In this article, we test whether solutions of second-order delay functional differential equations oscillate. The considered equation is a general case of several important equations, such as the linear, half-linear, and Emden-Fowler equations. We can construct strict criteria by inferring new qualities from the positive solutions to the problem under study. Furthermore, we can incrementally enhance these characteristics. We can use the criteria more than once if they are unsuccessful the first time thanks to their iterative nature. Sharp criteria were obtained with only one condition that guarantees the oscillation of the equation in the canonical and noncanonical forms. Our oscillation results effectively extend, complete, and simplify several related ones in the literature. An example was given to show the significance of the main results.
Citation: Amira Essam, Osama Moaaz, Moutaz Ramadan, Ghada AlNemer, Ibrahim M. Hanafy. Improved results for testing the oscillation of functional differential equations with multiple delays[J]. AIMS Mathematics, 2023, 8(11): 28051-28070. doi: 10.3934/math.20231435
[1] | Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880 |
[2] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[3] | Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704 |
[4] | Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155 |
[5] | Dumitru Baleanu, S. Hemalatha, P. Duraisamy, P. Pandiyan, Subramanian Muthaiah . Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdélyi-Kober integral conditions. AIMS Mathematics, 2021, 6(12): 13004-13023. doi: 10.3934/math.2021752 |
[6] | Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686 |
[7] | Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052 |
[8] | M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045 |
[9] | Nichaphat Patanarapeelert, Jiraporn Reunsumrit, Thanin Sitthiwirattham . On nonlinear fractional Hahn integrodifference equations via nonlocal fractional Hahn integral boundary conditions. AIMS Mathematics, 2024, 9(12): 35016-35037. doi: 10.3934/math.20241667 |
[10] | Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176 |
In this article, we test whether solutions of second-order delay functional differential equations oscillate. The considered equation is a general case of several important equations, such as the linear, half-linear, and Emden-Fowler equations. We can construct strict criteria by inferring new qualities from the positive solutions to the problem under study. Furthermore, we can incrementally enhance these characteristics. We can use the criteria more than once if they are unsuccessful the first time thanks to their iterative nature. Sharp criteria were obtained with only one condition that guarantees the oscillation of the equation in the canonical and noncanonical forms. Our oscillation results effectively extend, complete, and simplify several related ones in the literature. An example was given to show the significance of the main results.
Differential equations of arbitrary order have been shown to be useful in the study of models of many phenomena in various fields such as: Electrochemistry and material science, they are in fact described by differential equations of fractional order [9,10,15,16,25,26,27,28,29]. For more details, we refer the reader to the books of Hilfer [30], Podlubny [31], Kilbas et al. [34], Miller and Ross [2] and to the following research papers [1,2,3,4,5,6,7,8,11,12,14,16,17,19,20,24,31,35,36,37,38,39,40,41,42]. In this work, we discuss the existence and uniqueness of the solutions for multi-point boundary value problems of nonlinear fractional differential equations with two Riemann-Liouville fractionals:
{Dαx(t)=∑mi=1fi(t,x(t),y(t),φ1x(t),ϕ1y(t)),α∈]1,2],t∈[0,T]Dβy(t)=∑mi=1gi(t,x(t),y(t),φ2x(t),ϕ2y(t)),β∈]1,2],t∈[0,T]I2−αx(0)=0, Dα−2x(T)=θIα−1(x(η)), 0<η<T,I2−βy(0)=0, Dβ−2x(T)=ωIβ−1(x(γ)), 0<γ<T, | (1.1) |
where D(.), I(.) denote the Riemann-Liouville derivative and integral of fractional order (.), respectively, fi, gi:[0,T]×R4→R, i=1,⋯,m are continuous functions on [0,T] and
(φ1x)(t)=∫t0A′1(t,s)x(s)ds, (ϕ1y)(t)=∫t0B′1(t,s)y(s)ds, |
(φ2x)(t)=∫t0A′2(t,s)x(s)ds, (ϕ1y)(t)=∫t0B′2(t,s)y(s)ds, |
with Ai and Bi being continuous functions on [0,1]×[0,1]. However, it is rare to find a work in nonlinear term fi depends on fractional derivative of unknown functions x(t),y(t),φ1x(t),ϕ1y(t) and solutions for multi-order fractional differential equations on the infinite interval [0,T). Motivated by [8,11,12,13,14] and the references therein, we consider the existence and unicity of solution for multi-order fractional differential equations on infinite interval [0,T).
The rest of this paper is organized as follow. In section 2, we present some preliminaries and lemmas. Section 3 is dedicated to showing the existence of a solution for problem (1.1). Finally, section 4 illustrated the proposed results with two examples.
Remark 1.1. This work generalizes the work of Houas and Benbachir [14] on different boundary conditions and for another type of integral.
This section covers the basic concepts of Riemann-Liouville type fractional calculus that will be used throughout this paper.
Definition 2.1. [31,32] The Riemann-Liouville fractional integral operator of order α≥0, of a function f:(0,∞)→R is defined as
{Jαf(t)=1Γ(α)∫t0(t−τ)α−1f(τ)dτ,J0f(t)=f(t), |
where Γ(α):=∫∞0e−uuα−1du.
Definition 2.2. [31,32] The Riemann-Liouville fractional derivative of order α>0, of a continuous function h:(0,∞)→R is defined as
Dαh(t)=1Γ(n−α)(ddt)n∫t0(t−τ)n−α−1h(τ)dτ=(ddt)nIn−αh(τ), |
where n=[α]+1.
For α<0, we use the convention that Dαh=J−αh. Also for 0≤ρ<α, it is valid that DρJαh=hα−ρ. We note that for ε>−1 and ε≠α−1,α−2,...,α−n, we have
Dαtε=Γ(ε+1)Γ(ε−α+1)tε−α,Dαtα−i=0, i=1,2,...,n. |
In particular, for the constant function h(t)=1, we obtain
Dα1=1Γ(1−α)t−α,α∉N. |
For α∈N, we obtain, of course, Dα1=0 because of the poles of the gamma function at the points 0,−1,−2,... For α>0, the general solution of the homgeneous equation Dαh(t)=0 in C(0,T)∩L(0,T) is
h(t)=c0tα−n+c1tα−n−1+......+cn−2tα−2+cn−1tα−1, |
where ci,i=1,2,....,n−1, are arbitrary real constants. Further, we always have DαIαh=h, and
DαIαh(t)=h(t)+c0tα−n+c1tα−n−1+......+cn−2tα−2+cn−1tα−1. |
Lemma 2.1. [33] Let E be Banach space. Assume that T:E⟶E is a completely continuous operator. If the set V={x∈E:x=μTx, 0<μ<1} is bounded, then T has a fixed point in E.
To define the solution for problem (1.1). We consider the following lemma.
Lemma 2.2. Suppose that (Hi)i=1,…,m⊂C([0,1],R), and consider the problem
Dαh(t)−m∑i=1Hi(t)=0, t∈j, 1<α<2, m∈N∗, | (2.1) |
with the conditions
I2−αh(0)=0, Dα−2h(T)=θIα−1(h(η)), 0<η<T. | (2.2) |
Then we have
h(t)=1Γ(α)m∑i=1∫t0(t−τ)α−1Hi(τ)dτ+tα−1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ) |
with ψ=θΓ(α)Γ(2α−1)η2α−2−Γ(α)T.
Proof. We have
h(t)=m∑i=1IαHi(t)+c0tα−2+c1tα−1, |
where ci∈R, i=0,1.
We obtain
I2−αh(τ)=m∑i=1I2Hi(τ)+c0I2−ατα−2+c1I2−ατα−1=m∑i=1I2Hi(τ)+c0+c1τ,Iα−1h(τ)=m∑i=1I2α−1Hi(τ)+c0Iα−1τα−2+c1Iα−1τα−1=m∑i=1I2α−1Hi(τ)+c0Γ(α−1)Γ(2α−2)τ2α−3+c1Γ(α)Γ(2α−1)τ2α−2,Dα−2h(τ)=m∑i=1I2Hi(τ)+c0Γ(α−1)+c1Γ(α)τ. |
Using the given conditions: I2−αh(0)=0, we find that c0=0, and since Dα−2h(T)−θIα−1(h(η))=0, we have
m∑i=1I2hi(T)+c1Γ(α)T−θ[m∑i=1I2α−1hi(η)+c1Γ(α)Γ(2α−1)η2α−2]=0, |
then
c1[Γ(α)Γ(2α−1)η2α−2−Γ(α)T]=m∑i=1I2hi(T)−θm∑i=1I2α−1hi(η) |
and
c1=1ψ(m∑i=1I2Hi(T)−θm∑i=1I2α−1Hi(η))=1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ) |
with
ψ=θΓ(α)Γ(2α−1)η2α−2−Γ(α)T. |
Finally, the solution of (2.1) and (2.2) is
h(t)=1Γ(α)m∑i=1∫t0(t−τ)α−1Hi(τ)dτ+tα−1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ). |
We denote by
E={x,y∈C([0,T],R);φix,ϕiy∈C([0,T],R) i=1,2}, |
and the Banach space of all continuous functions from [0,T] to R endowed with a topology of uniform convergence with the norm defined by
||(x,y)||E=max(||x||,||y||,||φ1x||,||ϕ1y||,||φ2x||,||ϕ2y||), |
where
||x||=supt∈j|φix(t)|,||y||=supt∈j|y(t)|,||ϕix||=supt∈j|φix(t)|,||ϕiy||=supt∈j|ϕiy(t)|. |
In this section, we prove some existence and uniqueness results to the nonlinear fractional coupled system (1.1).
For the sake of convenience, we impose the following hypotheses:
(H1) For each i=1,2,⋯,m, the functions fi and gi :[0,T]×R4⟶R are continuous.
