Research article Special Issues

Well-posedness for the Chern-Simons-Schrödinger equations

  • Received: 24 May 2022 Revised: 19 July 2022 Accepted: 19 July 2022 Published: 26 July 2022
  • MSC : 35B30, 35B65, 35Q55

  • First, we prove uniform-in-$ \epsilon $ regularity estimates of local strong solutions to the Chern-Simons-Schrödinger equations in $ \mathbb{R}^2 $. Here $ \epsilon $ is the dispersion coefficient. Then we prove the global well-posedness of strong solutions to the limit problem $ (\epsilon = 0) $.

    Citation: Jishan Fan, Tohru Ozawa. Well-posedness for the Chern-Simons-Schrödinger equations[J]. AIMS Mathematics, 2022, 7(9): 17349-17356. doi: 10.3934/math.2022955

    Related Papers:

  • First, we prove uniform-in-$ \epsilon $ regularity estimates of local strong solutions to the Chern-Simons-Schrödinger equations in $ \mathbb{R}^2 $. Here $ \epsilon $ is the dispersion coefficient. Then we prove the global well-posedness of strong solutions to the limit problem $ (\epsilon = 0) $.



    加载中


    [1] R. Jackiw, S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500–3513. https://doi.org/10.1103/PhysRevD.42.3500 doi: 10.1103/PhysRevD.42.3500
    [2] R. Jackiw, S.-Y. Pi, Self-dual Chern-Simons solitons, Prog. Theor. Phys., 107 (1992), 1–40. https://doi.org/10.1143/PTPS.107.1 doi: 10.1143/PTPS.107.1
    [3] L. Bergé, A. de Bouard, J.-C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235–253. https://doi.org/10.1088/0951-7715/8/2/007 doi: 10.1088/0951-7715/8/2/007
    [4] H. Huh, Energy solution to the Chern-Simons-Schrödinger equations, Abstr. Appl. Anal., 2013 (2013), 590653. https://doi.org/10.1155/2013/590653 doi: 10.1155/2013/590653
    [5] Z. Lim, Large data well-posedness in the energy space of the Chern-Simons-Schrödinger system, J. Differ. Equations, 264 (2018), 2553–2597. https://doi.org/10.1016/j.jde.2017.10.026 doi: 10.1016/j.jde.2017.10.026
    [6] J. Byeon, H. Huh, J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575–1608. https://doi.org/10.1016/j.jfa.2012.05.024 doi: 10.1016/j.jfa.2012.05.024
    [7] H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53 (2012), 063702. https://doi.org/10.1063/1.4726192 doi: 10.1063/1.4726192
    [8] B. Liu, P. Smith, D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Notices, 2014 (2014), 6341–6398. https://doi.org/10.1093/imrn/rnt161 doi: 10.1093/imrn/rnt161
    [9] S. Demoulini, Global existence for a nonlinear Schrödinger-Chern-Simons system on a surface, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 207–225. https://doi.org/10.1016/j.anihpc.2006.01.004 doi: 10.1016/j.anihpc.2006.01.004
    [10] H. Huh, Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967–974. https://doi.org/10.1088/0951-7715/22/5/003 doi: 10.1088/0951-7715/22/5/003
    [11] S. Demoulini, D. Stuart, Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schrödinger system, Commun. Math. Phys., 290 (2009), 597–632. https://doi.org/10.1007/s00220-009-0844-y doi: 10.1007/s00220-009-0844-y
    [12] B. Liu, P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equaiton, Rev. Mat. Iberoam., 32 (2016), 751–794. https://doi.org/10.4171/rmi/898 doi: 10.4171/rmi/898
    [13] S.-J. Oh, F. Pusateri, Decay and scattering for the Chern-Simons-Schrödinger equations, Int. Math. Res. Notices, 2015 (2015), 13122–13147. https://doi.org/10.1093/imrn/rnv093 doi: 10.1093/imrn/rnv093
    [14] S. Jha, P. Das, S. Bandhyopadhyay, S. Treanţǎ, Well-posedness for multi-time variational inequality problems via generalized monotonicity and for variational problems with multi-time variational inequality constraints, J. Comput. Appl. Math., 407 (2022), 114033. https://doi.org/10.1016/j.cam.2021.114033 doi: 10.1016/j.cam.2021.114033
    [15] S. Treanţǎ, S. Jha, On well-posedness associated with a class of controlled variational inequalities, Math. Model. Nat. Phenom., 16 (2021), 52. https://doi.org/10.1051/mmnp/2021046 doi: 10.1051/mmnp/2021046
    [16] S. Treanţǎ, On well-posed isoperimetric-type constrained variational control problems, J. Differ. Equations, 298 (2021), 480–499. https://doi.org/10.1016/j.jde.2021.07.013 doi: 10.1016/j.jde.2021.07.013
    [17] Y. Cho, T. Ozawa, On the semi-relativistic Hartree type equation, SIAM J. Math. Anal., 38 (2006), 1060–1074. https://doi.org/10.1137/060653688 doi: 10.1137/060653688
    [18] J. Fan, T. Ozawa, Cauchy problem and vanishing dispersion limit for Schrödinger-improved Boussinesq equations, J. Math. Anal. Appl., 485 (2020), 123857. https://doi.org/10.1016/j.jmaa.2020.123857 doi: 10.1016/j.jmaa.2020.123857
    [19] T. Ozawa, K. Tomioka, Vanishing dispersion limit for Schrödinger-improved Boussinesq system in two space dimensions, Asymptotic Anal., in press. https://doi.org/10.3233/ASY-221758
    [20] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. https://doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1300) PDF downloads(80) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog