Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

On global well-posedness to 3D Navier-Stokes-Landau-Lifshitz equations

  • In this paper, we prove the global well-posedness of solutions for the Cauchy problem of three-dimensional incompressible Navier-Stokes-Landau-Lifshitz equations under the condition that u0H12+d0H12+ε (ε>0) is sufficiently small. This result can be seen as an improvement of the previous paper [20].

    Citation: Ning Duan, Xiaopeng Zhao. On global well-posedness to 3D Navier-Stokes-Landau-Lifshitz equations[J]. AIMS Mathematics, 2020, 5(6): 6457-6463. doi: 10.3934/math.2020416

    Related Papers:

    [1] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860
    [2] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [3] Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273
    [4] Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
    [5] Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa . Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Mathematics, 2022, 7(1): 1507-1535. doi: 10.3934/math.2022089
    [6] Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506
    [7] Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja . Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824
    [8] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [9] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190
    [10] Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637
  • In this paper, we prove the global well-posedness of solutions for the Cauchy problem of three-dimensional incompressible Navier-Stokes-Landau-Lifshitz equations under the condition that u0H12+d0H12+ε (ε>0) is sufficiently small. This result can be seen as an improvement of the previous paper [20].


    The classical rational Ramanujan-type series for π1 (cf. [1,2,8,27] and a nice introduction by S. Cooper [10,Chapter 14]) have the form

    k=0bk+cmka(k)=λdπ,()

    where b,c,m are integers with bm0, d is a positive squarefree number, λ is a nonzero rational number, and a(k) is one of the products

    (2kk)3, (2kk)2(3kk), (2kk)2(4k2k), (2kk)(3kk)(6k3k).

    In 1997 Van Hamme [47] conjectured that such a series () has a p-adic analogue of the form

    p1k=0bk+cmka(k)cp(εddp) (mod p3),

    where p is any odd prime with pdm and λZp, ε1{±1} and εd=1 if d>1. (As usual, Zp denotes the ring of all p-adic integers, and (p) stands for the Legendre symbol.) W. Zudilin [53] followed Van Hamme's idea to provide more concrete examples. Sun [33] realized that many Ramanujan-type congruences are related to Bernoulli numbers or Euler numbers. In 2016 the author [44] thought that all classical Ramanujan-type congruences have their extensions like

    pn1k=0(21k+8)(2kk)3pn1k=0(21k+8)(2kk)3(pn)3(2nn)3Zp,

    where p is an odd prime, and nZ+={1,2,3,}. See Sun [45,Conjectures 21-24] for more such examples and further refinements involving Bernoulli or Euler numbers.

    During the period 2002–2010, some new Ramanujan-type series of the form () with a(k) not a product of three nontrivial parts were found (cf. [3,4,9,29]). For example, H. H. Chan, S. H. Chan and Z. Liu [3] proved that

    n=05n+164nDn=83π,

    where Dn denotes the Domb number nk=0(nk)2(2kk)(2(nk)nk); Zudilin [53] conjectured its p-adic analogue:

    p1k=05k+164kDkp(p3) (mod p3)for any prime p>3.

    The author [45,Conjecture 77] conjectured further that

    1(pn)3(pn1k=05k+164kDk(p3)pn1k=05k+164rDk)Zp

    for each odd prime p and positive integer n.

    Let b,cZ. For each nN={0,1,2,}, we denote the coefficient of xn in the expansion of (x2+bx+c)n by Tn(b,c), and call it a generalized central trinomial coefficient. In view of the multinomial theorm, we have

    Tn(b,c)=n/2k=0(n2k)(2kk)bn2kck=n/2k=0(nk)(nkk)bn2kck.

    Note also that

    T0(b,c)=1,  T1(b,c)=b,

    and

    (n+1)Tn+1(b,c)=(2n+1)bTn(b,c)n(b24c)Tn1(b,c)

    for all nZ+. Clearly, Tn(2,1)=(2nn) for all nN. Those Tn:=Tn(1,1) with nN are the usual central trinomial coefficients, and they play important roles in enumerative combinatorics. We view Tn(b,c) as a natural generalization of central binomial and central trinomial coefficients.

    For nN the Legendre polynomial of degree n is defined by

    Pn(x):=nk=0(nk)(n+kk)(x12)k.

    It is well-known that if b,cZ and b24c0 then

    Tn(b,c)=(b24c)nPn(bb24c)for all nN.

    Via the Laplace-Heine asymptotic formula for Legendre polynomials, for any positive real numbers b and c we have

    Tn(b,c)(b+2c)n+1/224cnπas n+

    (cf. [40]). For any real numbers b and c<0, S. Wagner [48] confirmed the author's conjecture that

    lim

    In 2011, the author posed over 60 conjectural series for 1/\pi of the following new types with a,b,c,d,m integers and mbcd(b^2-4c) nonzero (cf. Sun [34,40]).

    Type Ⅰ. \sum_{k = 0}^\infty \frac{a+dk}{m^k} \binom{2k}k^2T_k(b,c) .

    Type Ⅱ. \sum_{k = 0}^\infty \frac{a+dk}{m^k} \binom{2k}k \binom{3k}kT_k(b,c) .

    Type Ⅲ. \sum_{k = 0}^\infty \frac{a+dk}{m^k} \binom{4k}{2k} \binom{2k}kT_k(b,c) .

    Type Ⅳ. \sum_{k = 0}^\infty \frac{a+dk}{m^k} \binom{2k}{k}^2T_{2k}(b,c) .

    Type Ⅴ. \sum_{k = 0}^\infty \frac{a+dk}{m^k} \binom{2k}{k} \binom{3k}kT_{3k}(b,c) .

    Type Ⅵ. \sum_{k = 0}^\infty \frac{a+dk}{m^k}T_{k}(b,c)^3,

    Type Ⅶ. \sum_{k = 0}^\infty \frac{a+dk}{m^k} \binom{2k}kT_{k}(b,c)^2,

    In general, the corresponding p -adic congruences of these seven-type series involve linear combinations of two Legendre symbols. The author's conjectural series of types Ⅰ-Ⅴ and Ⅶ were studied in [6,49,54]. The author's three conjectural series of type Ⅵ and two series of type Ⅶ remain open. For example, the author conjectured that

    \sum\limits_{k = 0}^\infty \frac{3990k+1147}{(-288)^{3k}}T_k(62,95^2)^3 = \frac{432}{95\pi}(94\sqrt2+195\sqrt{14})

    as well as its p -adic analogue

    \sum\limits_{k = 0}^{p-1} \frac{3990k+1147}{(-288)^{3k}}T_k(62,95^2)^3{\equiv} \frac p{19} \left(4230 \left( \frac{-2}p \right)+17563 \left( \frac{-14}p \right) \right)\ ({\rm{mod}}\ {p^2}),

    where p is any prime greater than 3 .

    In 1905, J. W. L. Glaisher [15] proved that

    \sum\limits_{k = 0}^\infty \frac{(4k-1) \binom{2k}k^4}{(2k-1)^4256^k} = - \frac 8{\pi^2}.

    This actually follows from the following finite identity observed by the author [38]:

    \sum\limits_{k = 0}^n \frac{(4k-1) \binom{2k}k^4}{(2k-1)^4256^k} = -(8n^2+4n+1) \frac{ \binom{2n}n^4}{256^n}\quad\ \text{for all}\ n\in{\Bbb N}.

    Motivated by Glaisher's identity and Ramanujan-type series for 1/\pi , we obtain the following theorem.