(H2) There exist nonnegative real numbers ξik,φik,k=1,2,3,4,i=1,2,⋯,m, such that for all t∈[0,T] and all (x1,x2,x3,x4), (y1,y2,y3,y4)∈R4, we have
|fi(t,x1,x2,x3,x4)−fi(t,y1,y2,y3,y4)|≤4∑k=1 ξik|xk−yk|, |
and
|gi(t,x1,x2,x3,x4)−gi(t,y1,y2,y3,y4)|≤4∑k=1 χik|xk−yk|. |
(H3) There exist nonnegative constants (Li) and (Ki) i=1,...,m, such that: For each t∈[0,T] and all (x1,x2,x3,x4)∈R4,
|fi(t,x1,x2,x3,x4)|≤Li,|gi(t,x1,x2,x3,x4)|≤Ki,i=1,...,m. |
We also consider the following quantities:
A1=TαΓ(α+1)m∑i=1(ξi1+ξi2+ξi3+ξi4),A2=TβΓ(β+1)m∑i=1(χi1+χi2+χi3+χi4),A3=maxt,s∈[0,1]||A′1(t,s)||×A1,A4=maxt,s∈[0,1]||A′2(t,s)||×A1,A5=maxt,s∈[0,1]||B′1(t,s)||×A2,A6=maxt,s∈[0,1]||B′2(t,s)||×A2,ν1=[TαΓ(α+1)+1ψ(Tα+12+θT3α−2(2α−1)2Γ(2α−1))],ν2=[TβΓ(β+1)+1ψ′(Tβ+12+ωT3β−2(2β−1)2Γ(2β−1))],ν3=maxt,s∈[0,1]|A′1(t,s)|ν1,ν4=maxt,s∈[0,1]|A′2(t,s)|ν1,ν5=maxt,s∈[0,1]|B′1(t,s)|ν2,ν6=maxt,s∈[0,1]|B′2(t,s)|ν2. |
The first result is based on Banach contraction principle. We have
Theorem 3.1. Assume that (H2) holds. If the inequality
max(A1,A2,A3,A4,A5,A6)<1, | (3.1) |
is valid, then the system (1.1) has a unique solution on [0,T].
Proof. We define the operator T:E⟶E by
T(x,y)(t)=(T1(x,y)(t),T2(x,y)(t)),t∈[0,T], |
such that
T1(x,y)(t)=1Γ(α)m∑i=1∫t0(t−τ)α−1Hi(τ)dτ+tα−1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ) | (3.2) |
and
T2(x,y)(t)=1Γ(β)m∑i=1∫t0(t−τ)β−1Gi(τ)dτ+tβ−1ψ′(m∑i=1∫T0(T−τ)Gi(τ)dτ−ωΓ(2β)m∑i=1∫γ0(γ−τ)2β−2Gi(τ)dτ) | (3.3) |
where
Hi(τ)=fi(τ,x(τ),y(τ),φ1x(τ),ϕ1y(τ)) |
and
Gi(τ)=gi(τ,x(τ),y(τ),φ2x(τ),ϕ2y(τ)). |
We obtain
φiT1(x,y)(t)=∫t0Ai(t,s)T1(x,y)(s)ds, ϕiT2(x,y)(t)=∫t0Bi(t,s)T2(x,y)(s)ds |
where i=1,2.
We shall now prove that T is contractive.
Let T1(x1,y1),T2(x2,y2)∈E. Then, for each t∈[0,T], we have
|T1(x1,y1)−T1(x2,y2)|≤[1Γ(α)m∑i=1∫t0(t−τ)α−1dτ+tα−1ψ(m∑i=1∫T0(T−τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2dτ)]×maxτ∈[0,T]m∑i=1|(fi(τ,x1(τ),y1(τ),φ1x1(τ),ϕ1y1(τ))−fi(τ,x2(τ),y2(τ),φ1x2(τ),ϕ1y2(τ)))|≤TαΓ(α+1)maxτ∈[0,T]m∑i=1|(fi(τ,x1(τ),y1(τ),φ1x1(τ),ϕ1y1(τ))−fi(τ,x2(τ),y2(τ),φ1x2(τ),ϕ1y2(τ)))|. |
By (H2), it follows that
||T1(x1,y1)−T1(x2,y2)||≤TαΓ(α+1)m∑i=1(ξi1+ξi2+ξi3+ξi4)×max(||x1−x2||,||y1−y2||,||φ1(x1−x2)||,||φ2(x1−x2)||,||ϕ1(y1−y2)||,||ϕ2(y1−y2)||). |
Hence,
||T1(x1,y1)−T1(x2,y2)||≤A1||x1−x2,y1−y2||E. | (3.4) |
With the same arguments as before, we can show that
||T2(x1,y1)−T2(x2,y2)||≤A2||x1−x2,y1−y2||E. | (3.5) |
On the other hand, we have
||φ1(T1(x1,y1)−T1(x2,y2))||≤∫t0||A′1(t,s)||||T1(x1,y1)−T1(x2,y2)||ds≤maxt,s∈[0,1]||A′1(t,s)||×A1||x1−x2,y1−y2||E. |
Hence,
||φ1(T1(x1,y1)−T1(x2,y2))||≤A3||x1−x2,y1−y2||E | (3.6) |
and
||φ2(T1(x1,y1)−T1(x2,y2))||≤A4||x1−x2,y1−y2||E. | (3.7) |
Also, we have
||ϕ1(T2(x1,y1)−T2(x2,y2))||≤A5||x1−x2,y1−y2||E | (3.8) |
and
||ϕ2(T2(x1,y1)−T2(x2,y2))||≤A6||x1−x2,y1−y2||E. | (3.9) |
Thanks to (3.4)–(3.9), we get
||T(x1,y1)−T(x2,y2)||≤max(A1,A2,A3,A4,A5,A6)×||(x1−x2,y1−y2)||E. | (3.10) |
Thanks to (3.10), we conclude that T is a contractive operator. Therefore, by Banach fixed point theorem, T has a unique fixed point which is the solution of the system (1.1).
