ddt∫Ωw2dx=∫Ωw(Δw−w+n−u⋅∇w)=−∫Ω|∇w|2dx−∫Ωw2dx+∫Ωnwdx. | (3.11) |
In order to control the last term at the right end of (3.11), using Lemma 3.1, we obtain
∫Ωnwdx≤1a∫Ωnlnnˉn0dx+(1+ϵ)m0a8π∫Ω|∇w|2dx+Mm0a{∫Ωwdx}2+Mm0aforallt>0. | (3.12) |
For the first term at the right end of (3.12), using Lemma 3.2, we can get
∫Ωnlnnˉn0dx≤(1+ϵ)m02π∫Ω|∇n|2(n+1)2dx+4Mm30+m0⋅(M−lnm0|Ω|). | (3.13) |
Multiplying (3.13) by 1a, that is
1a∫Ωnlnnˉn0dx≤(1+ϵ)m02πa∫Ω|∇n|2(n+1)2dx+4Mm30a+m0a⋅(M−lnm0|Ω|). | (3.14) |
We now substituting (3.12) and (3.14) into (3.11) to deduce that
12ddt∫Ωw2dx+∫Ωw2dx+(1−(1+ϵ)m0a8π)∫Ω|∇w|2dx≤(1+ϵ)m02πa∫Ω|∇n|2(n+1)2dx+Mm0a{∫Ωwdx}2+2Mm0a+m0a⋅(4Mm20−lnm0|Ω|). | (3.15) |
Let λ0:=4(1+ϵ)m0πa>0. Multiplying (3.10) by λ0 and adding it to (3.15), we can see that
ddt{−λ0∫Ωln(n+1)dx+λ0χ22∫Ωc2dx+∫Ωw2dx}+λ0χ22(∫Ωc2dx+∫Ω|∇c|2dx)+(2−(1+ϵ)m0a4π−ϵ1λ0)∫Ω|∇w|2dx+(1+ϵ)m0πa∫Ω|∇n|2(n+1)2dx+2∫Ωw2dx≤2Mam0(m0+{∫Ωw0dx}⋅e−t)2+4Mm0a+2m0a(4Mm20−lnm0|Ω|)+C2λ0. |
Therefore, we only need to select the appropriate positive numbers ϵ,ϵ1 and a such that 2−(1+ϵ)m0a4π−ϵ1λ0>0. If ϵ is fixed, we can take a=2π(1+ϵ)m0 and ϵ1=πa4(1+ϵ)m0, which can meet the conditions we need. Then we use the inequality ∫Ωln(n+1)dx≤∫Ωndx=m0 to get (3.4) and (3.5). Finally, we use (3.5), (3.13) and the fact that nlnn≥−e−1 to arrive at (3.6).
Lemma 3.5. Assume (1.3) is satisfied. Then, for all T∈(0,Tmax) there exists C(T)>0 such that
∫Ω|u(x,t)|2dx≤C(T) | (3.16) |
and
∫T0∫Ω|∇u(x,t)|2dxdt≤C(T). | (3.17) |
Proof. We test the fourth equation of (1.1) by u and use the Hölder's inequality and Moser-Trudinger inequality to get
12ddt∫Ω|u|2dx+∫Ω|∇u|2dx=∫Ωn∇Φ⋅u≤‖∇Φ‖L∞(Ω){2∑i=1∫Ω|n||ui|}≤‖∇Φ‖L∞(Ω)a1∫Ωnlnnˉn+(1+ϵ2)m0a1‖∇Φ‖L∞(Ω)8π∫Ω|∇u|2dx+‖∇Φ‖L∞(Ω)(Mm0a1{∫Ω|u|dx}2+Mm0a1), | (3.18) |
where
a1:=1(2Mm0κ1|Ω|+(1+ϵ2)m04π)‖∇Φ‖L∞(Ω)>0, |
and κ1>0 is to be determined, it will be given by the following Poincaré's inequality.\\ On the other hand, using Poincaré's inequality and Hölder's inequality we have
(∫Ω|u|dx)2≤|Ω|∫Ωu2dx≤κ1|Ω|∫Ω|∇u|2dx. | (3.19) |
Therefore, (3.18) together with (3.19) shows that
ddt∫Ω|u|2dx+∫Ω|∇u|2dx≤2‖∇Φ‖L∞(Ω)a1(∫Ωnlnnˉn+Mm0). |
So, using Gronwall's inequality and (3.6), we have the descried results.
Lemma 3.6. If (1.3) holds, then for all T∈(0,Tmax) there exists C(T)>0 such that
∫Ω|∇c(x,t)|2dx≤C(T). |
Moreover, we have
∫T0∫Ω(|Δc(x,t)|2+|∇c(x,t)|4)dxdt≤C(T). | (3.20) |
Proof. We multiply the Eq (1.1)2 with −Δc and use the integration by parts and Hölder's inequality to obtain
12ddt∫Ω|∇c|2dx+∫Ω|∇c|2dx+∫Ω|Δc|2dx=∫Ω(u⋅∇c)Δcdx−μ3∫Ωcαw1−αΔcdx≤14∫Ω|Δc|2dx+2‖u‖2L4(Ω)‖∇c‖2L4(Ω)+2μ23‖c‖2αL2(Ω)‖w‖2(1−α)L2(Ω)≤14∫Ω|Δc|2dx+2‖u‖2L4(Ω)‖∇c‖2L4(Ω)+‖c‖2L2(Ω)+C3‖w‖2L2(Ω). | (3.21) |
Applying the Gagliardo-Nirenberg inequality and Young's inequality, we have
‖∇c‖2L4(Ω)≤CGN(‖∇c‖L2(Ω)‖D2c‖L2(Ω)+‖∇c‖2L2(Ω)) | (3.22) |
and
‖∇w‖2L4(Ω)≤CGN(‖∇w‖L2(Ω)‖D2w‖L2(Ω)+‖∇w‖2L2(Ω)). | (3.23) |
We plug (3.22) into (3.21) to obtain
12ddt∫Ω|∇c|2dx+∫Ω|∇c|2dx+∫Ω|Δc|2dx=∫Ω(u⋅∇c)Δcdx−μ3∫Ωcαw1−αΔcdx≤14∫Ω|Δc|2dx+2‖u‖2L4(Ω)‖∇c‖2L4(Ω)+2μ23‖c‖2αL2(Ω)‖w‖2(1−α)L2(Ω)≤14∫Ω|Δc|2dx+2CGN‖u‖2L4(Ω)‖∇c‖L2(Ω)‖D2c‖L2(Ω)+2CGN‖u‖2L4(Ω)‖∇c‖2L2(Ω)+‖c‖2L2(Ω)+C3‖w‖2L2(Ω)≤14∫Ω|Δc|2dx+316‖D2c‖2L2(Ω)+C41‖u‖4L4(Ω)‖∇c‖2L2(Ω)+2CGN‖u‖2L4(Ω)‖∇c‖2L2(Ω)+‖c‖2L2(Ω)+C3‖w‖2L2(Ω), | (3.24) |
where C41>0 is a constant.
On the other hand, note that the identities |Δc|2=∇⋅(Δc∇c)−∇c⋅∇Δc and Δ|∇c|2=2∇c⋅∇Δc+2|D2c|2, we deduce that
∫Ω|Δc|2dx=∫Ω∇⋅(Δc∇c)dx−∫Ω∇c⋅∇Δcdx=∫∂ΩΔc∂c∂νdS−∫Ω∇c⋅∇Δcdx=−∫Ω∇c⋅∇Δcdx=∫Ω|D2c|2dx−12∫ΩΔ|∇c|2dx=∫Ω|D2c|2dx−12∫∂Ω∂|∇c|2∂νdS. | (3.25) |
Thanks to the fact ∂|∇c|2∂ν≤2κ2|∇c|2, where κ2:=κ2(Ω)>0 is an upper bound for the curvatures of ∂Ω in ([35], Lemma 4.2), the trace theorem and (3.25), we can see that
∫Ω|D2c|2dx≤∫Ω|Δc|2dx+κ2∫∂Ω|∇c|2dS≤∫Ω|Δc|2dx+κ2˜C41(Ω,s)‖c‖2H3+s2(Ω)≤∫Ω|Δc|2dx+˜C42(‖D2c‖3+s2L2(Ω)‖c‖1−s2L2(Ω)+‖c‖2L2(Ω))≤∫Ω|Δc|2dx+14∫Ω|D2c|2dx+˜C43, |
where ˜C41,˜C42,˜C43 and s∈(0,1) are positive constants.
That is
∫Ω|D2c|2dx≤43∫Ω|Δc|2dx+43˜C43. | (3.26) |
Similarly, we have
∫Ω|D2w|2dx≤43∫Ω|Δw|2dx+43˜C43. | (3.27) |
Then, we apply Gagliardo-Nirenberg inequality, Lemma 3.5 and Poincaré's inequality to get
‖u‖4L4(Ω)≤CGN(‖u‖2L2(Ω)‖∇u‖2L2(Ω)+‖u‖4L2(Ω))≤12‖∇u‖2L2(Ω)+C42‖u‖4L2(Ω)≤C43‖∇u‖2L2(Ω), | (3.28) |
where C42,C43 are two positive constants.
Therefore, (3.24) together with (3.26) and (3.28) shows that
ddt∫Ω|∇c|2dx+∫Ω|Δc|2dx≤2‖c‖2L2(Ω)+2C3‖w‖2L2(Ω)+C4(‖∇u‖L2(Ω)+‖∇u‖2L2(Ω))‖∇c‖2L2(Ω), | (3.29) |
where C4=max{C41C43,2CGN√C43}.
So, we use Gronwall inequality, and use Lemmas 3.4 and 3.5 and Hölder's inequality to arrive at the Lemma 3.6.