    Theorem 1.1. We have the following identities:

    \begin{align} \sum\limits_{k = 0}^\infty \frac{k(4k-1) \binom{2k}k^3}{(2k-1)^2(-64)^k}& = - \frac1{\pi}, \end{align} (1.1)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(4k-1) \binom{2k}k^3}{(2k-1)^3(-64)^k}& = \frac2{\pi}, \end{align} (1.2)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(12k^2-1) \binom{2k}k^3}{(2k-1)^2 256^k}& = - \frac2{\pi}, \end{align} (1.3)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{k(6k-1) \binom{2k}k^3}{(2k-1)^3256^k}& = \frac1{2\pi}, \end{align} (1.4)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(28k^2-4k-1) \binom{2k}k^3}{(2k-1)^2(-512)^k}& = - \frac{3\sqrt2}{\pi}, \end{align} (1.5)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(30k^2+3k-2) \binom{2k}k^3}{(2k-1)^3(-512)^k}& = \frac{27\sqrt2}{8\pi}, \end{align} (1.6)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(28k^2-4k-1) \binom{2k}k^3}{(2k-1)^2 4096^k}& = - \frac3{\pi}, \end{align} (1.7)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(42k^2-3k-1) \binom{2k}k^3}{(2k-1)^3 4096^k}& = \frac{27}{8\pi}, \end{align} (1.8)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(34k^2-3k-1) \binom{2k}k^2 \binom{3k}k}{(2k-1)(3k-1)(-192)^k}& = - \frac{10}{\sqrt3\,\pi}, \end{align} (1.9)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(64k^2-11k-7) \binom{2k}k^2 \binom{3k}k}{(k+1)(2k-1)(3k-1)(-192)^k}& = - \frac{125\sqrt3}{9\pi}, \end{align} (1.10)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(14k^2+k-1) \binom{2k}k^2 \binom{3k}k}{(2k-1)(3k-1)216^k}& = - \frac{\sqrt3}{\pi}, \end{align} (1.11)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(90k^2+7k+1) \binom{2k}k^2 \binom{3k}k}{(k+1)(2k-1)(3k-1)216^k}& = \frac{9\sqrt3}{2\pi}, \end{align} (1.12)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(34k^2-3k-1) \binom{2k}k^2 \binom{3k}k}{(2k-1)(3k-1)(-12)^{3k}}& = - \frac{2\sqrt3}{\pi}, \end{align} (1.13)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(17k+5) \binom{2k}k^2 \binom{3k}k}{(k+1)(2k-1)(3k-1)(-12)^{3k}}& = \frac{9\sqrt3}{\pi}, \end{align} (1.14)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(111k^2-7k-4) \binom{2k}k^2 \binom{3k}k}{(2k-1)(3k-1)1458^k}& = - \frac{45}{4\pi}, \end{align} (1.15)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(1524k^2+899k+263) \binom{2k}k^2 \binom{3k}k}{(k+1)(2k-1)(3k-1)1458^k}& = \frac{3375}{4\pi}, \end{align} (1.16)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(522k^2-55k-13) \binom{2k}k^2 \binom{3k}k}{(2k-1)(3k-1)(-8640)^k}& = - \frac{54\sqrt{15}}{5\pi}, \end{align} (1.17)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(1836k^2+2725k+541) \binom{2k}k^2 \binom{3k}k}{(k+1)(2k-1)(3k-1)(-8640)^k}& = \frac{2187\sqrt{15}}{5\pi}, \end{align} (1.18)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(529k^2-45k-16) \binom{2k}k^2 \binom{3k}k}{(2k-1)(3k-1)15^{3k}}& = - \frac{55\sqrt3}{2\pi}, \end{align} (1.19)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(77571k^2+68545k+16366) \binom{2k}k^2 \binom{3k}k}{(k+1)(2k-1)(3k-1)15^{3k}}& = \frac{59895\sqrt3}{2\pi}, \end{align} (1.20)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(574k^2-73k-11) \binom{2k}k^2 \binom{3k}k}{(2k-1)(3k-1)(-48)^{3k}}& = -20 \frac{\sqrt3}{\pi}, \end{align} (1.21)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(8118k^2+9443k+1241) \binom{2k}k^2 \binom{3k}k}{(k+1)(2k-1)(3k-1)(-48)^{3k}}& = \frac{2250\sqrt3}{\pi}, \end{align} (1.22)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(978k^2-131k-17) \binom{2k}k^2 \binom{3k}k}{(2k-1)(3k-1)(-326592)^k}& = - \frac{990\sqrt7}{49\pi}, \end{align} (1.23)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(592212k^2+671387k^2+77219) \binom{2k}k^2 \binom{3k}k}{(k+1)(2k-1)(3k-1)(-326592)^k}& = \frac{4492125\sqrt7}{49\pi}, \end{align} (1.24)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(116234k^2-17695k-1461) \binom{2k}k^2 \binom{3k}k}{(2k-1)(3k-1)(-300)^{3k}}& = -2650 \frac{\sqrt3}{\pi}, \end{align} (1.25)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(223664832k^2+242140765k+18468097) \binom{2k}k^2 \binom{3k}k}{(k+1)(2k-1)(3k-1)(-300)^{3k}}& = 33497325 \frac{\sqrt3}{\pi}, \end{align} (1.26)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(122k^2+3k-5) \binom{2k}k^2 \binom{4k}{2k}}{(2k-1)(4k-1)648^k}& = - \frac{21}{2\pi}, \end{align} (1.27)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(1903k^2+114k+41) \binom{2k}k^2 \binom{4k}{2k}}{(k+1)(2k-1)(4k-1)648^k}& = \frac{343}{2\pi}, \end{align} (1.28)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(40k^2-2k-1) \binom{2k}k^2 \binom{4k}{2k}}{(2k-1)(4k-1)(-1024)^k}& = - \frac4{\pi}, \end{align} (1.29)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(8k^2-2k-1) \binom{2k}k^2 \binom{4k}{2k}}{(k+1)(2k-1)(4k-1)(-1024)^k}& = - \frac{16}{5\pi}, \end{align} (1.30)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(176k^2-6k-5) \binom{2k}k^2 \binom{4k}{2k}}{(2k-1)(4k-1)48^{2k}}& = -8 \frac{\sqrt3}{\pi}, \end{align} (1.31)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(208k^2+66k+23) \binom{2k}k^2 \binom{4k}{2k}}{(k+1)(2k-1)(4k-1)48^{2k}}& = \frac{128}{\sqrt3\,\pi}, \end{align} (1.32)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(6722k^2-411k-152) \binom{2k}k^2 \binom{4k}{2k}}{(2k-1)(4k-1)(-63^2)^k}& = -195 \frac{\sqrt7}{\pi}, \end{align} (1.33)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(281591k^2-757041k-231992) \binom{2k}k^2 \binom{4k}{2k}}{(k+1)(2k-1)(4k-1)(-63^2)^k}& = -274625 \frac{\sqrt7}{\pi}, \end{align} (1.34)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(560k^2-42k-11) \binom{2k}k^2 \binom{4k}{2k}}{(2k-1)(4k-1)12^{4k}}& = -24 \frac{\sqrt2}{\pi}, \end{align} (1.35)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(112k^2+114k+23) \binom{2k}k^2 \binom{4k}{2k}}{(k+1)(2k-1)(4k-1)12^{4k}}& = \frac{256\sqrt2}{5\pi}, \end{align} (1.36)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(248k^2-18k-5) \binom{2k}k^2 \binom{4k}{2k}}{(2k-1)(4k-1)(-3\times2^{12})^k}& = - \frac{28}{\sqrt3\,\pi}, \end{align} (1.37)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(680k^2+1482k+337) \binom{2k}k^2 \binom{4k}{2k}}{(k+1)(2k-1)(4k-1)(-3\times2^{12})^k}& = \frac{5488\sqrt3}{9\pi}, \end{align} (1.38)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(1144k^2-102k-19) \binom{2k}k^2 \binom{4k}{2k}}{(2k-1)(4k-1)(-2^{10}3^4)^k}& = - \frac{60}{\pi}, \end{align} (1.39)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(3224k^2+4026k+637) \binom{2k}k^2 \binom{4k}{2k}}{(k+1)(2k-1)(4k-1)(-2^{10}3^4)^k}& = \frac{2000}{\pi}, \end{align} (1.40)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(7408k^2-754k-103) \binom{2k}k^2 \binom{4k}{2k}}{(2k-1)(4k-1)28^{4k}}& = - \frac{560\sqrt3}{3\pi}, \end{align} (1.41)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(3641424k^2+4114526k+493937) \binom{2k}k^2 \binom{4k}{2k}}{(k+1)(2k-1)(4k-1)28^{4k}}& = 896000 \frac{\sqrt3}{\pi}, \end{align} (1.42)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(4744k^2-534k-55) \binom{2k}k^2 \binom{4k}{2k}}{(2k-1)(4k-1)(-2^{14}3^45)^k}& = - \frac{1932\sqrt5}{25\pi}, \end{align} (1.43)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(18446264k^2+20356230k+1901071) \binom{2k}k^2 \binom{4k}{2k}}{(k+1)(2k-1)(4k-1)(-2^{14}3^45)^k}& = 66772496 \frac{\sqrt5}{25\pi}, \end{align} (1.44)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(413512k^2-50826k-3877) \binom{2k}k^2 \binom{4k}{2k}}{(2k-1)(4k-1)(-2^{10}21^4)^k}& = - \frac{12180}{\pi}, \end{align} (1.45)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(1424799848k^2+1533506502k+108685699) \binom{2k}k^2 \binom{4k}{2k}}{(k+1)(2k-1)(4k-1)(-2^{10}21^4)^k}& = \frac{341446000}{\pi}, \end{align} (1.46)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(71312k^2-7746k-887) \binom{2k}k^2 \binom{4k}{2k}}{(2k-1)(4k-1)1584^{2k}}& = -840 \frac{\sqrt{11}}{\pi}, \end{align} (1.47)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(50678512k^2+56405238k+5793581) \binom{2k}k^2 \binom{4k}{2k}}{(k+1)(2k-1)(4k-1)1584^{2k}}& = 5488000 \frac{\sqrt{11}}{\pi}, \end{align} (1.48)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(7329808k^2-969294k-54073) \binom{2k}k^2 \binom{4k}{2k}}{(2k-1)(4k-1)396^{4k}}& = -120120 \frac{\sqrt2}{\pi}, \end{align} (1.49)
    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^\infty \frac{(2140459883152k^2+2259867244398k+119407598201) \binom{2k}k^2 \binom{4k}{2k}}{(k+1)(2k-1)(4k-1)396^{4k}} \\&\qquad\qquad\qquad = 44\times1820^3 \frac{\sqrt2}{\pi}, \end{aligned} \end{equation} (1.50)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(164k^2-k-3) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(2k-1)(6k-1)20^{3k}}& = - \frac{7\sqrt5}{2\pi}, \end{align} (1.51)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(2696k^2+206k+93) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(k+1)(2k-1)(6k-1)20^{3k}} & = \frac{686}{\sqrt5\,\pi}, \end{align} (1.52)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(220k^2-8k-3) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(2k-1)(6k-1)(-2^{15})^k} & = - \frac{7\sqrt2}{\pi}, \end{align} (1.53)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(836k^2-1048k-309) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(k+1)(2k-1)(6k-1)(-2^{15})^k} & = - \frac{686\sqrt2}{\pi}, \end{align} (1.54)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(504k^2-11k-8) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(2k-1)(6k-1)(-15)^{3k}} & = - \frac{9\sqrt{15}}{\pi}, \end{align} (1.55)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(189k^2-11k-8) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(k+1)(2k-1)(6k-1)(-15)^{3k}}& = - \frac{243\sqrt{15}}{35\pi}, \end{align} (1.56)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(516k^2-19k-7) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(2k-1)(6k-1)(2\times30^3)^k} & = - \frac{11\sqrt{15}}{2\pi}, \end{align} (1.57)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(3237k^2+1922k+491) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(k+1)(2k-1)(6k-1)(2\times30^3)^k} & = \frac{3993\sqrt{15}}{10\pi}, \end{align} (1.58)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(684k^2-40k-7) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(2k-1)(6k-1)(-96)^{3k}}& = - \frac{9\sqrt6}{\pi}, \end{align} (1.59)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(2052k^2+2536k+379) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(k+1)(2k-1)(6k-1)(-96)^{3k}}& = \frac{486\sqrt6}{\pi}, \end{align} (1.60)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(2556k^2-131k-29) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(2k-1)(6k-1)66^{3k}}& = - \frac{63\sqrt{33}}{4\pi}, \end{align} (1.61)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(203985k^2+212248k+38083) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(k+1)(2k-1)(6k-1)66^{3k}}& = \frac{83349\sqrt{33}}{4\pi}, \end{align} (1.62)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(5812k^2-408k-49) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(2k-1)(6k-1)(-3\times160^3)^k}& = - \frac{253\sqrt{30}}{9\pi}, \end{align} (1.63)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(3471628k^2+3900088k+418289) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(k+1)(2k-1)(6k-1)(-3\times160^3)^k}& = \frac{32388554\sqrt{30}}{135\pi}, \end{align} (1.64)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(35604k^2-2936k-233) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(2k-1)(6k-1)(-960)^{3k}}& = -189 \frac{\sqrt{15}}{\pi}, \end{align} (1.65)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(13983084k^2+15093304k+1109737) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(k+1)(2k-1)(6k-1)(-960)^{3k}}& = \frac{4500846\sqrt{15}}{5\pi}, \end{align} (1.66)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(157752k^2-11243k-1304) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(2k-1)(6k-1)255^{3k}}& = - \frac{513\sqrt{255}}{2\pi}, \end{align} (1.67)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(28240947k^2+31448587k+3267736) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(k+1)(2k-1)(6k-1)255^{3k}}& = \frac{45001899\sqrt{255}}{70\pi}, \end{align} (1.68)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{(2187684k^2-200056k-11293) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(2k-1)(6k-1)(-5280)^{3k}} & = -1953 \frac{\sqrt{330}}{\pi}, \end{align} (1.69)
    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^\infty \frac{(101740699836k^2+107483900696k+5743181813) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(k+1)(2k-1)(6k-1)(-5280)^{3k}} \\&\qquad\qquad\qquad = \frac{4966100118\sqrt{330}}{5\pi}, \end{aligned} \end{equation} (1.70)
    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^\infty \frac{(16444841148k^2-1709536232k-53241371) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(2k-1)(6k-1)(-640320)^{3k}} \\&\qquad\qquad\qquad = -1672209 \frac{\sqrt{10005}}{\pi}, \end{aligned} \end{equation} (1.71)