Our second main result is based on Lemma 2.1. We have
Theorem 3.2. Assume that the hypotheses (H1) and (H3) are satisfied. Then, system (1.1) has at least a solution on [0,T].
Proof. The operator T is continuous on E in view of the continuity of fi and gi (hypothesis (H1)).
Now, we show that T is completely continuous:
(i) First, we prove that T maps bounded sets of E into bounded sets of E. Taking λ>0, and (x,y)∈Ωλ={(x,y)∈E;||(x,y)||≤λ}, then for each t∈[0,T], we have:
|T1(x,y)|≤[1Γ(α)∫t0(t−τ)α−1dτ+tα−1ψ(∫T0(T−τ)dτ−θΓ(2α)∫η0(η−τ)2α−2dτ)]×supt∈[0,T]m∑i=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|≤[TαΓ(α+1)+1ψ(Tα+12+θT3α−2(2α−1)2Γ(2α−1))]×supt∈[0,T]m∑i=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|, |
Thanks to (H3), we can write
||T1(x,y)||≤[TαΓ(α+1)+1ψ(Tα+12+θT3α−2(2α−1)2Γ(2α−1))]m∑i=1Li. |
Thus,
||T1(x,y)||≤ν1m∑i=1Li. | (3.11) |
As before, we have
||T2(x,y)||≤ν2m∑i=1Ki. | (3.12) |
On the other hand, for all j=1,2, we get
|ϕjT1(x,y)(t)|=|∫t0A′j(t,s)T1(x,y)(s)ds|≤maxt,s∈[0,1]|A′j(t,s)|ν1m∑i=1Li. |
This implies that
||ϕ1T1(x,y)(t)||≤ν3m∑i=1Li, | (3.13) |
||ϕ2T1(x,y)(t)||≤ν4m∑i=1Li. | (3.14) |
Similarly, we have
||φ1T2(x,y)(t)||≤ν5m∑i=1Ki, | (3.15) |
||φ2T2(x,y)(t)||≤ν6m∑i=1Ki. | (3.16) |
It follows from (3.11)–(3.16) that:
||T(x,y)||E≤max(ν1m∑i=1Li,ν2m∑i=1Ki,ν3m∑i=1Li,ν4m∑i=1Li,,ν5m∑i=1,ν6m∑i=1). |
Thus,
||T(x,y)||E<∞. |
(ii) Second, we prove that T is equi-continuous:
For any 0≤t1<t2≤T and (x,y)∈Ωλ, we have
|T1(x,y)(t2)−T1(x,y)(t1)|≤[1Γ(α)∫t10(t2−τ)α−1−(t1−τ)α−1dτ+1Γ(α)∫t2t1(t2−τ)α−1dτ+tα−12−tα−11ψ(T22−θη2α−1Γ(2α−1)2Γ(2α−1))]×supt∈[0,T]m∑i=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|≤[2Γ(α+1)(t2−t1)α−1+(tα−12−tα−11)[T22ψ−θη2α−1ψΓ(2α−1)2Γ(2α−1)+1Γ(α+1)]]×m∑i=1Li. |
Therefore,
||T1(x,y)(t2)−T1(x,y)(t1)||E[2Γ(α+1)(t2−t1)α−1+(tα−12−tα−11)[T22ψ+1Γ(α+1)]]×m∑i=1Li. | (3.17) |
We also have
||T2(x,y)(t2)−T2(x,y)(t1)||E[2Γ(β+1)(t2−t1)β−1+(tβ−12−tβ−11)[T22ψ′+1Γ(β+1)]]×m∑i=1Ki. | (3.18) |
On the other hand,
|ϕiT1(x,y)(t2)−ϕiT1(x,y)(t1)|≤[maxs∈[0,1]|A′i(t2,s)−A′i(t1,s)|+(t2−t1)maxs∈[0,1]|A′i(t1,s)|]×sups∈[0,1]|T1(x,y)(s)|. |
Consequently, for all i=1,2, we obtain
||ϕiT1(x,y)(t2)−ϕiT1(x,y)(t1)||≤[maxs∈[0,1]|A′i(t2,s)−A′i(t1,s)|+(t2−t1)maxs∈[0,1]|A′i(t1,s)|]ν1m∑i=1Li. | (3.19) |
Similarly,
||φiT1(x,y)(t2)−φiT1(x,y)(t1)||≤[maxs∈[0,1]|B′i(t2,s)−B′i(t1,s)|+(t2−t1)maxs∈[0,1]|B′i(t1,s)|]ν2m∑i=1Ki. | (3.20) |
where i=1,2. Using (3.17)–(3.20), we deduce that
||T(x,y)(t2)−T(x,y)(t1)||E⟶0 |
as t2→t1.