Lemma 3.7. Suppose that (1.3) holds and that T∈(0,Tmax). Then there exists C(T)>0 such that
∫Ω|∇w(x,t)|2dx≤C(T) |
and
∫T0∫Ω(|Δw(x,t)|2+|∇w(x,t)|4)dxdt≤C(T). |
Proof. Multiplying the Eq (1.1)3 with −Δw and using Hölder's inequality, (3.23), (3.27) and (3.28), one has
12ddt∫Ω|∇w|2dx+∫Ω|∇w|2dx+∫Ω|Δw|2dx=∫Ω(u⋅∇w)Δwdx−∫ΩnΔwdx≤14∫Ω|Δw|2dx+2‖u‖2L4(Ω)‖∇w‖2L4(Ω)+2‖n‖2L2(Ω)≤14∫Ω|Δw|2dx+2‖u‖2L4(Ω)(‖∇w‖L2(Ω)‖D2w‖L2(Ω)+‖∇w‖2L2(Ω))+2‖n‖2L2(Ω)≤12∫Ω|Δw|2dx+C5(‖∇u‖L2(Ω)+‖∇u‖2L2(Ω))‖∇w‖L2(Ω)+2‖n‖2L2(Ω), | (3.30) |
where C5>0 is a constant.
For the term of ‖n‖2L2(Ω), we apply the Gagliardo-Nirenberg inequality and the mass conservation of ‖n‖L1(Ω) to deduce that
‖n‖2L2(Ω)=‖√n‖4L4(Ω)≤CGN(‖∇√n‖2L2(Ω)‖√n‖2L2(Ω)+‖√n‖4L2(Ω))≤C5(‖∇√n‖2L2(Ω)+1). | (3.31) |
Multiplying the Eq (1.1)1 with (1+lnn) and using Hölder's inequality and Young's inequality, we have
ddt∫Ωnlnndx=∫(Δn−χ∇⋅(n∇c))(1+lnn)dx≤−∫Ω|∇n|2ndx+χ∫Ω∇n∇c=−∫Ω|∇n|2ndx+χ∫Ω∇n√n√n∇cdx≤−12∫Ω|∇n|2ndx+χ22∫Ωn|∇c|2dx≤−2‖∇√n‖2L2(Ω)+1C5‖n‖2L2(Ω)+χ4C58‖∇c‖4L4(Ω). | (3.32) |
Then, we add (3.31) into (3.32) to obtain
ddt∫Ωnlnndx+‖∇√n‖2L2(Ω)≤1+χ4C58‖∇c‖4L4(Ω). | (3.33) |
We integrate the two ends of (3.33) with respect to t, and use Lemma 3.6 to get
∫Ωnlnndx+∫T0‖∇√n‖2L2(Ω)dt≤T+χ4C58∫T0‖∇c‖4L4(Ω)dt≤C(T)forallT∈(0,Tmax). | (3.34) |
Finally, we use Gronwall's inequality to (3.30) and note that nlnn≥−e−1 and (3.34) to complete the Lemma 3.7.
Lemma 3.8. Assume (1.3), and let T∈(0,Tmax). Then there exists C(T)>0 such that
∫Ω|n(⋅,t)|2dx≤C(T). |
Proof. Testing the first equation in (1.1) against n and integrating by parts show that
12ddt∫Ωn2dx+∫Ω|∇n|2dx=−χ∫Ωn∇⋅(n∇c)dx=χ∫Ωn∇n⋅∇cdx. |
Applying the identity n∇⋅(n∇c)=n∇n⋅∇c+n2Δc, we show that
ddt∫Ωn2dx+2∫Ω|∇n|2dx=−χ∫Ωn2Δcdx≤χ‖n2‖L2(Ω)‖Δc‖L2(Ω)=χ‖n‖2L4(Ω)‖Δc‖L2(Ω). | (3.35) |
Using the Gagliardo-Nirenberg inequality again, we have
‖n‖2L4(Ω)≤CGN(‖∇n‖L2(Ω)‖n‖L2(Ω)+m20). | (3.36) |
Combining (3.35) with (3.36) and using the Young' s inequality, one has
ddt∫Ωn2dx+2∫Ω|∇n|2dx≤CGNχ‖Δc‖L2(Ω)‖∇n‖L2(Ω)‖n‖L2(Ω)+CGNχm20‖Δc‖L2(Ω)≤‖∇n‖2L2(Ω)+C6‖Δc‖2L2(Ω)‖n‖2L2(Ω)+C6(‖Δc‖2L2(Ω)+1). |
Applying Gronwall's inequality and the Lemma 3.7, we can obtain
∫Ωn2dx≤‖n0‖2L2(Ω)eC6∫t0‖Δc(⋅,s)‖2L2(Ω)ds+C6eC6∫t0‖Δc(⋅,s)‖2L2(Ω)ds∫t0(‖Δc(⋅,s)‖2L2(Ω)+1)e−C6∫s0‖Δc(⋅,τ)‖2L2(Ω)dτds≤C(T)forallt∈(0,Tmax). |
Thus, we complete the proof of the Lemma 3.8.
Lemma 3.9. Suppose that (1.3) holds and that T∈(0,Tmax). Then there exists C(T)>0 such that
∫Ω|∇u(x,t)|2dx≤C(T) |
and
∫T0∫Ω|Au(x,t)|2dxdt≤C(T). |
Proof. Testing (1.1)4 by Au and using Hölder's inequality, Gagliardo-Nirenberg inequality, Young's inequality and (3.16), one has
12ddt∫Ω|∇u|2dx+∫Ω|Au|2dx=∫Ω(n∇Φ)Audx−∫Ω(u⋅∇u)Audx≤12‖Au‖L2(Ω)+‖∇Φ‖L∞(Ω)‖n‖2L2(Ω)+‖u⋅∇u‖2L2(Ω)≤12‖Au‖L2(Ω)+‖∇Φ‖L∞(Ω)‖n‖2L2(Ω)+‖u‖2L∞(Ω)‖∇u‖2L2(Ω)≤12‖Au‖L2(Ω)+‖∇Φ‖L∞(Ω)‖n‖2L2(Ω)+CGN‖u‖L2(Ω)‖u‖W2,2(Ω)‖∇u‖2L2(Ω)≤34‖Au‖L2(Ω)+C7+C7‖∇u‖4L2(Ω). | (3.37) |
Applying the variation of constant formula and (3.17), we have
\begin{equation} \begin{aligned} \int_\Omega|\nabla u|^2dx\leq\|\nabla u_0\|_{L^2(\Omega)}e^{2C_7\int^t_0\|\nabla u(\cdot, s)\|_{L^2(\Omega)}ds} +2C_7e^{2C_7\int^t_0\|\nabla u(\cdot, s)\|_{L^2(\Omega)}ds}\int^t_0e^{-2C_7\int^\tau_0\|\nabla u(\cdot, s)\|_{L^2(\Omega)}ds}d\tau \leq C_8 \end{aligned} \end{equation} | (3.38) |
for all t\in(0, T_{\max}) .
Integrating the two sides of (3.37) and applying (3.38), we complete the proof.
Lemma 3.10. Assume that (1.3) holds and let \gamma_0\in(\frac{1}{2}, \gamma]\subset(\frac{1}{2}, 1) . Then for all {T\in(0, T_{\max})} . there exists C(T) > 0 such that
\begin{equation} \int_\Omega|A^{\gamma_0}u(\cdot, t)|^2dx\leq C(T) \end{equation} | (3.39) |
and
\begin{equation*} \label{3-0-4} \|u(\cdot, t)\|_{C^\theta(\Omega)}\leq C(T). \end{equation*} |
Proof. We fix \gamma_0 and let p > \frac{1}{1-\gamma_0} , then use the Helmholtz projection operator to the fourth equation of (1.1) and the variation of constant formula to deduce that
\begin{equation*} \label{3-3} \begin{aligned} \|A^{\gamma_0}u(\cdot, t)\|_{L^2(\Omega)}& = \big\|A^{\gamma_0}\Big(e^{-tA}u_0+\int^t_0e^{-(t-s)A}\mathcal{P}\big(n(\cdot, s)\nabla\Phi -u(\cdot, s)\cdot\nabla u(\cdot, s)\big)ds\Big)\big\|_{L^2(\Omega)}\\ &\leq C_9+C_9\int^t_0(t-s)^{-\gamma_0}\|u(\cdot, s)\cdot\nabla u(\cdot, s)\|_{L^2(\Omega)}ds\\ &\leq C_9+C_9\Big(\int^t_0(t-s)^{-\frac{p\gamma_0}{p-1}}ds\Big)^{\frac{p-1}{p}} \Big(\int^t_0\|u(\cdot, s)\cdot\nabla u(\cdot, s)\|^p_{L^2(\Omega)}ds\Big)^{\frac{1}{p}}\\ &: = C_9+C_9J^{\frac{p}{p-1}}_1J^{\frac{1}{p}}_2. \end{aligned} \end{equation*} |
Due to p > \frac{1}{1-\gamma_0} , we have \frac{p\gamma_0}{p-1}\in(0, 1) . So, J_1\in(0, \infty) .
For J_2 , we apply the Hölder's inequality, Sobolev embedding, Poincaré's inequality and Gagliardo-Nirenberg inequality to obtain
\begin{equation*} \label{3-4} \begin{aligned} J_2& = \int^t_0\|u(\cdot, s)\cdot\nabla u(\cdot, s)\|^p_{L^2(\Omega)}ds\\ &\leq\int^t_0\|u(\cdot, s)\|^p_{L^q(\Omega)}\|\nabla u(\cdot, s)\|^p_{L^{\frac{2q}{q-2}}(\Omega)}ds\\ &\leq\int^t_0\|u(\cdot, s)\|^p_{W^{1, 2}(\Omega)}\|\nabla u(\cdot, s)\|^p_{L^{\frac{2q}{q-2}}(\Omega)}ds\\ &\leq C_{10}\int^t_0\|\nabla u(\cdot, s)\|^{2p-2}_{L^2(\Omega)} \|\Delta u(\cdot, s)\|^{2}_{L^2(\Omega)}\\ &\leq C_{10}\sup\limits_{t\in(0, T)}\|\nabla u(\cdot, s)\|^{2p-2}_{L^2(\Omega)}\int^T_0\|Au(\cdot, s)\|^2_{L^2(\Omega)}ds. \end{aligned} \end{equation*} |
Applying Lemma 3.9, we can get (3.39). Then we apply the embedding of D(A^{\gamma_0})\hookrightarrow {C}^\theta(\Omega) for all \theta\in(0, 2\gamma_0-1) to complete the proof of Lemma 3.10.