    and

    \begin{equation} \begin{aligned} \sum\limits_{k = 0}^\infty \frac{P(k) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(k+1)(2k-1)(6k-1)(-640320)^{3k}} = \frac{18\times557403^3\sqrt{10005}}{5\pi}, \end{aligned} \end{equation} (1.72)

    where

    \begin{align*} P(k): = &637379600041024803108 k^2 + 657229991696087780968 k \\&+ 19850391655004126179. \end{align*}

    Recall that the Catalan numbers are given by

    C_n: = \frac{ \binom{2n}n}{n+1} = \binom{2n}n- \binom{2n}{n+1}\ \ (n\in{\Bbb N}).

    For k\in{\Bbb N} it is easy to see that

    \frac{ \binom{2k}k}{2k-1} = \begin{cases}-1& \text{if}\ k = 0,\\2C_{k-1}& \text{if}\ k > 0.\end{cases}

    Thus, for any a,b,c,m\in{\Bbb Z} with |m|{\geq}64 , we have

    \begin{align*} \sum\limits_{k = 0}^\infty \frac{(ak^2+bk+c) \binom{2k}k^3}{(2k-1)^3m^k} = &-c+\sum\limits_{k = 1}^\infty \frac{(ak^2+bk+c)(2C_{k-1})^3}{m^k} \\ = &-c+ \frac 8m\sum\limits_{k = 0}^\infty \frac{a(k+1)^2+b(k+1)+c}{m^k}C_k^3. \end{align*}

    For example, (1.2) has the equivalent form

    \sum\limits_{k = 0}^\infty \frac{4k+3}{(-64)^k}C_k^3 = 8- \frac{16}{\pi}.\;\;\;\;\;\;\;\;(1.2')

    For any odd prime p , the congruence (1.4) of V.J.W. Guo and J.-C. Liu [19] has the equivalent form

    \sum\limits_{k = 0}^{(p+1)/2} \frac{(4k-1) \binom{2k}k^3}{(2k-1)^3(-64)^k}{\equiv} p \left( \frac{-1}p \right)+p^3(E_{p-3}-2)\ ({\rm{mod}}\ {p^4})

    (where E_0,E_1,\ldots are the Euler numbers), and we note that this is also equivalent to the congruence

    \sum\limits_{k = 0}^{(p-1)/2} \frac{4k+3}{(-64)^k}C_k^3{\equiv}8 \left(1-p \left( \frac{-1}p \right)-p^3(E_{p-3}-2) \right)\ ({\rm{mod}}\ {p^4}).

    Recently, C. Wang [50] proved that for any prime p>3 we have

    \sum\limits_{k = 0}^{(p+1)/2} \frac{(3k-1) \binom{2k}k^3}{(2k-1)^216^k}{\equiv} p+2p^3 \left( \frac{-1}p \right)(E_{p-3}-3)\ ({\rm{mod}}\ {p^4})

    and

    \sum\limits_{k = 0}^{p-1} \frac{(3k-1) \binom{2k}k^3}{(2k-1)^216^k}{\equiv} p-2p^3\ ({\rm{mod}}\ {p^4}).

    (Actually, Wang stated his results only in the language of hypergeometric series.) These two congruences extend a conjecture of Guo and M. J. Schlosser [21].

    We are also able to prove some other variants of Ramanujan-type series such as

    \sum\limits_{k = 0}^\infty \frac{(56k^2+118k+61) \binom{2k}k^3}{(k+1)^24096^k} = \frac{192}{\pi}

    and

    \sum\limits_{k = 0}^\infty \frac{(420k^2+992k+551) \binom{2k}k^3}{(k+1)^2(2k-1)4096^k} = - \frac{1728}{\pi}.

    Now we state our second theorem.