Combining (i) and (ii), we conclude that T is completely continuous.
(iii) Finally, we shall prove that the set F defined by
F={(x,y)∈E,(x,y)=ρT(x,y), 0<ρ<1} |
is bounded.
Let (x,y)∈F, then (x,y)=ρT(x,y), for some 0<ρ<1. Thus, for each t∈[0,T], we have:
x(t)=ρT1(x,y)(t), y(t)=ρT2(x,y)(t). | (3.21) |
Thanks to (H3) and using (3.11) and (3.12), we deduce that
||x||≤ρν1m∑i=1Li, ||y||≤ρν2m∑i=1Ki. | (3.22) |
Using (3.13)–(3.16), it yields that
{||ϕ1x||≤ρν3∑mi=1Li||ϕ2x||≤ρν4∑mi=1Li||φ1y||≤ρν5∑mi=1Ki||φ2y||≤ρν6∑mi=1Ki. | (3.23) |
It follows from (3.22) and (3.23) that
||T(x,y)||E≤ρmax(ν1∑mi=1Li,ν2∑mi=1Ki,ν3∑mi=1Li,ν4∑mi=1Li,,ν5∑mi=1,ν6∑mi=1). |
Consequently,
||(x,y)||E<∞. |
This shows that F is bounded. By Lemma (2.1), we deduce that T has a fixed point, which is a solution of (1.1).
To illustrate our main results, we treat the following examples.
Example 4.1. Consider the following system:
{D32x(t)=cos(πt)(x+y+φ1x(t)+ϕ1y(t))10π(x+y+φ1x(t)+ϕ1y(t))+132π2e(cosx(t)+cosy(t)+φ1x(t)+ϕ1y(t)4π),D32y(t)=18π3(t+1)(x+y+φ2x(t)+ϕ2y(t)3+x+y+φ2x(t)+ϕ2y(t))+1(10π+et)e(t+1)(sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)2+sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)),I12x(0)=0, D−12x(T)=I12(x(1)),I12y(0)=0, D−12y(T)=I12(y(1)). | (4.1) |
We have
α=32, β=32, T=1, θ=1, ω=1, γ=1, m=2, η=1. |
Also,
f1(t,x(t),y(t),φ1x(t),ϕ1y(t))=cos(πt)(x+y+φ1x(t)+ϕ1y(t))10π(1+x+y+φ1x(t)+ϕ1y(t)), | (4.2) |
f2(t,x(t),y(t),φ1x(t),ϕ1y(t))=132π2e(cosx(t)+cosy(t)+φ1x(t)+ϕ1y(t)4π). | (4.3) |
For t∈[0,1] and (x1,y1,φ1x1,ϕ1y1),(x2,y2,φ1x2,ϕ1y2)∈R4, we have
|f1(t,x1,y1,φ1x1,ϕ1y1)−f1(t,x2,y2,φ1x2,ϕ1y2)|≤|cos(πt)|10π|x1+y1+φ1x1+ϕ1y11+x1+y1+φ1x1+ϕ1y1−x2+y2+φ1x2+ϕ1y2)1+x2+y2+φ1x2+ϕ1y2)|≤110π(|x1−x2|+|y1−y2|+|φ1x1−φ1x2|+|ϕ1y1−ϕ1y2|) | (4.4) |
and
|f2(t,x1,y1,φ1x1,ϕ1y1)−f2(t,x2,y2,φ1x2,ϕ1y2)|≤132πe(|x1−x2|+|y1−y2|+|φ1x1−φ1x2|+|ϕ1y1−ϕ1y2|). | (4.5) |
So, we can take
ξ11=ξ12=ξ13=ξ14=110π, |
ξ21=ξ22=ξ23=ξ24=132πe. |
We also have
g1(t,x(t),y(t),φ2x(t),ϕ2y(t))=18π3(t+1)(x+y+φ2x(t)+ϕ2y(t)3+x+y+φ2x(t)+ϕ2y(t)) |
and
g2(t,x(t),y(t),φ2x(t),ϕ2y(t))=1(10π+et)et+1(sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)2+sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)) | (4.6) |
For t∈[0,1] and (x1,y1,φ2x1,ϕ2y1),(x2,y2,φ2x2,ϕ2y2)∈R4, we can write
|g1(t,x1,y1,φ2x1,ϕ2y1)−g1(t,x2,y2,φ2x2,ϕ2y2)|≤18π3(|x1−x2|+|y1−y2|+|φ2x1−φ2x2|+|ϕ2y1−ϕ2y2|), | (4.7) |
and
|g2(t,x1,y1,φ2x1,ϕ2y1)−g2(t,x2,y2,φ2x2,ϕ2y2)|≤110πe2(|x1−x2|+|y1−y2|+|φ2x1−φ2x2|+|ϕ2y1−ϕ2y2|). | (4.8) |
Hence,
χ11=χ12=χ13=χ14=18π3, |
χ21=χ22=χ23=χ24=110πe2. |
Therefore,
A1=0.0589009676,A2=0.0250930393. |
Suppose
A′i=B′i=1, i=1,2, |
so,
A1=A3=A4,A2=A5=A6. |
Thus,
max(A1,A2,A3,A4,A5,A6)<1, | (4.9) |
and by Theorem 3.1, we conclude that the system (4.1) has a unique solution on [0,1].