Lemma 3.11. If (1.3) holds, there for all {T\in(0, T_{\max})} . there exists C(T) > 0 such that
\begin{equation*} \label{3-0-5} \|c(\cdot, t)\|_{W^{1, q}(\Omega)}\leq C(T)\quad\mathrm{for\, \, all\, \, q > 1}. \end{equation*} |
Proof. Without loss of generality, we assume that q > 2 . Using the Duhamel principle for c and using standard semigroup estimates for the Neumann heat semigroup in ([61], Lemma 1.3) and embedding in ([19], Lemma 1.6.1) and the estimate in ([20] Lemma 2.1 or [15], Lemma 2.2), and using the Lemmas 3.4, 3.6 and 3.7, we can see that
\begin{align*} \label{3-5} \| c(\cdot, t)\|_{W^{1, q}(\Omega)}&{\leq}\|e^{t(\Delta-1)}c_0\|_{W^{1, q}(\Omega)}+\int^t_0\big\|e^{(t-s)(\Delta-1)} \Big(\mu_3c^\alpha(\cdot, s)w^{1-\alpha}(\cdot, s)+u(\cdot, s)\cdot\nabla c(\cdot, s)\Big)\big\|_{W^{1, q}(\Omega)}ds\\ &\leq C_{11}+\mu_3\int^t_0\big\|e^{(t-s)(\Delta-1)}c^\alpha(\cdot, s)w^{1-\alpha}(\cdot, s)\big\|_{W^{1, q}(\Omega)} +\int^t_0\big\|e^{(t-s)(\Delta-1)}\nabla\cdot\Big(u(\cdot, s)\cdot c(\cdot, s)\Big)\big\|_{W^{1, q}(\Omega)}ds\\ &\leq C_{11}+C_{12}\int^t_0(1+(t-s)^{-\frac{3}{4}+\frac{1}{q}})e^{-\lambda_1(t-s)}\|c^\alpha(\cdot, s)w^{1-\alpha}(\cdot, s)\|_{L^4(\Omega)}ds\\ &\quad+C_{12}\int^t_0\big\|(-\Delta+1)^{\kappa_3}e^{(t-s)(\Delta-1)}\nabla\cdot\Big(u(\cdot, s)c(\cdot, s)\Big)\big\|_{L^{2q}(\Omega)}ds\\ &\leq C_{11}+C_{12}\|c(\cdot, s)\|^\alpha_{L^{4}(\Omega)}\|w(\cdot, s)\|^{1-\alpha}_{L^{4}(\Omega)}\int^t_0\big(1+(t-s)^{-\frac{3}{4}+\frac{1}{q}}\big)e^{-\lambda_1(t-s)}ds\\ &\quad+C_{13}\int^t_0(t-s)^{-\kappa_3-\frac{1}{2}-\delta_1}e^{-\lambda_1(t-s)}\|u(\cdot, s)c(\cdot, s)\|_{L^{2q}(\Omega)}\\ &\leq C_{11}+C_{13}\Big( \|c\|^\alpha_{W^{1, 2}(\Omega)}\|w\|^{1-\alpha}_{W^{1, 2}(\Omega)}+\|u(\cdot, s)\|_{L^\infty(\Omega)}\|c(\cdot, s)\|_{W^{1, 2}(\Omega)}\int^t_0(t-s)^{-\kappa_3-\frac{1}{2}-\delta_1}e^{-\lambda_1(t-s)}ds\Big)\\ &\leq C_{14}\quad\mathrm{for\, \, all\, \, \, }\kappa_3 > \frac{1}{2}-\frac{1}{2q}\, \, \, \mathrm{and}\, \, \, 0 < \kappa_3+\delta_1 < \frac{1}{2}.\qquad\Box \end{align*} |
Lemma 3.12. Suppose that (1.3) holds and that {T\in(0, T_{\max})} . Then there exists C(T) > 0 such that
\begin{equation*} \label{3-0-6} \|n(\cdot, t)\|_{L^\infty(\Omega)}\leq C(T). \end{equation*} |
Proof. Let M(T^\star): = \sup\limits_{t\in(0, T^\star)}\|n(\cdot, t)\|_{L^\infty(\Omega)} for all T^\star\in(0, T) and let t_0 = (t-1)_+ . We use the Duhamel principle for n and use the semigroup estimate, Interpolation inequality and Young's inequality to deduce that
\begin{equation} \begin{aligned} \|n(\cdot, t)\|_{L^\infty(\Omega)}& = \big\|e^{(t-t_0)\Delta}n(\cdot, t_0)-\int^t_{t_0}e^{(t-s)\Delta}\nabla\cdot\big(\chi n(\cdot, s)\nabla c(\cdot, s)+n(\cdot, s)u(\cdot, s)\big)ds\big\|_{L^\infty(\Omega)}\\ &\leq C_{15}+\int^1_0(1+s^{-\frac{5}{6}})\|\chi n(\cdot, s)\nabla c(\cdot, s)+n(\cdot, s)u(\cdot, s)\|_{L^3(\Omega)}ds\\ &\leq C_{15}+C_{16}\int^1_0(1+s^{-\frac{5}{6}})\|n(\cdot, s)\|_{L^4(\Omega)}ds\\ &\leq C_{15}+C_{16}\int^1_0(1+s^{-\frac{5}{6}})\|n(\cdot, s)\|^{\frac{1}{4}}_{L^1(\Omega)}\|n\|^{\frac{3}{4}}_{L^\infty(\Omega)}ds\\ &\leq C_{15}+C_{16}m_0^{\frac{1}{4}}M^{\frac{3}{4}}(T^\star)\int^1_0(1+s^{-\frac{5}{6}})ds\\ &\leq C_{17}+\frac{1}{2}M(T^\star)+C_{17}\quad\mathrm{for\, \, all\, \, \, }t\in(0, T^\star). \end{aligned} \end{equation} | (3.40) |
We take the supremum of time for both sides of (3.40) to obtain the Lemma 3.12.
Lemma 3.13. Assume (1.3) , and let {T\in(0, T_{\max})} . Then there exists C(T) > 0 such that
\begin{equation*} \label{3-0-7} \|w(\cdot, t)\|_{W^{1, q}(\Omega)}\leq C(T). \end{equation*} |
Proof. Since the estimate of \|n\|_{L^\infty(\Omega)} in Lemma 3.12 has been obtained, we only need to use the Duhamel principle and the processing techniques similar to Lemma 3.11.
Proof of Theorem 1.1. For the two-dimensional Navier-Stokes case, applying the Lemmas 2.1 and 3.10–3.13, if T is finite, then using the extendability criterion, we can see that n, c, w and u are unbounded of their respective norms, which contradict the boundedness of our a prior estimates. Next, we will give the asymptotic behavior of the system (1.1) with logistic source. Finally, we give a priori estimates of the corresponding solution in the three-dimensional case.
For \mu_1 < 0 , we can obtain the decay estimates of the following.
Since \mu_1 < 0 and \mu_2 are nonnegative, we can easily obtain the corresponding global boundedness results of the system (1.1) by using the previous processing ways. Next, we give the corresponding large time behavior.
Lemma 4.1. Under the assumption of Lemma 3.10, there exist \theta\in(0, 1) and C = C(\chi, \mu_1, \mu_2, \mu_3, \alpha) > 0 , independent of t , such that
\begin{equation*} \label{4-0-1} \|u(\cdot, t)\|_{C^{2+\theta, 1+\frac{\theta}{2}}(\bar\Omega\times(0, \infty))}\leq C. \end{equation*} |
Proof. Applying the estimates obtained by Lemmas 3.10 and 3.12, and then combining with the standard Schauder estimate in [45], we arrive the proof.
Lemma 4.2. Under the assumption of Lemma 3.12, there is an C , independent of time t such that
\begin{equation*} \label{4-0-2} \|n(\cdot, t)\|_{W^{1, \infty}(\Omega)}\leq C. \end{equation*} |
Proof. Let {\bf{p}}: = \nabla n, \, {\bf{q}}: = \nabla{c} . We rewrite the first equation of (1.1) to obtain
\begin{equation*} \label{3-7} \frac{d}{dt}n(x, t) = \nabla\cdot\big(\nabla n-\chi n\nabla c-nu\big)+\mu_1 n-\mu_2 n^k : = \nabla\cdot a(x, t, {\bf{p}})+b(x, t)\quad(x, t, {\bf{p}})\in\Omega\times(0, +\infty)\times\mathbb{R}^N, \end{equation*} |
where a(x, t, {\bf{p}}) = {\bf{p}}-n\big(\chi\, {\bf q}-u\big) and b = \mu_1 n-\mu_2 n^k .
Using Lemmas 3.10–3.12 and 4.1, there exists C_{18} > 0 satisfying
\begin{equation*} \label{3-8} a(x, t, {\bf p})\cdot{\bf p} = |{\bf p}|^2-\chi n{\bf p}\cdot{\bf q}-nu\cdot{\bf p} \geq\frac{1}{2}|{\bf p}|^2-C_{18}|{\bf q}|^2-C_{18} \end{equation*} |
and
\begin{equation*} \label{3-9} |a(x, t, {\bf p})| = |{\bf{p}}-\chi n{\bf q}-nu|\leq|{\bf p}|+C_{18}{|{\bf q}|}+C_{18} \end{equation*} |
as well as
\begin{equation*} \label{3-10} |b(x, t)| = |\mu_1 n-\mu_2 n^k|\leq C_{18}. \end{equation*} |
Thanks to {\bf q}\in L^{\infty}(0, T; L^\infty(\Omega)) , it evident that \frac{1}{\infty}+\frac{N}{2\cdot\infty} = 0 < 1 . Apply the standard result on Hölder's regularity in scalar parabolic equation in ([40], Theorem 1.3) to get \|n\|_{C^{\theta, \frac{\theta}{2}}(\Omega\times(0, T))} bounded. Then the Lemma 4.2 now follows from ([23], Theorem IV. 5.3).