    Theorem 1.2. We have the identities

    \begin{align} \sum\limits_{k = 1}^\infty \frac{28k^2+31k+8}{(2k+1)^2k^3 \binom{2k}k^3}& = \frac{\pi^2-8}2, \end{align} (1.73)
    \begin{align} \sum\limits_{k = 1}^\infty \frac{42k^2+39k+8}{(2k+1)^3k^3 \binom{2k}k^3}& = \frac{9\pi^2-88}2, \end{align} (1.74)
    \begin{align} \sum\limits_{k = 1}^\infty \frac{(8k^2+5k+1)(-8)^k}{(2k+1)^2k^3 \binom{2k}k^3}& = 4-6G, \end{align} (1.75)
    \begin{align} \sum\limits_{k = 1}^\infty \frac{(30k^2+33k+7)(-8)^k}{(2k+1)^3k^3 \binom{2k}k^3}& = 54G-52, \end{align} (1.76)
    \begin{align} \sum\limits_{k = 1}^\infty \frac{(3k+1)16^k}{(2k+1)^2k^3 \binom{2k}k^3}& = \frac{\pi^2-8}2, \end{align} (1.77)
    \begin{align} \sum\limits_{k = 1}^\infty \frac{(4k+1)(-64)^k}{(2k+1)^2k^2 \binom{2k}k^3}& = 4-8G, \end{align} (1.78)
    \begin{align} \sum\limits_{k = 1}^\infty \frac{(4k+1)(-64)^k}{(2k+1)^3k^3 \binom{2k}k^3}& = 16G-16, \end{align} (1.79)
    \begin{align} \sum\limits_{k = 1}^\infty \frac{(2k^2-11k-3)8^k}{(2k+1)(3k+1)k^3 \binom{2k}k^2 \binom{3k}k}& = \frac{48-5\pi^2}2, \end{align} (1.80)
    \begin{align} \sum\limits_{k = 2}^\infty \frac{(178k^2-103k-39)8^k}{(k-1)(2k+1)(3k+1)k^3 \binom{2k}k^2 \binom{3k}k}& = \frac{1125\pi^2-11096}{36}, \end{align} (1.81)
    \begin{align} \sum\limits_{k = 1}^\infty \frac{(5k+1)(-27)^k}{(2k+1)(3k+1)k^2 \binom{2k}k^2 \binom{3k}k}& = 6-9K, \end{align} (1.82)
    \begin{align} \sum\limits_{k = 2}^\infty \frac{(45k^2+5k-2)(-27)^{k-1}}{(k-1)(2k+1)(3k+1)k^3 \binom{2k}k^2 \binom{3k}k}& = \frac{37-48K}{16}, \end{align} (1.83)
    \begin{align} \sum\limits_{k = 1}^\infty \frac{(98k^2-21k-8)81^k}{(2k+1)(4k+1)k^3 \binom{2k}k^2 \binom{4k}{2k}}& = 216-20\pi^2, \end{align} (1.84)
    \begin{align} \sum\limits_{k = 2}^\infty \frac{(1967k^2-183k-104)81^k}{(k-1)(2k+1)(4k+1)k^3 \binom{2k}k^2 \binom{4k}{2k}}& = \frac{20000\pi^2-190269}{120}, \end{align} (1.85)
    \begin{align} \sum\limits_{k = 1}^\infty \frac{(46k^2+3k-1)(-144)^k}{(2k+1)(4k+1)k^3 \binom{2k}k^2 \binom{4k}{2k}}& = 72- \frac{225}2K, \end{align} (1.86)
    \begin{align} \sum\limits_{k = 2}^\infty \frac{(343k^2+18k-16)(-144)^k}{(k-1)(2k+1)(4k+1)k^3 \binom{2k}k^2 \binom{4k}{2k}}& = \frac{9375K-7048}{10}, \end{align} (1.87)

    where

    G: = \sum\limits_{k = 0}^\infty \frac{(-1)^k}{(2k+1)^2}\ \ \mathit{\text{and}}\ \ K: = \sum\limits_{k = 0}^\infty \frac{( \frac k3)}{k^2}.

    For k = j+1\in{\Bbb Z}^+ , it is easy to see that

    (k-1)k \binom{2k}k = 2(2j+1)j \binom{2j}j.

    Thus, for any a,b,c,m\in{\Bbb Z} with 0<|m| \leq 64 , we have

    \sum\limits_{j = 1}^\infty \frac{(aj^2+bj+c)m^j}{(2j+1)^3j^3 \binom{2j}j^3} = \frac 8m\sum\limits_{k = 2}^\infty \frac{(a(k-1)^2+b(k-1)+c)m^k}{(k-1)^3k^3 \binom{2k}k^3}.

    For example, (1.77) has the following equivalent form

    \sum\limits_{k = 2}^\infty \frac{(2k-1)(3k-2)16^k}{(k-1)^3k^3 \binom{2k}k^3} = \pi^2-8.\;\;\;\;\;\;\;\;\;\;\;(1.77')

    In contrast with the Domb numbers, we introduce a new kind of numbers

    S_n: = \sum\limits_{k = 0}^n \binom nk^2T_kT_{n-k}\ \ (n = 0,1,2,\ldots).

    The values of S_n\ (n = 0,\ldots,10) are

    1,\, 2,\, 10,\, 68,\, 586,\, 5252,\, 49204,\, 475400,\, 4723786,\, 47937812,\, 494786260

    respectively. We may extend the numbers S_n\ (n\in{\Bbb N}) further. For b,c\in{\Bbb Z} , we define

    S_n(b,c): = \sum\limits_{k = 0}^n \binom nk^2T_k(b,c)T_{n-k}(b,c)\ \ (n = 0,1,2,\ldots).

    Note that S_n(1,1) = S_n and S_n(2,1) = D_n for all n\in{\Bbb N} .

    Now we state our third theorem.

    Theorem 1.3. We have

    \begin{align} \sum\limits_{k = 0}^\infty \frac{7k+3}{24^k}S_k(1,-6)& = \frac{15}{\sqrt2\,\pi}, \end{align} (1.88)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{12k+5}{(-28)^k}S_k(1,7)& = \frac{6\sqrt7}{\pi}, \end{align} (1.89)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{84k+29}{80^k}S_k(1,-20)& = \frac{24\sqrt{15}}{\pi}, \end{align} (1.90)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{3k+1}{(-100)^k}S_k(1,25)& = \frac{25}{8\pi}, \end{align} (1.91)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{228k+67}{224^k}S_k(1,-56)& = \frac{80\sqrt7}{\pi}, \end{align} (1.92)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{399k+101}{(-676)^k}S_k(1,169)& = \frac{2535}{8\pi}, \end{align} (1.93)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{2604k+563}{2600^k}S_k(1,-650)& = \frac{850\sqrt{39}}{3\pi}, \end{align} (1.94)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{39468k+7817}{(-6076)^k}S_k(1,1519)& = \frac{4410\sqrt{31}}{\pi}, \end{align} (1.95)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{41667k+7879}{9800^k}S_k(1,-2450)& = \frac{40425\sqrt6}{4\pi}, \end{align} (1.96)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{74613k+10711}{(-530^2)^k}S_k(1,265^2)& = \frac{1615175}{48\pi}. \end{align} (1.97)

    Remark 1.1. The author found the 10 series in Theorem 1.3 in Nov. 2019.

    We shall prove Theorems 1.1-1.3 in the next section. In Sections 3-10, we propose 117 new conjectural series for powers of \pi involving generalized central trinomial coefficients. In particular, we will present in Section 3 four conjectural series for 1/\pi of the following new type:

    Type Ⅷ. \sum_{k = 0}^\infty \frac{a+dk}{m^k}T_k(b,c)T_{k}(b_*,c_*)^2,

    where a,b,b_*,c,c_*,d,m are integers with mbb_*cc_*d(b^2-4c)(b_*^2-4c_*)(b^2c_*-b_*^2c)\not = 0 .

    Unlike Ramanujan-type series given by others, all our series for 1/\pi of types Ⅰ-Ⅷ have the general term involving a product of three generalized central trinomial coefficients.

    Motivated by the author's effective way to find new series for 1/\pi (cf. Sun [35]), we formulate the following general characterization of rational Ramanujan-type series for 1/\pi via congruences.