Example 4.2.
{D32x(t)=π(t+1)sin(φ1x(t)+ϕ1y(t))2−cos(x(t)+y(t))+et2π+cos(x(t)+φ1x(t))+sin(sin(y(t)+ϕ1y(t)), t∈[0,1],D43y(t)=e2sin(x(t)+y(t))2π+cos(φ2x(t)+ϕ2y(t))+3t2cosy(t)et3+1−cos(x(t)+y(t)−φ2x(t)−ϕ2y(t)), t∈[0,1],I12x(0)=0, D−12x(T)=I12(x(1)),I23y(0)=0, D−23y(T)=I13(y(1)). | (4.10) |
We have
α=32, β=43, T=1, θ=1, ω=1, γ=1, m=2, η=1. |
Since
|f1(t,x(t),y(t),φ1x(t),ϕ1y(t))|=|π(t+1)sin(φ1x(t)+ϕ1y(t))2−cos(x(t)+y(t))|≤2π,|f2(t,x(t),y(t),φ1x(t),ϕ1y(t))|=|et2π+cos(x(t)+φ1x(t))+sin(sin(y(t)+ϕ1y(t))|≤e2π+2,|g1(t,x(t),y(t),φ2x(t),ϕ2y(t))|=|e2sin(x(t)+y(t))2π+cos(φ2x(t)+ϕ2y(t))|≤e22π+1,|g2(t,x(t),y(t),φ2x(t),ϕ2y(t))|=|3t2cosy(t)et3+1−cos(x(t)+y(t)−φ2x(t)−ϕ2y(t))|≤3e−1. |
The functions f1, f2, g1 and g2 are continuous and bounded on [0,1]×R4. So, by Theorem 3.2, the system (4.10) has at least one solution on [0,1].
We have proved the existence of solutions for fractional differential equations with integral and multi-point boundary conditions. The problem is solved by applying some fixed point theorems. We also provide examples to make our results clear.
The authors declare that they have no conflicts of interest in this paper.
[1] |
G. A. Bocharov, F. A. Rihan, Numerical modelling in bio sciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183–199. https://doi.org/10.1016/s0377-0427(00)00468-4 doi: 10.1016/s0377-0427(00)00468-4
![]() |
[2] |
S. Lakshmanan, F. A. Rihan, R. Rakkiyappan, J. H. Park, Stability analysis of the diferential genetic regulatory networks model with time-varying delays and Markovian jumping parameters, Nonlinear Anal. Hybrid Syst., 14 (2014), 1–15. https://doi.org/10.1016/j.nahs.2014.04.003 doi: 10.1016/j.nahs.2014.04.003
![]() |
[3] |
F. A. Rihan, D. H. Abdelrahman, F. Al-Maskari, F. Ibrahim, M. A. Abdeen, Delay differential model for tumour-immune response with chemoimmunotherapy and optimal control, Comput. Math. Methods Med., 14 (2014), 1–15. https://doi.org/10.1155/2014/982978 doi: 10.1155/2014/982978
![]() |
[4] |
F. A. Rihan, D. H. Abdel Rahman, S. Lakshmanan, A. S. Alkhajeh, Time delay model of tumour-immune system interactions: Global dynamics, parameter estimation, sensitivity analysis, Appl. Math. Comput., 232 (2014), 606–623. https://doi.org/10.1016/j.amc.2014.01.111 doi: 10.1016/j.amc.2014.01.111
![]() |
[5] |
J. S. W. Wong, A second order nonlinear oscillation theorems, Proc. Amer. Math. Soc., 40 (1973), 487–491. https://doi.org/10.1090/s0002-9939-1973-0318585-6 doi: 10.1090/s0002-9939-1973-0318585-6
![]() |
[6] | I. Gyori, G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford: The Clarenden Press, 1991. |
[7] |
T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Zeitschrift für angewandte Mathematik und Physik, 70(3) (2019), 1–18. https://doi.org/10.1007/s00033-019-1130-2 doi: 10.1007/s00033-019-1130-2
![]() |
[8] |
T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differenrial Integral Equations, 4 (2021), 315–336. https://doi.org/10.57262/die034-0506-315 doi: 10.57262/die034-0506-315
![]() |
[9] |
J. C. F. Sturm, Memoire sur les equations differentielles lineaires du second ordre, J. Math. Pures Appl., 1 (1836), 106–186. https://doi.org/10.1007/978-3-7643-7990-2 doi: 10.1007/978-3-7643-7990-2
![]() |
[10] |
A. Kneser, Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann., 42 (1893), 409–435. https://doi.org/10.1007/bf01444165 doi: 10.1007/bf01444165
![]() |
[11] |
W. B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc., 19 (1918), 341–352. https://doi.org/10.1090/s0002-9947-1918-1501107-2 doi: 10.1090/s0002-9947-1918-1501107-2
![]() |
[12] | R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, Dordrecht: Kluwer Academic Publishers, 2002. https://doi.org/10.1007/978-94-017-2515-6 |