Next, we adapt the similar methods to obtain the following:
Lemma 4.3. Under the assumption of Lemmas 3.11 and 3.13, there is an C , independent of time t such that
\|c(\cdot, t)\|_{W^{1, \infty}(\Omega)}+\|w(\cdot, t)\|_{W^{1, \infty}(\Omega)}\leq C. |
Lemma 4.4. Assume that (1.3) holds. If \mu_1 < 0, \, \mu_2\geq0 , then there exist a constant c_1 , independent of time t such that
\begin{equation*} \label{4-0-3} \|n(\cdot, t)\|_{L^\infty(\Omega)}\leq c_1e^{\frac{\mu_1}{3}t}. \end{equation*} |
Proof. We integrate the first equation of (1.1) to obtain
\begin{equation} \frac{d}{dt}\int_\Omega n(\cdot, t)dx-\mu_1\int_\Omega n(\cdot, t)dx\leq0. \end{equation} | (4.1) |
Using the Gronwall's inequality for the Eq (4.1), we can see that
\begin{equation} \|n\|_{L^1(\Omega)}\leq m_0e^{\mu_1t}. \end{equation} | (4.2) |
Applying the Gagliardo-Nirenberg inequality, the Lemma 4.2 and the estimate (4.2), we have
\begin{equation} \|n\|_{L^\infty(\Omega)}\leq C_{GN}\big(\|n\|^{\frac{1}{3}}_{L^1(\Omega)}\|\nabla n\|^{\frac{2}{3}}_{L^\infty(\Omega)}+ \|n\|_{L^1(\Omega)}\big)\leq C_{19}e^{\frac{\mu_1}{3}t}. \end{equation} | (4.3) |
Thus, we complete the proof of the Lemma 4.4.
Lemma 4.5. Suppose that (1.3) holds. If \mu_1 < 0, \, \mu_2\geq0 , then there exist a constant c_2 , independent of time t such that
\begin{equation*} \label{4-0-4} \|c(\cdot, t)\|_{W^{1, q}(\Omega)}\leq c_2e^{\max\{\delta_2-1, \, \mu_1\}\cdot\frac{2}{3q}t} \quad\mathrm{and}\quad \|w(\cdot, t)\|_{W^{1, q}(\Omega)}\leq c_2e^{\max\{-1, \, \mu_1\}\cdot\frac{2}{3q}t}. \end{equation*} |
Proof. We integrate the first equation of (1.1) and (4.2) to deduce that
\begin{equation*} \label{4-4} \frac{d}{dt}\int_\Omega wdx+\int_\Omega wdx = \int_\Omega ndx\leq m_0e^{\mu_1t}. \end{equation*} |
Thus, using the Gronwall's inequality, we can obtain
\begin{equation} \int_\Omega w(\cdot, t)dx\leq \|w_0\|_{L^1(\Omega)}e^{-t} +\frac{m}{\mu_1+1}e^{\mu_1t}\leq C_{20}e^{\max\{-1, \, \mu_1\} t}. \end{equation} | (4.4) |
Similarly, using Hölder's inequality and Young's inequality, there exist a suitable small 0 < \delta_2\ll1 such that
\begin{equation*} \label{4-6} \frac{d}{dt}\int_\Omega cdx+\int_\Omega cdx\leq \mu_3\|c\|^\alpha_{L^1(\Omega)}\|w\|^{1-\alpha}_{L^1(\Omega)}\\ \leq\delta_2\|c\|_{L^1(\Omega)}+C_{21}\|w\|_{L^1(\Omega)}. \end{equation*} |
Thus, we use ODE argument to get
\begin{equation} \|c\|_{L^1(\Omega)}\leq C_{22}e^{\max\{\delta_2-1, \, \mu_1\}t}. \end{equation} | (4.5) |
Then, for all q > 1 we apply the Gagliardo-Nirenberg inequality to see that
\|c\|_{W^{1, q}(\Omega)}\leq C_{GN}\big(\|c\|^{\frac{2}{3q}}_{L^1(\Omega)}\|\nabla c\|^{\frac{3q-2}{3q}}_{L^{\infty}(\Omega)}+\|c\|_{L^1(\Omega)}\big) |
and
\|w\|_{W^{1, q}(\Omega)}\leq C_{GN}\big(\|w\|^{\frac{2}{3q}}_{L^1(\Omega)}\|\nabla w\|^{\frac{3q-2}{3q}}_{L^\infty(\Omega)}+\|w\|_{L^1(\Omega)}\big). |
Using the above two estimates and (4.4), (4.5) proves that the Lemma 4.5.
Lemma 4.6. Suppose (1.3) and \mu_1 < 0, \, \mu_2\geq0 hold, then there exist a constant c_3 , independent of time t such that
\begin{equation*} \label{4-0-5} \|u(\cdot, t)\|_{W^{1, \infty}(\Omega)}\leq c_3e^{-\delta_3t}. \end{equation*} |
Proof. Testing the Eq (1.1)_4 with u and using Poincaré's inequality and Young's inequality, we have
\begin{equation} \begin{aligned} \frac{1}{2}\frac{d}{dt}\int_\Omega|u|^2dx+\int_\Omega|\nabla u|^2dx& = \int_\Omega n\nabla\Phi\cdot u\\ &\leq\|{\nabla}\Phi\|_{L^\infty(\Omega)}\|u\|_{L^2(\Omega)}\|n\|_{L^2(\Omega)}\\ &\leq C_{23}\|\nabla u\|_{L^2(\Omega)}\|n\|_{L^2(\Omega)}\\ &\leq\frac{1}{2}\|\nabla u\|^2_{L^2(\Omega)}+\frac{C^2_{23}}{2}\|n\|^2_{L^2(\Omega)}. \end{aligned} \end{equation} | (4.6) |
And using Poincaré's inequality once more, there is a constant \tilde C_{23} > 0 such that
\begin{equation*} \label{4-8} \frac{d}{dt}\| u\|^2_{L^2(\Omega)}+{\tilde{C}_{23}}\|u\|^2_{L^2(\Omega)} \leq C^2_{23}\|n\|^2_{L^2(\Omega)}. \end{equation*} |
Using Gronwall's inequality and the Lemma 4.4, there exists a constant C_{24} > 0 fulfilling
\begin{equation*} \label{4-9} \| u\|_{L^2(\Omega)}\leq C_{24}e^{\max\left\{-\tilde{C}_{23}, \, \frac{\mu_1}{3}\right\}t}. \end{equation*} |
Then, applying the Gagliardo-Nirenberg inequality, this shows that
\|u\|_{W^{1, \infty}(\Omega)}\leq C_{GN}\big(\|u\|^{\frac{1}{3}}_{L^2(\Omega)}\|u\|^{\frac{2}{3}}_{W^{2, \infty}(\Omega)}+\|u\|_{L^2(\Omega)}\big)\leq C_{25}e^{\max\left\{-\frac{\tilde{C}_{23}}{3}, \, \frac{\mu_1}{9}\right\}t}. \quad\Box |
Lemma 4.7. Assume that (1.3) holds. If \mu_1 = 0, \, \mu_2 > 0 , then there exist a constant c_4 , independent of time t such that
\begin{equation*} \label{5-0-1} \|n(\cdot, t)\|_{L^\infty(\Omega)}\leq c_4e^{-\frac{1}{3}\mu_2|\Omega|^{\frac{1}{k-1}}\int^t_0\|n(\cdot, s)\|^{k-1}_{L^1(\Omega)}ds}. \end{equation*} |
Proof. We integrate the first equation of (1.1) to obtain
\begin{equation*} \label{5-1} \frac{d}{dt}\int_\Omega n(\cdot, t)dx+\mu_2\int_\Omega n^k(\cdot, t)dx = 0. \end{equation*} |
We use Hölder's inequality to deduce that
\begin{equation*} \label{5-2} \frac{d}{dt}\int_\Omega n(\cdot, t)dx+\mu_2|\Omega|^{\frac{1}{k-1}}\big(\int_\Omega n(\cdot, t)dx\big)^k\leq0. \end{equation*} |
We apply ODE argument to get
\begin{equation*} \|n(\cdot, t)\|_{L^1(\Omega)}\leq\|n_0\|_{L^1(\Omega)}e^{-\mu_2|\Omega|^{\frac{1}{k-1}}\int^t_0\|n(\cdot, s)\|^{k-1}_{L^1(\Omega)}ds}. \end{equation*} |
Similarly, using the inequality (4.3), we complete the proof of the Lemma 4.5.
Lemma 4.8. Suppose that (1.3) holds. If \mu_1 = 0, \, \mu_2 > 0 , then there exist a constant c_5 , independent of time t such that
\begin{equation*} \label{5-0-2} \|c(\cdot, t)\|_{W^{1, q}(\Omega)}\leq c_5e^{\max\left\{\delta_2-1, \, -\mu_2|\Omega|^{\frac{1}{k-1}}\int^t_0\|n(\cdot, s)\|^{k-1}_{L^1(\Omega)}ds\right\}\cdot\frac{2}{3q}t} \end{equation*} |
and
\begin{equation*} \label{5-0-3} \|w(\cdot, t)\|_{W^{1, q}(\Omega)}\leq c_5e^{\max\left\{-1, \, -\mu_2|\Omega|^{\frac{1}{k-1}}\int^t_0\|n(\cdot, s)\|^{k-1}_{L^1(\Omega)}ds\right\}\cdot\frac{2}{3q}t} \end{equation*} |
as well as
\begin{equation*} \label{5-0-4} \|u(\cdot, t)\|_{W^{1, \infty}(\Omega)}\leq c_5e^{-\delta_4t}. \end{equation*} |
Proof. The proof is completely similar to Lemmas 4.5 and 4.6, so we omit the details.