    Conjecture 1.1 (General Criterion for Rational Ramanujan-type Series for 1/\pi ). Suppose that the series \sum_{k = 0}^\infty \frac{bk+c}{m^k}a_k converges, where (a_k)_{k{\geq}0} is an integer sequence and b,c,m are integers with bcm\not = 0 . Suppose also that there are no a,x \in \mathbb{Z} such that {a_n} = a(_n^{2n})\sum\nolimits_{k = 0}^n ( _k^{2k}{)^2}(_{n - k}^{2(n - k)}){x^{n - k}} for all n \in \mathbb{N}. Let r\in\{1,2,3\} and let {d_1}, \ldots ,{d_r} \in {\mathbb{Z}^ + } with \sqrt{d_i/d_j} irrational for all distinct i,j\in\{1,\ldots,r\} . Then

    \begin{equation} \sum\limits_{k = 0}^\infty \frac{bk+c}{m^k}a_k = \frac{\sum\limits_{i = 1}^r\lambda_i\sqrt{d_i}}{\pi} \end{equation} (1.98)

    for some nonzero rational numbers \lambda_1,\ldots,\lambda_r if and only if there are positive integers d_j\ (r<j \leq 3) and rational numbers c_1,c_2,c_3 with \prod_{i = 1}^rc_i\not = 0 , such that for any prime p>3 with p\nmid m\prod_{i = 1}^rd_i and c_1,c_2,c_3\in{\Bbb Z}_p we have

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{bk+c}{m^k}a_k{\equiv} p\left(\sum\limits_{i = 1}^rc_i \left( \frac{{\varepsilon}_id_i}p \right)+\sum\limits_{r < j \leq 3}c_j \left( \frac{d_j}p \right)\right) \ ({\rm{mod}}\ {p^2}), \end{equation} (1.99)

    where {\varepsilon}_i\in\{\pm1\} , {\varepsilon}_i = -1 if d_i is not an integer square, and c_2 = c_3 = 0 if r = 1 and {\varepsilon}_1 = 1 .

    For a Ramanujan-type series of the form (1.98), we call r its rank. We believe that there are some Ramanujan-type series of rank three but we have not yet found such a series.

    Conjecture 1.2. Let (a_n)_{n{\geq}0} be an integer sequence with no a,x \in \mathbb{Z} such that {a_n} = a(_n^{2n})\sum\nolimits_{k = 0}^n ( _k^{2k}{)^2}(_{n - k}^{2(n - k)}){x^{n - k}} for all n \in \mathbb{N}, and let b,c,m,d_1,d_2,d_3\in{\Bbb Z} with bcm\not = 0 . Assume that \lim_{n\to+\infty}\root n\of{|a_n|} = r<|m| , and \pi\sum_{k = 0}^\infty \frac{bk+c}{m^k}a_k is an algebraic number. Suppose that c_1,c_2,c_3 \in \mathbb{Q} with c_1+c_2+c_3 = a_0c , and

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{bk+c}{m^k}a_k{\equiv} p \left(c_1 \left( \frac{d_1}p \right)+c_2 \left( \frac{d_2}p \right)+c_3 \left( \frac{d_3}p \right) \right)\ ({\rm{mod}}\ {p^2}) \end{equation} (1.100)

    for all primes p>3 with p\nmid d_1d_2d_3m and c_1,c_2,c_3\in{\Bbb Z}_p . Then, for any prime p>3 with p\nmid m , c_1,c_2,c_3\in{\Bbb Z}_p and ( \frac{d_1}p) = ( \frac{d_2}p) = ( \frac{d_3}p) = {\delta}\in\{\pm1\} , we have

    \begin{equation*} \label{pn} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{bk+c}{m^k}a_k-p{\delta}\sum\limits_{k = 0}^{n-1} \frac{bk+c}{m^k}a_k\right)\in{\Bbb Z}_p \ \ \mathit{\text{for all}}\ n\in{\Bbb Z}^+. \end{equation*}

    Joint with the author's PhD student Chen Wang, we pose the following conjecture.

    Conjecture 1.3 (Chen Wang and Z.-W. Sun). Let (a_k)_{k{\geq}0} be an integer sequence with a_0 = 1 . Let b,c,m,d_1,d_2,d_3\in{\Bbb Z} with bm\not = 0 , and let c_1,c_2,c_3 be rational numbers. If \pi\sum_{k = 0}^\infty \frac{bk+c}{m^k}a_k is an algebraic number, and the congruence (1.100) holds for all primes p>3 with p\nmid d_1d_2d_3m and c_1,c_2,c_3\in{\Bbb Z}_p , then we must have c_1+c_2+c_3 = c.

    Remark 1.2. The author [39,Conjecture 1.1(i)] conjectured that

    \sum\limits_{k = 0}^{p-1}(8k+5)T_k^2{\equiv} 3p \left( \frac{-3}p \right)\ ({\rm{mod}}\ {p^2})

    for any prime p>3 , which was confirmed by Y.-P. Mu and Z.-W. Sun [26]. This is not a counterexample to Conjecture 1.3 since \sum_{k = 0}^\infty(8k+5)T_k^2 diverges.

    All the new series and related congruences in Sections 3-9 support Conjectures 1.1-1.3. We discover the conjectural series for 1/\pi in Sections 3-9 based on the author's previous \mathsf{Philosophy about Series for} 1/\pi } stated in [35], the PSLQ algorithm to discover integer relations (cf. [13]), and the following \mathsf{Duality Principle} based on the author's experience and intuition.

    Conjecture 1.4 (Duality Principle). Let (a_k)_{k{\geq}0} be an integer sequence such that

    \begin{equation} a_{k}{\equiv} \left( \frac dp \right)D^ka_{p-1-k}\ ({\rm{mod}}\ p) \end{equation} (1.101)

    for any prime p\nmid 6dD and k\in\{0,\ldots,p-1\} , where d and D are fixed nonzero integers. If a_0,a_1,\ldots are not all zero and m is a nonzero integer such that

    \sum\limits_{k = 0}^\infty \frac{bk+c}{m^k}a_k = \frac{\lambda_1\sqrt{d_1}+\lambda_2\sqrt{d_2}+\lambda_3\sqrt{d_3}}{\pi}

    for some b,d_1,d_2,d_3\in{\Bbb Z}^+ , c\in{\Bbb Z} and \lambda_1,\lambda_2,\lambda_3\in{\Bbb Q} , then m divides D , and

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{a_k}{m^k}{\equiv} \left( \frac dp \right)\sum\limits_{k = 0}^{p-1} \frac{a_k}{(D/m)^k}\ ({\rm{mod}}\ {p^2}) \end{equation} (1.102)

    for any prime p>3 with p\nmid dD .

    Remark 1.3 (ⅰ) For any prime p>3 with p\nmid dDm , the congruence (1.102) holds modulo p by (1.101) and Fermat's little theorem. We call \sum_{k = 0}^{p-1}a_k/( \frac Dm)^k the dual of the sum \sum_{k = 0}^{p-1}a_k/m^k .

    (ⅱ) For any b,c\in{\Bbb Z} and odd prime p\nmid b^2-4c , it is known (see, e.g., [39,Lemma 2.2]) that

    \begin{equation} T_k(b,c){\equiv} \left( \frac{b^2-4c}p \right)(b^2-4c)^kT_{p-1-k}(b,c)\ ({\rm{mod}}\ p) \end{equation} (1.103)

    for all k = 0,1,\ldots,p-1 .

    For a series \sum_{k = 0}^\infty a_k with a_0,a_1,\ldots real numbers, if \lim_{k\to+\infty}a_{k+1}/a_k = r\in(-1,1) then we say that the series converge at a geometric rate with ratio r . Except for (7.1) , all other conjectural series in Sections 3-9 converge at geometric rates and thus one can easily check them numerically via a computer.

    In Section 10, we pose two curious conjectural series for \pi involving the central trinomial coefficients.

    Lemma 2.1. Let m\not = 0 and n{\geq}0 be integers. Then

    \begin{align} \sum\limits_{k = 0}^n \frac{((64-m)k^3-32k^2-16k+8) \binom{2k}k^3}{(2k-1)^2m^k} = & \frac{8(2n+1)}{m^n} \binom{2n}n^3, \end{align} (2.1)
    \begin{align} \sum\limits_{k = 0}^n \frac{((64-m)k^3-96k^2+48k-8) \binom{2k}k^3}{(2k-1)^3m^k} = & \frac 8{m^n} \binom{2n}n^3, \end{align} (2.2)
    \begin{align} \sum\limits_{k = 0}^n \frac{((108-m)k^3-54k^2-12k+6) \binom{2k}k^2 \binom{3k}k}{(2k-1)(3k-1)m^k} = & \frac{6(3n+1)}{m^n} \binom{2n}n^2 \binom{3n}n, \end{align} (2.3)
    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^n \frac{((108-m)k^3-(54+m)k^2-12k+6) \binom{2k}k^2 \binom{3k}k}{(k+1)(2k-1)(3k-1)m^k} \\&\qquad\qquad\qquad = \frac{6(3n+1)}{(n+1)m^n} \binom{2n}n^2 \binom{3n}n, \end{aligned} \end{equation} (2.4)
    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^n \frac{((256-m)k^3-128k^2-16k+8) \binom{2k}k^2 \binom{4k}{2k}}{(2k-1)(4k-1)m^k} \\&\qquad\qquad\qquad = \frac{8(4n+1)}{m^n} \binom{2n}n^2 \binom{4n}{2n}, \end{aligned} \end{equation} (2.5)
    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^n \frac{((256-m)k^3-(128+m)k^2-16k+8) \binom{2k}k^2 \binom{4k}{2k}}{(k+1)(2k-1)(4k-1)m^k} \\&\qquad\qquad\qquad = \frac{8(4n+1)}{(n+1)m^n} \binom{2n}n^2 \binom{4n}{2n}, \end{aligned} \end{equation} (2.6)
    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^n \frac{((1728-m)k^3-864k^2-48k+24) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(2k-1)(6k-1)m^k} \\&\qquad\qquad\qquad = \frac{24(6n+1)}{m^n} \binom{2n}n \binom{3n}n \binom{6n}{3n}, \end{aligned} \end{equation} (2.7)
    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^n \frac{((1728-m)k^3-(864+m)k^2-48k+24) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(k+1)(2k-1)(6k-1)m^k} \\&\qquad\qquad\qquad = \frac{24(6n+1)}{(n+1)m^n} \binom{2n}n \binom{3n}n \binom{6n}{3n}. \end{aligned} \end{equation} (2.8)