[13] | R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for second order dynamic equa tions, Series in Mathematical Analysis and Applications, 5 Eds., London: Taylor & Francis, Ltd., 2003. https://doi.org/10.4324/9780203222898 |
[14] | R. P. Agarwal, M. Bohner, W. T. Li, Nonoscillation and oscillation: theory for functional differential equations, Monographs and Textbooks in Pure and Applied Mathematics, 267 Eds., New York: Marcel Dekker, Inc., 2004. https://doi.org/10.1201/9780203025741 |
[15] | O. Dosly, P. Rehak, Half-linear differential equations, Handbook of Differential Equations, 1 Eds., North-Holland: Elsevier, 2004. https://doi.org/10.1016/s1874-5725(00)80005-x |
[16] | I. Gyori, G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford: Clarendon Press, 1991. |
[17] |
J. Dzurina, I. Jadlovska, A note on oscillation of second-order delay differential equations, Appl. Math. Lett., 69 (2017), 126–132. https://doi.org/10.1016/j.aml.2017.02.003 doi: 10.1016/j.aml.2017.02.003
![]() |
[18] |
J. Dzurina, I. Jadlovska, I. P. Stavroulakis, Oscillatory results for second-order noncanonical delay differential equations, Opuscula Math., 39 (2019), 483–495. https://doi.org/10.7494/opmath.2019.39.4.483 doi: 10.7494/opmath.2019.39.4.483
![]() |
[19] |
J. Dzurina, I. Jadlovska, A sharp oscillation result for second-order half-linear noncanonical delay differential equations, Electron. J. Qual. Theory Differ. Equ., 46 (2020), 1–14. https://doi.org/10.14232/ejqtde.2020.1.46 doi: 10.14232/ejqtde.2020.1.46
![]() |
[20] |
M. Bohner, S. R. Grace, I. Jadlovska, Oscillation criteria for second-order neutral delay differential equations, Electron. J. Qual. Theory Differ. Equ., 60 (2017), 1–12. https://doi.org/10.14232/ejqtde.2017.1.60 doi: 10.14232/ejqtde.2017.1.60
![]() |
[21] |
M. Bohner, S. R. Grace, I. Jadlovska, Sharp oscillation criteria for second-order neutral delay differential equations, Math. Meth. Appl. Sci., 43 (2020), 1–13. https://doi.org/10.1002/mma.6677 doi: 10.1002/mma.6677
![]() |
[22] |
T. S. Hassan, O. Moaaz, A. Nabih, M. B. Mesmouli, A. M. El-Sayed, New Sufficient Conditions for Oscillation of Second-Order Neutral Delay Differential Equations, Axioms, 10 (2021), 281. https://doi.org/10.3390/axioms10040281 doi: 10.3390/axioms10040281
![]() |
[23] |
R. P. Agarwal, C. Zhang, T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput., 274 (2016), 178–181. https://doi.org/10.1016/j.amc.2015.10.089 doi: 10.1016/j.amc.2015.10.089
![]() |
[24] |
J. Džurina, S. R. Grace, I. Jadlovska, T. Li, Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. https://doi.org/10.1002/mana.201800196 doi: 10.1002/mana.201800196
![]() |
[25] |
I. Jadlovska, New Criteria for Sharp Oscillation of Second-Order Neutral Delay Differential Equations, Mathematics, 9 (2021), 2089. https://doi.org/10.3390/math9172089 doi: 10.3390/math9172089
![]() |
[26] |
O. Moaaz, H. Ramos, J. Awrejcewicz, Second-order Emden–Fowler neutral differential equations: A new precise criterion for oscillation, Appl. Math. Lett., 118 (2021), 107172. https://doi.org/10.1016/j.aml.2021.107172 doi: 10.1016/j.aml.2021.107172
![]() |
[27] |
T. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150–1162. https://doi.org/10.1002/mana.201300029 doi: 10.1002/mana.201300029
![]() |
[28] |
T. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489–500. https://doi.org/10.1007/s00605-017-1039-9 doi: 10.1007/s00605-017-1039-9
![]() |
[29] |
R. P. Agarwal, C. Zhang, T. Li, New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations, Appl. Math. Comput., 225 (2013), 822–828. https://doi.org/10.1016/j.amc.2013.09.072 doi: 10.1016/j.amc.2013.09.072
![]() |
[30] |