Next, we will give a priori estimates when \mu_1 > 0, \, \mu_2 > 0 .
Lemma 4.9. Assume that (1.3) holds. Then for all T > 0 there exist C(T) > 0 such that
\begin{equation} \|n(\cdot, t)\|_{L^1(\Omega)}\leq\max\left\{\|n_0\|_{L^1(\Omega)}, \, \left(\frac{\mu_1}{\mu_2}\right)^{\frac{1}{k-1}}|\Omega|\right\}. \end{equation} | (4.7) |
and
\begin{equation} \int^T_0\|n(\cdot, t)\|^k_{L^k(\Omega)}dt\leq C(T). \end{equation} | (4.8) |
Proof. We integrate the first equation of (1.1) to get
\begin{equation} \frac{d}{dt}\int_\Omega n(\cdot, t)dx = \mu_1\int_{\Omega}n(\cdot, t)dx-\mu_2\int_\Omega n^k(\cdot, t)dx. \end{equation} | (4.9) |
Applying ODE comparison, we have
\begin{equation} \|n(\cdot, t)\|_{L^1(\Omega)}\leq\|n_0\|_{L^1(\Omega)} \end{equation} | (4.10) |
or
\begin{equation} \mu_1\int_{\Omega}n(\cdot, t)dx > \mu_2\int_\Omega n^k(\cdot, t)dx\geq\mu_2|\Omega|^{1-k}\cdot\|n(\cdot, t)\|^k_{L^1(\Omega)}. \end{equation} | (4.11) |
Combining (4.10) with (4.11), this entails (4.7). Then, we integrate the two sides of Eq (4.9) to get (4.8).
Lemma 4.10. Suppose that (1.3) holds. Then for all T > 0 there exist C(T) > 0 such that
\begin{equation} \begin{aligned} \int_\Omega \left(c^2(x, t)+w^2(x, t)\right)dx\leq C(T) \end{aligned} \end{equation} | (4.12) |
and
\begin{equation} \begin{aligned} \int^T_0\int_\Omega\left(|\nabla c(x, t)|^2+|\nabla w(x, t)|^2\right)dxdt\leq C(T). \end{aligned} \end{equation} | (4.13) |
Proof. Using the inequality (3.8) and (3.11), and using Hölder's inequality and Young's inequality we have
\begin{equation} \begin{aligned} \frac{d}{dt}\int_{\Omega}c^2dx+2\int_\Omega|\nabla c|^2dx+\int_\Omega c^2dx\leq 2C_1\|w\|^2_{L^2(\Omega)}\\ \end{aligned} \end{equation} | (4.14) |
and
\begin{equation} \begin{aligned} \frac{d}{dt}\int_{\Omega}w^2dx+2\int_\Omega|\nabla w|^2dx+\int_\Omega w^2dx\leq\int_\Omega n^2dx \leq|\Omega|+\int_\Omega n^kdx. \end{aligned} \end{equation} | (4.15) |
We can get (4.12) and (4.13) by integrating (4.14) and (4.15) and using Lemma 4.9.
Lemma 4.11. If (1.3) holds, then for all T there exist C(T) > 0 such that
\begin{equation} \int_\Omega|u(\cdot, t)|^2dx\leq C(T) \end{equation} | (4.16) |
and
\begin{equation} \int^T_0\int_\Omega|\nabla u(\cdot, t)|^2dxdt\leq C(T). \end{equation} | (4.17) |
Proof. Applying the estimate of (4.6), we have
\begin{equation} \begin{aligned} \frac{d}{dt}\int_\Omega|u|^2dx+\int_\Omega|\nabla u|^2dx\leq C^2_{23}\|n\|^2_{L^2(\Omega)}. \end{aligned} \end{equation} | (4.18) |
Integrating both sides of (4.18) and applying the estimate of (4.8), we obtain (4.16) and (4.17).
The proof of the remaining part is completely similar to the processing of Lemmas 3.6–3.13, so we omit the details.
Next, we can use semigroup estimation to obtain the following prior estimates for the three-dimensional case.
Lemma 4.12. Suppose that (1.3) holds and let \gamma_0\in(\frac{1}{2}, \gamma]\subset(\frac{1}{2}, 1) . Then for all {T\in(0, T_{\max})} there exist C(T) > 0 and \theta > 0 such that
\begin{equation*} \label{7-0-1} \int_\Omega|A^{\gamma_0}u(\cdot, t)|^{\frac{22}{5}}dx\leq C(T) \end{equation*} |
and
\begin{equation*} \label{7-0-2} \|u(\cdot, t)\|_{C^\theta(\Omega)}\leq C(T). \end{equation*} |
Proof. Let \delta_0 = 0.1, \, \gamma_0 = 0.501\, , r_0 = 3, \, r_1 = 3.7, \, r_2 = 4.4 . We have 2\delta_0 > \frac{3}{2}(\frac{1}{r_0}-\frac{1}{r_1}) and \gamma_1: = \gamma_0+\delta_0+\frac{3}{2}(\frac{1}{r_1}-\frac{1}{r_2}) < \frac{2}{3} . Therefore, we use standard semigroup estimates, Hölder's inequality and (4.8) to deduce that
\begin{align*} \label{7-4} \|A^{\gamma_0}u(\cdot, t)\|_{L^{r_2}(\Omega)}& = \big\|A^{\gamma_0}\Big(e^{-tA}u_0+\int^t_0e^{-(t-s)A}\mathcal{P}\big(n(\cdot, s)\nabla\Phi\big)ds\Big)\big\|_{L^{r_2}(\Omega)}\\ &\leq\|e^{-tA}A^{\gamma_0}u_0\|_{L^{r_2}(\Omega)}+\int^t_0\|A^{\gamma_0+\delta_0}e^{-(t-s)A}A^{-\delta_0} \big(n(\cdot, s)\nabla\Phi\big)\|_{L^{r_2}(\Omega)}ds\\ &\leq\|A^{\gamma_0}u_0\|_{L^{r_2}(\Omega)}+C_{26}\int^t_0(t-s)^{-\gamma_0-\delta_0-\frac{3}{2}\times(\frac{1}{r_1}-\frac{1}{r_2})}e^{-\lambda_1(t-s)}\|A^{-\delta_0}n(\cdot, s)\|_{L^{r_1}(\Omega)}ds\\ &\leq C_{27}+C_{27}\int^t_0(t-s)^{-\gamma_1}\times e^{-\lambda_1(t-s)} \|n(\cdot, s)\|_{L^{3}(\Omega)}ds\\ &\leq C_{27}+C_{27}\int^t_0\|n(\cdot, s)\|^3_{L^{3}(\Omega)}ds\cdot\int^t_0(t-s)^{-\frac{3}{2}\gamma_1}\times e^{-\lambda_1(t-s)}ds\\ &\leq C_{28}\quad\mathrm{for\, \, all\, \, }t\in(0, T). \end{align*} |
Then, we apply the embedding D(A_{r_2}^{\gamma_0})\hookrightarrow C^\theta, \, 0 < \theta < 2\gamma_0-\frac{3}{r_2} to obtain the Lemma 4.12.
Lemma 4.13. Assume that (1.3) holds. Then for all {T\in(0, T_{\max})} there exist C(T) > 0 such that
\begin{equation*} \label{7-5} \int_\Omega|\nabla c(x, t)|^2dx\leq C(T) \end{equation*} |
and
\begin{equation*} \label{7-6} \int^T_0\int_\Omega|\Delta c(x, t)|^2dxdt\leq C(T). \end{equation*} |
Proof. We multiply the Eq (1.1)_2 with -\Delta c and use the integration by parts and Hölder's inequality to obtain
\begin{equation*} \begin{aligned} \frac{1}{2}\frac{d}{dt}\int_\Omega|\nabla c|^2dx+\int_\Omega|\nabla c|^2dx+\int_\Omega|\Delta c|^2dx & = \int_\Omega(u\cdot\nabla c)\Delta cdx-\mu_3\int_\Omega c^\alpha w^{1-\alpha}\Delta cdx\\ &\leq\frac{1}{2}\int_\Omega|\Delta c|^2dx+\|u\|^2_{L^\infty(\Omega)}\|\nabla c\|^2_{L^2(\Omega)}+\mu_3^2\|c\|^{2\alpha}_{L^2(\Omega)}\|w\|^{2(1-\alpha)}_{L^2(\Omega)}\\ &\leq\frac{1}{2}\int_\Omega|\Delta c|^2dx+\|u\|^2_{L^\infty(\Omega)}\|\nabla c\|^2_{L^2(\Omega)} +\frac{\mu^3_2}{2}\big(\|c\|^2_{L^2(\Omega)}+\|w\|^2_{L^2(\Omega)}\big). \end{aligned} \end{equation*} |
That is
\begin{equation} \begin{aligned} \frac{d}{dt}\int_\Omega|\nabla c|^2dx+2\int_\Omega|\nabla c|^2dx+\int_\Omega|\Delta c|^2dx \leq2\|u\|^2_{L^\infty(\Omega)}\|\nabla c\|^2_{L^2(\Omega)} +\mu^3_2\big(\|c\|^2_{L^2(\Omega)}+\|w\|^2_{L^2(\Omega)}\big). \end{aligned} \end{equation} | (4.19) |
Integrating the two sides of the inequality (4.19) and applying the Lemmas 4.10 and 4.12, we completely the proof of the Lemma 4.13.
Lemma 4.14. If (1.3) holds. Then for all {T\in(0, T_{\max})} there exist C(T) > 0 such that
\begin{equation} \int_\Omega|n(\cdot, t)|^2dx\leq C(T). \end{equation} | (4.20) |
Proof. We integrate the first equation of (1.1) and use the Höder's inequality and Young's inequality to get
\begin{equation} \begin{aligned} \frac{d}{dt}\int_\Omega n^2dx+2\int_\Omega|\nabla n|^2dx & = -\chi\int_\Omega n^2\Delta cdx+\mu_1\int_\Omega n^2dx-\mu_2\int_\Omega n^{k+1}dx\\ &\leq\frac{\chi^2}{4}\int_\Omega|\Delta c|^2dx+\int_\Omega n^4dx+\frac{\mu_2}{2}\int_\Omega n^{k+1}dx+C_{29}-\mu_2\int_\Omega n^{k+1}dx\\ &\leq\frac{\chi^2}{4}\int_\Omega|\Delta c|^2dx+C_{30}\quad\mathrm{for\, \, all\, \, }k > 3. \end{aligned} \end{equation} | (4.21) |
For k = 3 , using the same method, we can get
\begin{equation} \begin{aligned} &\frac{d}{dt}\int_\Omega n^2dx+2\int_\Omega|\nabla n|^2dx\\ &\leq\frac{\mu_2}{2}\int_\Omega n^4dx+\frac{\chi^2}{2\mu_2}\int_\Omega|\Delta c|^2dx +\frac{\mu_2}{2}\int_\Omega n^4dx+\frac{\mu_1^2}{2\mu_2}|\Omega|-\mu_2\int_\Omega n^{4}dx\\ &\leq\frac{\chi^2}{2\mu_2}\int_\Omega|\Delta c|^2dx+C_{31}. \end{aligned} \end{equation} | (4.22) |
By integrating the expressions of (4.21) or (4.22) and using the Lemma 4.13, the proof is complete.
Lemma 4.15. Assume that (1.3) holds. Then for all T > 0 there exist C(T) > 0 such that
\begin{equation*} \label{7-11} \int_\Omega|\nabla w(\cdot, s)|^2dx\leq C(T) \end{equation*} |
and
\begin{equation*} \label{7-12} \int^t_0\int_\Omega|\Delta w(\cdot, s)|^2dxdt\leq C(T). \end{equation*} |
Proof. Multiplying the Eq (1.1)_3 with -\Delta w and using Hölder's inequality, one has
\begin{equation} \begin{aligned} \frac{1}{2}\frac{d}{dt}\int_\Omega|\nabla w|^2dx+\int_\Omega|\nabla w|^2dx+\int_\Omega|\Delta w|^2dx & = \int_\Omega(u\cdot\nabla w)\Delta wdx-\int_\Omega n\Delta wdx\\ &\leq\frac{1}{2}\int_\Omega|\Delta w|^2dx+\|u\|^2_{L^\infty(\Omega)}\|\nabla w\|^2_{L^2(\Omega)}+\|n\|^2_{L^2(\Omega)}. \end{aligned} \end{equation} | (4.23) |
Integrating the two sides of (4.23) and applying the estimates (4.12) and (4.20), we complete the proof of the Lemma 4.15.
Lemma 4.16. If (1.3) holds. Then for all {T\in(0, T_{\max})} there exist C(T) > 0 such that
\begin{equation*} \label{7-14} \|c(\cdot, t)\|_{W^{1, q}(\Omega)}\leq C(T). \end{equation*} |
Proof. Applying the variation of constant formula of n , we have
\begin{align*} \|c(\cdot, t)\|_{L^\infty(\Omega)}&\leq \|e^{t(\Delta-1)}c_0\|_{L^\infty(\Omega)}+\int^t_0\big\|e^{(t-s)(\Delta-1)} \Big(\mu_3c^\alpha(\cdot, s)w^{1-\alpha}(\cdot, s)+\nabla\cdot\big(u(\cdot, s)c(\cdot, s)\big)\Big)\big\|_{L^\infty(\Omega)}ds\\ &\leq C_{32}+C_{32}\int^t_0\big(1+(t-s)^{-\frac{3}{4}}\big)\|c^\alpha(\cdot, s) w^{1-\alpha}(\cdot, s)\|_{L^2(\Omega)}ds\\ &\quad+C_{32}\int^t_0\big(1+(t-s)^{-\frac{7}{8}}\big)\|c(\cdot, s) u(\cdot, s)\|_{L^4(\Omega)}ds\\ &\leq C_{32}+C_{32}\big(\|c\|^\alpha_{L^2(\Omega)}\|w\|^{1-\alpha}_{L^2(\Omega)}+\|c\|_{W^{1, 2}(\Omega)}\big) \leq C_{33}. \end{align*} |
Then, we use the similar method of Lemma 3.11 to deduce that
\begin{align*} \label{7-15} \| c(\cdot, t)\|_{W^{1, q}(\Omega)}&\leq\|e^{t(\Delta-1)}c_0\|_{W^{1, q}(\Omega)}+\int^t_0\big\|e^{(t-s)(\Delta-1)} \Big(\mu_3c^\alpha(\cdot, s)w^{1-\alpha}(\cdot, s)+u(\cdot, s)\cdot\nabla c(\cdot, s)\Big)\big\|_{W^{1, q}(\Omega)}ds\\ &\leq C_{34}+C_{35}\int^t_0(1+(t-s)^{-\frac{3}{4}+\frac{3}{2q}})e^{-\lambda_1(t-s)}\|c^\alpha(\cdot, s)w^{1-\alpha}(\cdot, s)\|_{L^6(\Omega)}ds\\ &\quad+C_{35}\int^t_0\big\|(-\Delta+1)^{\kappa_4}e^{(t-s)(\Delta-1)}\nabla\cdot\Big(u(\cdot, s)c(\cdot, s)\Big)\big\|_{L^\infty(\Omega)}ds\\ &\leq C_{34}+C_{35}\|c(\cdot, s)\|^\alpha_{L^6(\Omega)}\|w(\cdot, s)\|^{1-\alpha}_{L^6(\Omega)}\int^t_0(1+(t-s)^{-\frac{3}{4}+\frac{3}{2q}})e^{-\lambda_1(t-s)}ds\\ &\quad+C_{36}\int^t_0(t-s)^{-\kappa_4-\frac{1}{2}-\delta_5}e^{-\lambda_1(t-s)}\|u(\cdot, s)c(\cdot, s)\|_{L^\infty(\Omega)}ds\\ &\leq C_{34}+C_{36}\|c\|^\alpha_{W^{1, 2}(\Omega)}\|w\|^{1-\alpha}_{W^{1, 2}(\Omega)} +C_{36}\int^t_0(t-s)^{-\kappa_4-\frac{1}{2}-\delta_5}e^{-\lambda_1(t-s)}\|u(\cdot, s)\|_{L^\infty(\Omega)} \|c(\cdot, s)\|_{L^\infty(\Omega)}ds\\ &\leq C_{37}\quad\mathrm{for\, \, all\, \, \, }q > 1, \, \kappa_4 > \frac{1}{2}-\frac{3}{2q}, \, 0 < \kappa_4+\delta_5 < \frac{1}{2}.\quad\Box \end{align*} |
Next, we give the estimates of n , and then apply them to obtain the estimate of w .
Lemma 4.17. Suppose that (1.3) holds. Then for all {T\in(0, T_{\max})} there is C(T) > 0 such that
\begin{equation*} \label{7-16} \|n(\cdot, t)\|_{L^\infty(\Omega)}\leq C(T). \end{equation*} |
Proof. Let M(T^\star): = \sup\limits_{t\in(0, T^\star)}\|n(\cdot, t)\|_{L^\infty(\Omega)} for all T^\star\in(0, T) and let t_0 = (t-1)_+ . Applying the variation of constant formula of n , we can see that
\begin{align*} \label{7-17} \|n(\cdot, t)\|_{L^\infty(\Omega)}&\leq\big\|e^{(t-t_0)\Delta}n(\cdot, t_0)-\int^t_{t_0}e^{(t-s)\Delta}\Big( \nabla\cdot\big(\chi n(\cdot, s)\nabla c(\cdot, s)+n(\cdot, s)u(\cdot, s)\big)ds+\mu_1n\Big)ds\big\|_{L^\infty(\Omega)}\\ &\leq C_{38}+\int^1_0(1+s^{-\frac{7}{8}})\|\chi n(\cdot, s)\nabla c(\cdot, s)+n(\cdot, s)u(\cdot, s)\|_{L^4(\Omega)}ds+\mu_1\int^1_0(1+s^{-\frac{3}{8}})\|n\|_{L^4(\Omega)}ds\\ &\leq C_{38}+\int^1_0(1+s^{-\frac{7}{8}})\Big(\chi\|n(\cdot, s)\|_{L^{20}(\Omega)}\|\nabla c(\cdot, s)\|_{L^5(\Omega)}+\|u(\cdot, s)\|_{L^\infty(\Omega)}\|n(\cdot, s)\|_{L^{4}(\Omega)}\Big)ds\\ &\quad+\mu_1\int^t_0(1+s^{-\frac{3}{8}})\|n(\cdot, s)\|^{\frac{1}{2}}_{L^2(\Omega)}\|n(\cdot, s)\|^{\frac{1}{2}}_{L^{\infty}(\Omega)}ds\\ &\leq C_{38}+C_{39}\Big(M^{\frac{9}{10}}(T^\star)+M^{\frac{1}{2}}(T^\star)\Big). \end{align*} |
Thus, using the Young's inequality, we obtain the result.
Lemma 4.18. Assume that (1.3) holds. Then for all {T\in(0, T_{\max})} there exist C(T) > 0 such that
\begin{equation*} \label{7-18} \|w(\cdot, t)\|_{W^{1, q}(\Omega)}\leq C(T). \end{equation*} |
Proof. Using the variation of constant formula of w and taking \delta_6 > 0 suitable small, we have
\begin{align*} \| w(\cdot, t)\|_{W^{1, q}(\Omega)}& = \|e^{t(\Delta-1)}w_0\|_{W^{1, q}(\Omega)}+\int^t_0\big\|e^{(t-s)(\Delta-1)} \Big(n+\nabla\cdot\big(u(\cdot, s)w(\cdot, s)\big)\Big)\big\|_{W^{1, q}(\Omega)}ds\\ &\leq C_{40}+C_{40}\int^t_0(1+(t-s)^{-\frac{1}{2}+\frac{3}{2q}})e^{-\lambda_1(t-s)}\|n(\cdot, s)\|_{L^\infty(\Omega)}ds\\ &\quad+C_{40}\int^t_0\|(-\Delta+1)^{\kappa_5}\nabla\cdot\big(u(\cdot, s)w(\cdot, s)\big)\|_{L^\infty(\Omega)}\\ &\quad+C_{40}\int^t_0(1+(t-s)^{-1+\frac{3}{2q}-\delta_6})e^{-\lambda_1(t-s)}\|u(\cdot, s)w(\cdot, s)\|_{L^\infty(\Omega)}ds\\ \end{align*} |
for all q > 1, \, \kappa_5 > \frac{1}{2}-\frac{3}{2q}, \, \delta_6 < \frac{3}{2q} .
Similar to Lemma 4.16, we get the proof of Lemma 4.18.
Proof of Theorem 1.1 for the three-dimensional case. Finally, we arrive at the proof of Theorem 1.1, using the estimates we obtained in Lemmas 4.16–4.18 and then using the extendability criterion.
Proof of Theorem 1.2. Based on the estimates collected in Lemmas 4.4–4.8, and the three-dimensional case is similar. We finish the proof.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The first author was supposed by Scientific Research Funds of Chengdu University under grant No. 2081921030. The second author was supposed by the NSFC Youth Fund under grant No. 12001384.
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
[1] | M. Lazarevic, Advanced topics on applications of fractional calculus on control problems, WSEAS Press, 2014. |
[2] |
A. Elsaid, M. S. Abdel Latif, M. Maneea, Similarity solutions of fractional order heat equations with variable coefficients, Miskolc Math. Notes, 17 (2016), 245–254. https://doi.org/10.18514/MMN.2016.1610 doi: 10.18514/MMN.2016.1610
![]() |
[3] |
K. K. Ali, M. Maneea, M. S. Mohamed, Solving nonlinear fractional models in superconductivity using the q-homotopy analysis transform method, J. Math., 2023 (2023), 6647375. https://doi.org/10.1155/2023/6647375. doi: 10.1155/2023/6647375
![]() |
[4] |
K. K. Ali, M. A. Maaty, M. Maneea, Optimizing option pricing: Exact and approximate solutions for the time-fractional Ivancevic model, Alex. Eng. J., 84 (2023), 59–70. https://doi.org/10.1016/j.aej.2023.10.066 doi: 10.1016/j.aej.2023.10.066
![]() |
[5] |
K. K. Ali, A. M. Wazwaz, M. Maneea, Efficient solutions for fractional Tsunami shallow-water mathematical model: A comparative study via semi analytical techniques, Chaos Soliton. Fract., 178 (2024), 114347. https://doi.org/10.1016/j.chaos.2023.114347 doi: 10.1016/j.chaos.2023.114347
![]() |
[6] |
F. Mirzaee, K. Sayevand, S. Rezaei, N. Samadyar, Finite difference and spline approximation for solving fractional stochastic advection-diffusion equation, Iran. J. Sci. Technol. Trans. Sci., 45 (2021), 607–617. https://doi.org/10.1007/s40995-020-01036-6 doi: 10.1007/s40995-020-01036-6
![]() |
[7] |
F. Mirzaee, N. Samadyar, Implicit meshless method to solve 2D fractional stochastic Tricomi-type equation defined on irregular domain occurring in fractal transonic flow, Numer. Meth. Part. Differ. Equ., 37 (2021), 1781–1799. https://doi.org/10.1002/num.22608 doi: 10.1002/num.22608
![]() |
[8] |
F. Mirzaee, S. Rezaei, N. Samadyar, Solving one-dimensional nonlinear stochastic Sine-Gordon equation with a new meshfree technique, Int. J. Numer. Model., 34 (2021), e2856. https://doi.org/10.1002/jnm.2856 doi: 10.1002/jnm.2856
![]() |
[9] | F. Mirzaee, S. Rezaei, N. Samadyar, Application of combination schemes based on radial basis functions and finite difference to solve stochastic coupled nonlinear time fractional sine-Gordon equations, Comp. Appl. Math., 41 (2022). https://doi.org/10.1007/s40314-021-01725-x |
[10] |
F. H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. Trans. R. Soc. Edinb., 46 (1909), 253–281. http://dx.doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
![]() |
[11] |
R. Askey, The q-Gamma and q-Beta functions, Appl. Anal., 8 (1978), 125–141. https://doi.org/10.1080/00036817808839221 doi: 10.1080/00036817808839221
![]() |
[12] |
M. H. Annaby, Z. S. Mansour, q-Taylor and interpolation series for Jackson q-difference operators, J. Math. Anal. Appl., 334 (2008), 472–483. https://doi.org/10.1016/j.jmaa.2008.02.033 doi: 10.1016/j.jmaa.2008.02.033
![]() |
[13] | M. H. Annaby, Z. S. Mansour, q-fractional calculus and equations, Springer-Verlag Berlin Heidelberg, 2012. https://doi.org/10.1007/978-3-642-30898-7 |
[14] |
Y. Sheng, T. Zhang, Some results on the q-calculus and fractional q-differential equations, Mathematics, 10 (2022), 64. https://doi.org/10.3390/math10010064 doi: 10.3390/math10010064
![]() |
[15] | S. Abbas, B. Ahmad, M. Benchohra, A. Salim, Fractional difference, differential equations, and inclusions, Elsevier, 2024. http://dx.doi.org/10.1016/C2023-0-00030-9 |
[16] |
T. Zhang, Q. X. Guo, The solution theory of the nonlinear q-fractional differential equations, Appl. Math. Lett., 104 (2020), 106282. https://doi.org/10.1016/j.aml.2020.106282 doi: 10.1016/j.aml.2020.106282
![]() |
[17] |
T. Zhang, Y. Z. Wang, The unique existence of solution in the q-integrable space for the nonlinear q-fractional differential equations, Fractals, 29 (2021), 2150050. https://doi.org/10.1142/S0218348X2150050X doi: 10.1142/S0218348X2150050X
![]() |
[18] |
M. El-Shahed, M. Gaber, Two-dimensional q-differential transformation and its application, Appl. Math. Comput., 217 (2011), 9165–9172. https://doi.org/10.1016/j.amc.2011.03.152 doi: 10.1016/j.amc.2011.03.152
![]() |
[19] | H. Jafari, A. Haghbtn, S. Hesam, D. Baleanu, Solving partial q-differential equations within reduced q-differential transformation method, Rom. Journ. Phys., 59 (2014), 399–407. https://shorturl.at/Y0kkT |
[20] |
M. O. Sadik, B. O. Orie, Application of q-calculus to the solution of partial q-differential equations, Appl. Math., 12 (2021), 669–678. https://doi.org/10.4236/am.2021.128047 doi: 10.4236/am.2021.128047
![]() |
[21] |
M. S. Semary, H. N. Hassan, The homotopy analysis method for q-difference equations, Ain Shams Eng. J., 9 (2018), 415–421. https://doi.org/10.1016/j.asej.2016.02.005 doi: 10.1016/j.asej.2016.02.005
![]() |
[22] |
G. C. Wu, Variational iteration method for q-difference equations of second order, J. Appl. Math., 2012 (2012), 102850. https://doi.org/10.1155/2012/102850 doi: 10.1155/2012/102850
![]() |
[23] | Y. X. Zeng, Y. Zeng, G. C. Wu, Application of the variational iteration method to the initial value problems of q-difference equations-some examples, Commun. Numer. Anal., 2013. http://dx.doi.org/10.5899/2013/cna-00180 |
[24] | P. Bhattacharya, R. Ranjan, Solution to Laplace's equation using quantum calculus, Int. J. Eng. Technol. Manag. Sci., 5 (2023). https://doi.org/10.46647/ijetms.2023.v07i05.066 |
[25] |
F. M. Atici, P. W. Eloe, Fractional q-calculus on a time scale, J. Nonlinear Math. Phy., 14(2007), 341–352. https://doi.org/10.2991/jnmp.2007.14.3.4 doi: 10.2991/jnmp.2007.14.3.4
![]() |
[26] |
M. El-Shahed, M. Gaber, M. Al-Yami, The fractional q-differential transformation and its application, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 42–55. https://doi.org/10.1016/j.cnsns.2012.06.016 doi: 10.1016/j.cnsns.2012.06.016
![]() |
[27] |
L. Chanchlani, S. Alha, J. Gupta, Generalization of Taylor's formula and differential transform method for composite fractional q-derivative, Ramanujan J., 48 (2019), 21–32. https://doi.org/10.1007/s11139-018-9997-7 doi: 10.1007/s11139-018-9997-7
![]() |
[28] |
B. Madhavi, G. Suresh Kumar, S. Nagalakshmi, T. S. Rao, Generalization of homotopy analysis method for q-fractional non-linear differential equations, Int. J. Anal. Appl., 22 (2024), 22. https://doi.org/10.28924/2291-8639-22-2024-22 doi: 10.28924/2291-8639-22-2024-22
![]() |
[29] |
J. X. Li, Y. Yan, W. Q. Wang, Secondary resonance of a cantilever beam with concentrated mass under time delay feedback control, Appl. Math. Model., 135 (2024), 131–148. https://doi.org/10.1016/j.apm.2024.06.039 doi: 10.1016/j.apm.2024.06.039
![]() |
[30] | M. S. Stankovic, P. M. Rajkovic, S. D. Marinkovic, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discret. Math., 1 (2007), 311–323. |
[31] | M. S. Stankovic, P. M. Rajkovic, S. D. Marinkovic, On q-fractional deravtives of Riemann-Liouville and Caputo type, arXiv, 2009. https://doi.org/10.48550/arXiv.0909.0387 |
[32] |
T. Abdeljawad, D. Baleanu, Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4682–4688. https://doi.org/10.1016/j.cnsns.2011.01.026 doi: 10.1016/j.cnsns.2011.01.026
![]() |
[33] |
T. Ernst, On various formulas with q-integralsand their applications to q-hypergeometric functions, Eur. J. Pure Appl. Math., 13 (2020), 1241–1259. https://doi.org/10.29020/nybg.ejpam.v13i5.3755 doi: 10.29020/nybg.ejpam.v13i5.3755