    Remark 2.1. The eight identities in Lemma 2.1 can be easily proved by induction on n . In light of Stirling's formula, n!\sim\sqrt{2\pi n}(n/e)^n as n\to+\infty , we have

    \begin{gather} \binom{2n}n\sim \frac{4^n}{\sqrt{n\pi}},\ \ \binom{2n}n \binom{3n}n\sim \frac{\sqrt3\, 27^n}{2n\pi}, \end{gather} (2.9)
    \begin{gather} \binom{2n}n \binom{4n}{2n}\sim \frac{64^n}{\sqrt2\, n\pi},\ \ \binom{3n}n \binom{6n}n\sim \frac{432^n}{2n\pi}. \end{gather} (2.10)

    Proof of Theorem 1.1. Just apply Lemma 2.1 and the 36 known rational Ramanujan-type series listed in [16]. Let us illustrate the proofs by showing (1.1), (1.2), (1.71) and (1.72) in details.

    By (2.1) with m = -64 , we have

    \sum\limits_{k = 0}^\infty \frac{(16k^3-4k^2-2k+1) \binom{2k}k^3}{(2k-1)^2(-64)^k} = \lim\limits_{n\to+\infty} \frac{2n+1}{(-64)^n} \binom{2n}n^3 = 0.

    Note that

    16k^3-4k^2-2k+1 = (4k+1)(2k-1)^2+2k(4k-1)

    and recall Bauer's series

    \sum\limits_{k = 0}^\infty(4k+1) \frac{ \binom{2k}k^3}{(-64)^k} = \frac2{\pi}.

    So, we get

    \sum\limits_{k = 0}^\infty \frac{k(4k-1) \binom{2k}k^3}{(2k-1)^2(-64)^k} = - \frac12\sum\limits_{k = 0}^\infty(4k+1) \frac{ \binom{2k}k^3}{(-64)^k} = - \frac1{\pi}.

    This proves (1.1). By (2.2) with m = -64 , we have

    \sum\limits_{k = 0}^n \frac{(4k-1)(4k^2-2k+1) \binom{2k}k^3}{(2k-1)^3(-64)^k} = \frac{ \binom{2n}n^3}{(-64)^n}

    and hence

    \sum\limits_{k = 0}^\infty \frac{(2k(2k-1)(4k-1)+4k-1) \binom{2k}k^3}{(2k-1)^3(-64)^k} = \lim\limits_{n\to+\infty} \frac{ \binom{2n}n^3}{(-64)^n} = 0.

    Combining this with (1.1) we immediately get (1.2) .

    In view of (2.7) with m = -640320^3 , we have

    \begin{align*} &\sum\limits_{k = 0}^n \frac{(10939058860032072k^3-36k^2-2k+1) \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(2k-1)(6k-1)(-640320)^{3k}} \\ = & \frac{6n+1}{(-640320)^{3n}} \binom{2n}n \binom{3n}n \binom{6n}{3n}. \end{align*}

    and hence

    \sum\limits_{k = 0}^\infty \frac{(10939058860032072k^3-36k^2-2k+1) \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(2k-1)(6k-1)(-640320)^{3k}} = 0.

    In 1987, D. V. Chudnovsky and G. V. Chudnovsky [8] got the formula

    \sum\limits_{k = 0}^\infty \frac{545140134k+13591409}{(-640320)^{3k}} \binom{2k}k \binom{3k}k \binom{6k}{3k} = \frac{3\times53360^2}{2\pi\sqrt{10005}},

    which enabled them to hold the world record for the calculation of \pi during 1989–1994. Note that

    \begin{align*} &10939058860032072k^3-36k^2-2k+1 \\ = &1672209(2k-1)(6k-1)(545140134k+13591409) \\&+426880 (16444841148 k^2 - 1709536232 k-53241371 ) \end{align*}

    and hence

    \begin{align*} &\sum\limits_{k = 0}^\infty \frac{(16444841148 k^2 - 1709536232 k-53241371 ) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(2k-1)(6k-1)(-640320)^{3k}} \\ = &- \frac{1672209}{426880}\times \frac{3\times53360^2}{2\pi\sqrt{10005}} = -1672209 \frac{\sqrt{10005}}{\pi}. \end{align*}

    This proves (1.71) .

    By (2.8) with m = -640320^3 , we have

    \begin{align*} &\sum\limits_{k = 0}^n \frac{(10939058860032072k^3 +10939058860031964k^2-2k+1) \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(k+1)(2k-1)(6k-1)(-640320)^{3k}} \\&\qquad\qquad = \frac{6n+1}{(n+1)(-640320)^{3n}} \binom{2n}n \binom{3n}n \binom{6n}{3n} \end{align*}

    and hence

    \sum\limits_{k = 0}^\infty \frac{(10939058860032072k^3 +10939058860031964k^2-2k+1) \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(k+1)(2k-1)(6k-1)(-640320)^{3k}} = 0.

    Note that

    \begin{align*} &2802461(10939058860032072k^3 +10939058860031964k^2-2k+1) \\ = &1864188626454(k+1)(16444841148 k^2 - 1709536232 k-53241371)+5P(k). \end{align*}

    Therefore, with the help of (1.71) we get

    \begin{align*} &\sum\limits_{k = 0}^\infty \frac{P(k) \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(k+1)(2k-1)(6k-1)(-640320)^{3k}} \\ = &- \frac{1864188626454}5\times(-1672209) \frac{\sqrt{10005}}{\pi} = 18\times557403^3 \frac{\sqrt{10005}}{5\pi}. \end{align*}

    This proves (1.72) .

    The identities (1.3)–(1.70) can be proved similarly.

    Lemma 2.2. Let m and n>0 be integers. Then

    \begin{align} \sum\limits_{k = 1}^n \frac{m^k((m-64)k^3-32k^2+16k+8)}{(2k+1)^2k^3 \binom{2k}k^3} = & \frac{m^{n+1}}{(2n+1)^2 \binom{2n}n^3}-m, \end{align} (2.11)
    \begin{align} \sum\limits_{k = 1}^n \frac{m^k((m-64)k^3-96k^2-48k-8)}{(2k+1)^3k^3 \binom{2k}k^3} = & \frac{m^{n+1}}{(2n+1)^3 \binom{2n}n^3}-m, \end{align} (2.12)
    \begin{align} \sum\limits_{k = 1}^n \frac{m^k((m-108)k^3-54k^2+12k+6)}{(2k+1)(3k+1)k^3 \binom{2k}k^2 \binom{3k}k} = & \frac{m^{n+1}}{(2n+1)(3n+1) \binom{2n}n^2 \binom{3n}n}-m, \end{align} (2.13)
    \begin{equation} \begin{aligned} &\sum\limits_{1 < k \leq n} \frac{m^k((m-108)k^3-(54+m)k^2+12k+6)}{(k-1)(2k+1)(3k+1)k^3 \binom{2k}k^2 \binom{3k}k} \\&\qquad\qquad = \frac{m^{n+1}}{n(2n+1)(3n+1) \binom{2n}n^2 \binom{3n}n}- \frac{m^2}{144}, \end{aligned} \end{equation} (2.14)
    \begin{equation} \begin{aligned} &\sum\limits_{k = 1}^n \frac{m^k((m-256)k^3-128k^2+16k+8)}{(2k+1)(4k+1)k^3 \binom{2k}k^2 \binom{4k}{2k}} \\&\qquad\qquad = \frac{m^{n+1}}{(2n+1)(4n+1) \binom{2n}n^2 \binom{4n}{2n}}-m, \end{aligned} \end{equation} (2.15)
    \begin{equation} \begin{aligned} &\sum\limits_{1 < k \leq n} \frac{m^k((m-256)k^3-(128+m)k^2+16k+8)}{(k-1)(2k+1)(4k+1)k^3 \binom{2k}k^2 \binom{4k}{2k}} \\&\qquad\qquad\quad = \frac{m^{n+1}}{n(2n+1)(4n+1) \binom{2n}n^2 \binom{4n}{2n}}- \frac{m^2}{360}. \end{aligned} \end{equation} (2.16)

    Remark 2.2. This can be easily proved by induction on n .