G. E. Chatzarakis, J. Dzurina, I. Jadlovska, New oscillation criteria for second-order half-linear advanced differential equations, Appl. Math. Comput., 347 (2019), 404–416. https://doi.org/10.1016/j.amc.2018.10.091 doi: 10.1016/j.amc.2018.10.091
![]() |
[31] |
G. E. Chatzarakis, O. Moaaz, T. Li, B.Qaraad, Some oscillation theorems for nonlinear second-order differential equations with an advanced argument, Adv. Difference Equ., 1 (2020). https://doi.org/10.1186/s13662-020-02626-9 doi: 10.1186/s13662-020-02626-9
![]() |
[32] |
T. S. Hassan, Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales, Appl. Math. Comput., 217 (2011), 5285–5297. https://doi.org/10.1016/j.amc.2010.11.052 doi: 10.1016/j.amc.2010.11.052
![]() |
[33] |
T. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden–Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59. https://doi.org/10.1016/j.aml.2016.11.007 doi: 10.1016/j.aml.2016.11.007
![]() |
[34] |
T. Li, Y. V. Rogovchenko, scillation criteria for even-order neutral differential equations, Appl. Math. Lett., 61 (2016), 35–41. https://doi.org/10.1016/j.aml.2016.04.012 doi: 10.1016/j.aml.2016.04.012
![]() |
[35] |
O. Moaaz, S. Furuichi, A. Muhib, New comparison theorems for the nth order neutral differential equations with delay inequalities, Mathematics, 8 (2020), 454. https://doi.org/10.3390/math8030454 doi: 10.3390/math8030454
![]() |
[36] |
O. Moaaz, A. Muhib, New oscillation criteria for nonlinear delay differential equations of fourth-order, Appl. Math. Comput., 377 (2020), 125192. https://doi.org/10.1016/j.amc.2020.125192 doi: 10.1016/j.amc.2020.125192
![]() |
[37] |
O. Moaaz, P. Kumam, O. Bazighifan, On the oscillatory behavior of a class of fourth-order nonlinear differential equation, Symmetry, 12 (2020), 524. https://doi.org/10.3390/sym12040524 doi: 10.3390/sym12040524
![]() |
[38] |
R. Koplatadze, G. Kvinikadze, I. P. Stavroulakis, Oscillation of second order linear delay differential equations, Funct. Differ. Equ., 7 (2000), 121–145. https://doi.org/10.1515/gmj.1999.553 doi: 10.1515/gmj.1999.553
![]() |
[39] |
R. Koplatadze, Oscillation criteria of solutions of second order linear delay differential in equalities with a delayed argument, Trudy Inst. Prikl. Mat. I.N. Vekua., 17 (1986), 104–120. https://doi.org/10.21136/mb.2011.141582 doi: 10.21136/mb.2011.141582
![]() |
[40] | J. J. Wei, Oscillation of second order delay differential equation, Ann. Differential Equations, 4 (1988), 473–478. |
[41] |
G. E. Chatzarakis, I. Jadlovska, Improved oscillation results for second-order half-linear delay differential equations, Hacet. J. Math. Stat., 48 (2019), 170–179. https://doi.org/10.15672/hjms.2017.522 doi: 10.15672/hjms.2017.522
![]() |
[42] |
R. Marik, Remarks on the paper by Sun and Meng, Appl. Math. Comput., 248 (2014), 309–313. https://doi.org/10.1016/j.amc.2014.09.100 doi: 10.1016/j.amc.2014.09.100
![]() |
[43] |
G. E. Chatzarakis, S. R. Grace, I. Jadlovska, On the sharp oscillation criteria for half-linear second-order differential equations with several delay arguments, Appl. Math. Comput., 397 (2021), 125915. https://doi.org/10.1016/j.amc.2020.125915 doi: 10.1016/j.amc.2020.125915
![]() |
1. | Isra Al-Shbeil, Houari Bouzid, Benali Abdelkader, Alina Alp Lupas, Mohammad Esmael Samei, Reem K. Alhefthi, On the existence of solutions to fractional differential equations involving Caputo q-derivative in Banach spaces, 2025, 11, 24058440, e40876, 10.1016/j.heliyon.2024.e40876 | |
2. | Houari Bouzid, Benali Abdelkader, Louiza Tabharit, Mohammad Esmael Samei, Existence of solutions to a fractional differential equation involving the Caputo q-derivative with boundary conditions in Banach spaces, 2025, 2025, 1029-242X, 10.1186/s13660-025-03302-w |