![]() |
[34] | S. Liao, Beyond perturbation: Introduction to the homotopy analysis method, CRC Press, 2003. https://doi.org/10.1201/9780203491164 |
[35] |
S. J. Liao, An optimal homotopy-analysis approach for strongly nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 2003–2016. https://doi.org/10.1016/j.cnsns.2009.09.002 doi: 10.1016/j.cnsns.2009.09.002
![]() |
[36] |
M. G. Sakar, F. Erdogan, The homotopy analysis method for solving the time-fractional Fornberg-Whitham equation and comparison with Adomians decomposition method, Appl. Math. Model., 37 (2013), 8876–8885. https://doi.org/10.1016/j.apm.2013.03.074 doi: 10.1016/j.apm.2013.03.074
![]() |
[37] |
K. K. Ali, M. Maneea, Optical solitons using optimal homotopy analysis method for time-fractional (1+1)-dimensional coupled nonlinear Schrodinger equations, Optik, 283 (2023), 170907. https://doi.org/10.1016/j.ijleo.2023.170907 doi: 10.1016/j.ijleo.2023.170907
![]() |
[38] |
M. Shqair, A. El-Ajou, M. Nairat, Analytical solution for multi-energy groups of neutron diffusion equations by a residual power series method, Mathematics, 7 (2019), 633. https://doi.org/10.3390/math7070633 doi: 10.3390/math7070633
![]() |
[39] |
Z. Y. Fan, K. K. Ali, M. Maneea, M. Inc, S. W. Yao, Solution of time fractional Fitzhugh-Nagumo equation using semi analytical techniques, Results Phys., 51 (2023), 106679. https://doi.org/10.1016/j.rinp.2023.106679 doi: 10.1016/j.rinp.2023.106679
![]() |
1. | Kun Zhang, Zhao Li, Jiangping Cao, Qualitative analysis and modulation instability for the extended (3+1)-dimensional nonlinear Schrödinger equation with conformable derivative, 2024, 61, 22113797, 107713, 10.1016/j.rinp.2024.107713 | |
2. | Yong Wu, Miguel Vivas-Cortez, Hamood Ur Rehman, El-Sayed M. Sherif, Abdul Rashid, Bifurcation study, phase portraits and optical solitons of dual-mode resonant nonlinear Schrodinger dynamical equation with Kerr law non-linearity, 2024, 10, 24058440, e34416, 10.1016/j.heliyon.2024.e34416 | |
3. | Chunyan Liu, Zhao Li, The Dynamical Behavior Analysis and the Traveling Wave Solutions of the Stochastic Sasa–Satsuma Equation, 2024, 23, 1575-5460, 10.1007/s12346-024-01022-y | |
4. | Jie Luo, Traveling wave solution and qualitative behavior of fractional stochastic Kraenkel–Manna–Merle equation in ferromagnetic materials, 2024, 14, 2045-2322, 10.1038/s41598-024-63714-4 | |
5. | Jie Wu, Yujie Huang, Boundedness of Solutions for an Attraction–Repulsion Model with Indirect Signal Production, 2024, 12, 2227-7390, 1143, 10.3390/math12081143 | |
6. | Jie Luo, Dynamical behavior analysis and soliton solutions of the generalized Whitham–Broer–Kaup–Boussineq–Kupershmidt equations, 2024, 60, 22113797, 107667, 10.1016/j.rinp.2024.107667 | |
7. | Jin Wang, Zhao Li, A Dynamical Analysis and New Traveling Wave Solution of the Fractional Coupled Konopelchenko–Dubrovsky Model, 2024, 8, 2504-3110, 341, 10.3390/fractalfract8060341 | |
8. | Jie Luo, Zhao Li, Dynamic Behavior and Optical Soliton for the M-Truncated Fractional Paraxial Wave Equation Arising in a Liquid Crystal Model, 2024, 8, 2504-3110, 348, 10.3390/fractalfract8060348 | |
9. | Chunyan Liu, The chaotic behavior and traveling wave solutions of the conformable extended Korteweg–de-Vries model, 2024, 22, 2391-5471, 10.1515/phys-2024-0069 | |
10. | Zhao Li, Shan Zhao, Bifurcation, chaotic behavior and solitary wave solutions for the Akbota equation, 2024, 9, 2473-6988, 22590, 10.3934/math.20241100 | |
11. | Adil Jhangeer, , Dynamics and wave analysis in longitudinal motion of elastic bars or fluids, 2024, 15, 20904479, 102907, 10.1016/j.asej.2024.102907 | |
12. | Mohammed F. Shehab, Mohamed M.A. El-Sheikh, Hamdy M. Ahmed, A.A. El-Gaber, Soliman Alkhatib, Effects of Wiener process on analytical wave solutions for (3+1) dimensional nonlinear Schrödinger equation using modified extended mapping method, 2024, 56, 22113797, 107297, 10.1016/j.rinp.2023.107297 | |
13. | Chunyan Liu, Zhao Li, The dynamical behavior analysis of the fractional perturbed Gerdjikov–Ivanov equation, 2024, 59, 22113797, 107537, 10.1016/j.rinp.2024.107537 | |
14. | Musong Gu, Jiale Li, Fanming Liu, Zhao Li, Chen Peng, Propagation of traveling wave solution of the strain wave equation in microcrystalline materials, 2024, 22, 2391-5471, 10.1515/phys-2024-0093 | |
15. | Zhao Li, Chunyan Liu, Chaotic pattern and traveling wave solution of the perturbed stochastic nonlinear Schrödinger equation with generalized anti-cubic law nonlinearity and spatio-temporal dispersion, 2024, 56, 22113797, 107305, 10.1016/j.rinp.2023.107305 | |
16. | Musong Gu, Chen Peng, Zhao Li, Traveling wave solution of (3+1)-dimensional negative-order KdV-Calogero-Bogoyavlenskii-Schiff equation, 2024, 9, 2473-6988, 6699, 10.3934/math.2024326 | |
17. | Ziyad A. Alhussain, Exploring multi-soliton patterns, bifurcation analysis, and chaos in (2+1) dimensions: A study on nonlinear dynamics, 2024, 15, 20904479, 102917, 10.1016/j.asej.2024.102917 | |
18. | Chun Huang, Zhao Li, New soliton solutions of the conformal time derivative generalized q -deformed sinh-Gordon equation, 2024, 9, 2473-6988, 4194, 10.3934/math.2024206 | |
19. | Zhao Li, Qualitative analysis and explicit solutions of perturbed Chen–Lee–Liu equation with refractive index, 2024, 60, 22113797, 107626, 10.1016/j.rinp.2024.107626 | |
20. | Abdullah A. Zaagan, Ali Altalbe, Ahmet Bekir, Dynamical analysis and soliton solutions of a variety of quantum nonlinear Zakharov–Kuznetsov models via three analytical techniques, 2024, 12, 2296-424X, 10.3389/fphy.2024.1427827 | |
21. | Lanre Akinyemi, Francis Erebholo, Valerio Palamara, Kayode Oluwasegun, A Study of Nonlinear Riccati Equation and Its Applications to Multi-dimensional Nonlinear Evolution Equations, 2024, 23, 1575-5460, 10.1007/s12346-024-01137-2 | |
22. | Tianxiu Lu, Lu Tang, Yuanlin Chen, Caiwen Chen, Dynamical behaviors, chaotic pattern and multiple optical solitons for coupled stochastic Schrödinger–Hirota system in magneto-optic waveguides with multiplicative white noise via Itô calculus, 2024, 60, 22113797, 107679, 10.1016/j.rinp.2024.107679 | |
23. | Ali Altalbe, Aigul Taishiyeva, Ratbay Myrzakulov, Ahmet Bekir, Abdullah A. Zaagan, Effect of truncated M-fractional derivative on the new exact solitons to the Shynaray-IIA equation and stability analysis, 2024, 57, 22113797, 107422, 10.1016/j.rinp.2024.107422 | |
24. | Zhao Li, Ejaz Hussain, Qualitative analysis and optical solitons for the (1+1)-dimensional Biswas-Milovic equation with parabolic law and nonlocal nonlinearity, 2024, 56, 22113797, 107304, 10.1016/j.rinp.2023.107304 | |
25. | Muhammad Usman, Akhtar Hussain, Ahmed M. Zidan, Abdullah Mohamed, Invariance properties of the microstrain wave equation arising in microstructured solids, 2024, 58, 22113797, 107458, 10.1016/j.rinp.2024.107458 | |
26. | Muhammad Nadeem, Omar Abu Arqub, Ali Hasan Ali, Husam A. Neamah, Bifurcation, chaotic analysis and soliton solutions to the (3+1)-dimensional p-type model, 2024, 107, 11100168, 245, 10.1016/j.aej.2024.07.032 | |
27. | Jie Luo, Dynamical analysis and the soliton solutions of (2+1)-dimensional Heisenberg ferro-magnetic spin chains model with beta fractional derivative, 2024, 14, 2045-2322, 10.1038/s41598-024-68153-9 | |
28. | Da Shi, Zhao Li, New soliton solutions of the conformable time fractional Drinfel'd–Sokolov–Wilson equation based on the complete discriminant system method, 2024, 22, 2391-5471, 10.1515/phys-2024-0099 | |
29. | Xueke Chen, Zhongping Li, Boundedness in the 3D Keller–Segel–Stokes system with nonlinear diffusion and indirect signal production, 2025, 76, 0044-2275, 10.1007/s00033-024-02401-w | |
30. | Lu Tang, Qualitative Analysis, Chaotic Behavior and Optical Solitons Perturbation for the Coupled Fokas-Lenells System in Birefringent Fibers, 2025, 24, 1575-5460, 10.1007/s12346-024-01213-7 | |
31. | Chunru Li, Xuesong Yuan, Yu Gong, Dynamic analysis of a Solow-Swan model with capital-induced labor migration, 2025, 03784754, 10.1016/j.matcom.2025.02.021 |