    Proof of Theorem 1.2. We just apply Lemma 2.2 and use the known identities:

    \begin{gather*} \sum\limits_{k = 1}^\infty \frac{21k-8}{k^3 \binom{2k}k^3} = \frac{\pi^2}6, \ \ \sum\limits_{k = 1}^\infty \frac{(4k-1)(-64)^k}{k^3 \binom{2k}k^3} = -16G, \\\sum\limits_{k = 1}^\infty \frac{(3k-1)(-8)^k}{k^3 \binom{2k}k^3} = -2G, \ \ \sum\limits_{k = 1}^\infty \frac{(3k-1)16^k}{k^3 \binom{2k}k^3} = \frac{\pi^2}2, \\\sum\limits_{k = 1}^\infty \frac{(15k-4)(-27)^{k-1}}{k^3 \binom{2k}k^2 \binom{3k}k} = K,\ \ \sum\limits_{k = 1}^\infty \frac{(5k-1)(-144)^k}{k^3 \binom{2k}k^2 \binom{4k}{2k}} = - \frac{45}2K, \\\sum\limits_{k = 1}^\infty \frac{(11k-3)64^k}{k^2 \binom{2k}k^2 \binom{3k}k} = 8\pi^2,\ \sum\limits_{k = 1}^\infty \frac{(10k-3)8^k}{k^3 \binom{2k}k^2 \binom{3k}k} = \frac{\pi^2}2,\ \ \sum\limits_{k = 1}^\infty \frac{(35k-8)81^k}{k^3 \binom{2k}k^2 \binom{4k}{2k}} = 12\pi^2. \end{gather*}

    Here, the first identity was found and proved by D. Zeilberger [52] in 1993. The second, third and fourth identities were obtained by J. Guillera [17] in 2008. The fifth identity on K was conjectured by Sun [33] and later confirmed by K. Hessami Pilehrood and T. Hessami Pilehrood [22] in 2012. The last four identities were also conjectured by Sun [33], and they were later proved in the paper [18,Theorem 3] by Guillera and M. Rogers.

    Let us illustrate our proofs by proving (1.77)-(1.79) and (1.82)-(1.83) in details.

    In view of (2.11) with m = 16 , we have

    \sum\limits_{k = 1}^n \frac{16^k(-48k^3-32k^2+16k+8)}{(2k+1)^2k^3 \binom{2k}k^3} = \frac{16^{n+1}}{(2n+1)^2 \binom{2n}n^3}-16

    for all n\in{\Bbb Z}^+ , and hence

    \sum\limits_{k = 1}^\infty \frac{16^k(6k^3+4k^2-2k-1)}{(2k+1)^2k^3 \binom{2k}k^3} = \lim\limits_{n\to+\infty} \left( \frac{-2\times16^n}{(2n+1)^2 \binom{2n}n^3}+2 \right) = 2.

    Notice that

    2(6k^3+4k^2-2k-1) = (2k+1)^2(3k-1)-(3k+1).

    So we have

    -\sum\limits_{k = 1}^\infty \frac{(3k+1)16^k}{(2k+1)^2k^3 \binom{2k}k^3} = 2\times2-\sum\limits_{k = 1}^\infty \frac{(3k-1)16^k}{k^3 \binom{2k}k^3} = 4- \frac{\pi^2}2

    and hence (1.77) holds.

    By (2.11) with m = -64 , we have

    \sum\limits_{k = 1}^n \frac{(-64)^k(-128k^3-32k^2+16k+8)}{(2k+1)^2k^3 \binom{2k}k^3} = \frac{(-64)^{n+1}}{(2n+1)^2 \binom{2n}n^3}+64

    for all n\in{\Bbb Z}^+ , and hence

    \sum\limits_{k = 1}^\infty \frac{(-64)^k(16k^3+4k^2-2k-1)}{(2k+1)^2k^3 \binom{2k}k^3} = -8+\lim\limits_{n\to+\infty} \frac{8(-64)^n}{(2n+1)^2 \binom{2n}n^3} = -8.

    Since 16k^3+4k^2-2k-1 = (4k-1)(2k+1)^2-2k(4k+1) and

    \sum\limits_{k = 1}^\infty \frac{(4k-1)(-64)^k}{k^3 \binom{2k}k^3} = -16G,

    we see that

    -16G-2\sum\limits_{k = 1}^\infty \frac{(4k+1)(-64)^k}{(2k+1)^2k^2 \binom{2k}k^3} = -8

    and hence (1.78) holds. In light of (2.12) with m = -64 , we have

    \sum\limits_{k = 1}^n \frac{(-64)^k(-128k^3-96k^2-48k-8)}{(2k+1)^3k^3 \binom{2k}k^3} = \frac{(-64)^{n+1}}{(2n+1)^3 \binom{2n}n^3}+64

    for all n\in{\Bbb Z}^+ , and hence

    \sum\limits_{k = 1}^\infty \frac{(-64)^k(16k^3+12k^2+6k+1)}{(2k+1)^3k^3 \binom{2k}k^3} = -8+\lim\limits_{n\to+\infty} \frac{8(-64)^n}{(2n+1)^3 \binom{2n}n^3} = -8.

    Since 16k^3+12k^2+6k+1 = 2k(2k+1)(4k+1)+(4k+1) , with the aid of (1.78) we obtain

    \sum\limits_{k = 1}^\infty \frac{(4k+1)(-64)^k}{(2k+1)^3k^3 \binom{2k}k^3} = -8-2(4-8G) = 16G-16.

    This proves (1.79).

    By (2.13) with m = -27 , we have

    \sum\limits_{k = 1}^\infty \frac{(45k^3+18k^2-4k-2)(-27)^k}{(2k+1)(3k+1)k^3 \binom{2k}k^2 \binom{3k}k} = -9.

    As

    2(45k^3+18k^2-4k-2) = (15k-4)(2k+1)(3k+1)-3k(5k+1)

    and

    \sum\limits_{k = 1}^\infty \frac{(15k-4)(-27)^k}{k^3 \binom{2k}k^2 \binom{3k}k} = -27K,

    we see that (1.82) follows. By (2.14) with m = -27 , we have

    -3\sum\limits_{k = 2}^\infty \frac{(-27)^k(45k^3+9k^2-4k-2)}{(k-1)(2k+1)(3k+1)k^3 \binom{2k}k^2 \binom{3k}k} = - \frac{(-27)^2}{144}

    and hence

    \sum\limits_{k = 2}^\infty \frac{(-27)^k(45k^3+9k^2-4k-2)}{(k-1)(2k+1)(3k+1)k^3 \binom{2k}k^2 \binom{3k}k} = \frac{27}{16}.

    As

    45k^3+9k^2-4k-2 = 9(k-1)k(5k+1)+(45k^2+5k-2),

    with the aid of (1.82) we get

    \begin{align*} &\sum\limits_{k = 2}^\infty \frac{(-27)^k(45k^2+5k-2)}{(k-1)(2k+1)(3k+1)k^3 \binom{2k}k^2 \binom{3k}k} \\ = & \frac{27}{16}-9 \left(6-9K- \frac{6(-27)}{12^2} \right) = \frac{27}{16}(48K-37) \end{align*}

    and hence (1.83) follows.

    Other identities in Theorem 1.2 can be proved similarly.

    For integers n{\geq} k{\geq}0 , we define

    \begin{equation} s_{n,k}: = \frac1{ \binom nk}\sum\limits_{i = 0}^{k} \binom n{2i} \binom n{2(k-i)} \binom{2i}i \binom{2(k-i)}{k-i}. \end{equation} (2.17)

    For n\in{\Bbb N} we set

    \begin{equation} t_n: = \sum\limits_{0 < k \leq n} \binom{n-1}{k-1}(-1)^k4^{n-k}s_{n+k,k}. \end{equation} (2.18)

    Lemma 2.3. For any n\in{\Bbb N} , we have

    \begin{equation} \sum\limits_{k = 0}^n \binom nk(-1)^k4^{n-k}s_{n+k,k} = f_n \end{equation} (2.19)

    and

    \begin{equation} (2n+1)t_{n+1}+8nt_n = (2n+1)f_{n+1}-4(n+1)f_n, \end{equation} (2.20)

    where f_n denotes the Franel number \sum_{k = 0}^n \binom nk^3 .

    Proof. For n,i,k\in{\Bbb N} with i \leq k , we set

    F(n,i,k) = {n \choose k} \frac{(-1)^k 4^{n-k}}{ \binom{n+k}k} {n+k \choose 2i}{2i \choose i} {n+k \choose 2(k-i)}{2(k-i) \choose k-i}.

    By the telescoping method for double summation [7], for

    {\mathcal F}(n,i,k): = F(n,i,k) + \frac{7n^2+21n+16}{8(n+1)^2} F(n+1,i,k) - \frac{(n+2)^2}{8(n+1)^2} F(n+2,i,k)

    with 0 \leq i \leq k , we find that

    {\mathcal F}(n,i,k) = (G_1(n,i+1,k)-G_1(n,i,k)) + (G_2(n,i,k+1)-G_2(n,i,k)),

    where

    G_1(n,i,k): = \frac{i^2(-k+i-1)(-1)^{k+1} 4^{n-k} n!^2 (n+k)! p(n,i,k)}{(2n+3)(n-k+2)!(n+k+2-2i)!(n-k+2i)!(i!(k-i+1)!)^2}

    and

    G_2(n,i,k): = \frac{ 2(k-i)(-1)^{k} 4^{n-k} n!^2 (n+k)! q(n,i,k)} {(2n+3) (n-k+2)! (n+k-2i+1)! (n-k+2i+2)! (i!(k-i)!)^2},

    with (-1)!,(-2)!,\ldots regarded as +\infty , and p(n,i,k) and q(n,i,k) given by

    \begin{align*} &-10n^4+(i-10k-68)n^3+(-24i^2+(32k+31)i+2k^2-67k-172)n^2\\ &+(36i^3+(-68k-124)i^2+(39k^2+149k+104)i+2k^3-8k^2-145k-192)n\\ &+60i^3+(-114k-140)i^2+(66k^2+160k+92)i+3k^3-19k^2-102k-80 \end{align*}

    and

    \begin{align*} &10(i-k)n^4+(-20i^2+(46k+47)i-6k^2-47k)n^3\\ +&(72i^3+(-60k-38)i^2+(22k^2+145k+90)i+4k^3-11k^2-90k)n^2\\ +&(72k+156)i^3n+(-72k^2-60k-10)i^2n+(18k^3+4k^2+165k+85)in \\+&(22k^3-5k^2-85k)n +(120k+60)i^3+(-120k^2+68k-4)i^2 \\+&(30k^3-56k^2+86k+32)i+26k^3-6k^2-32k \end{align*}

    respectively. Therefore

    \begin{align*} &\sum\limits_{k = 0}^{n+2} \sum\limits_{i = 0}^k {\mathcal F}(n,i,k) \\ = & \sum\limits_{k = 0}^{n+2} (G_1(n,k+1,k)-G_1(n,0,k)) + \sum\limits_{i = 0}^{n+2} (G_2(n,i,n+3)-G_2(n,i,i)) \\ = &\sum\limits_{k = 0}^{n+2}(0-0)+\sum\limits_{i = 0}^{n+2}(0-0) = 0, \end{align*}

    and hence

    u(n): = \sum\limits_{k = 0}^n {n \choose k} (-1)^k 4^{n-k} s_{n+k,k}

    satisfies the recurrence relation

    8(n+1)^2 u(n) + (7n^2+21n+16) u(n+1) - (n+2)^2 u(n+2) = 0.

    As pointed out by J. Franel [14], the Franel numbers satisfy the same recurrence. Note also that u(0) = f_0 = 1 and u(1) = f_1 = 2 . So we always have u(n) = f_n . This proves (2.19).

    The identity (2.20) can be proved similarly. In fact, if we use v(n) denote the left-hand side or the right-hand side of (2.20), then we have the recurrence

    \begin{align*} &8(n+1)(n+2)(18n^3+117n^2+249n+172)v(n) \\&+(126n^5+1197n^4+4452n^3+8131n^2+7350n+2656)v(n+1) \\ = &(n+3)^2(18n^3+63n^2+69n+22)v(n+2). \end{align*}

    In view of the above, we have completed the proof of Lemma 2.3.

    Lemma 2.4. For any c\in{\Bbb Z} and n\in{\Bbb N} , we have

    \begin{equation} S_n(4,c) = \sum\limits_{k = 0}^{\lfloor n/2\rfloor} \binom{n-k}k \binom{2(n-k)}{n-k}c^k4^{n-2k}s_{n,k}. \end{equation} (2.21)

    Proof. For each k = 0,\ldots,n , we have

    \begin{align*} T_k(4,c)T_{n-k}(4,c) = &\sum\limits_{i = 0}^{\lfloor k/2\rfloor} \binom {k}{2i} \binom{2i}i4^{k-2i}c^i \sum\limits_{j = 0}^{\lfloor(n-k)/2\rfloor} \binom{n-k}{2j} \binom{2j}j4^{n-k-2j}c^j \\ = &\sum\limits_{r = 0}^{\lfloor n/2\rfloor}c^r4^{n-2r}\sum\limits_{i,j\in{\Bbb N}\atop i+j = r} \binom k{2i} \binom{n-k}{2j} \binom{2i}i \binom{2j}j. \end{align*}

    If i,j\in{\Bbb N} and i+j = r \leq n/2 , then

    \begin{align*} \sum\limits_{k = 0}^n \binom nk^2 \binom{k}{2i} \binom{n-k}{2j} = & \binom n{2i} \binom n{2j}\sum\limits_{k = 2i}^{n-2j} \binom{n-2i}{k-2i} \binom{n-2j}{n-k-2j} \\ = & \binom n{2i} \binom n{2j} \binom{2n-2(i+j)}{n-2(i+j)} = \binom{2n-2r}n \binom n{2i} \binom n{2j} \end{align*}

    with the aid of the Chu-Vandermonde identity. Therefore

    \begin{align*} S_n(4,c) = &\sum\limits_{k = 0}^{\lfloor n/2\rfloor}c^k4^{n-2k} \binom{2n-2k}{n} \binom nks_{n,k} \\ = &\sum\limits_{k = 0}^{\lfloor n/2\rfloor}c^k4^{n-2k} \binom{2n-2k}{n-k} \binom{n-k}ks_{n,k}. \end{align*}

    This proves (2.21).

    Lemma 2.5. For k\in{\Bbb N} and l\in{\Bbb Z}^+ , we have

    \begin{equation} s_{k+l,k} \leq (2k+1)4^kl \binom{k+l}l. \end{equation} (2.22)

    Proof. Let n = k+l . Then

    \begin{align*} \binom nks_{n,k} \leq&\sum\limits_{i,j\in{\Bbb N}\atop i+j = k} \binom n{2i} \binom n{2j}\sum\limits_{i,j\in{\Bbb N}\atop i+j = k} \binom{2i}i \binom{2j}j \\ \leq&\sum\limits_{s,t\in{\Bbb N}\atop s+t = 2k} \binom ns \binom nt\sum\limits_{i,j\in{\Bbb N}\atop i+j = k}4^i4^j = \binom{2n}{2k}(k+1)4^k \end{align*}

    and

    \begin{align*} \frac{ \binom{2n}{2k}}{ \binom nk} = & \frac{ \binom{2n}{2l}}{ \binom nl} = \prod\limits_{j = 0}^{l-1} \frac{2(j+k)+1}{2j+1} \\ \leq&(2k+1)\prod\limits_{0 < j < l} \frac{2(j+k)}{2j} \\ = &(2k+1) \binom{k+l-1}{l-1}. \end{align*}

    Hence

    s_{k+l,k} \leq (k+1)4^k(2k+1) \frac{l}{k+l} \binom{k+l}l \leq (2k+1)4^kl \binom{k+l}l.

    This proves (2.22).

    To prove Theorem 1.3, we need an auxiliary theorem.

    Theorem 2.6. Let a and b be real numbers. For any integer m with |m|{\geq}94 , we have

    \begin{equation} \sum\limits_{n = 0}^\infty(an+b) \frac{S_n(4,-m)}{m^n} = \frac1{m+16}\sum\limits_{n = 0}^\infty(2a(m+4)n-8a+b(m+16)) \frac{ \binom{2n}nf_n}{m^n}. \end{equation} (2.23)

    Proof. Let N\in{\Bbb N} . In view of (2.21),

    \begin{align*} \sum\limits_{n = 0}^N \frac{S_n(4,-m)}{m^n} = &\sum\limits_{n = 0}^N \frac1{m^n}\sum\limits_{k = 0}^{\lfloor n/2\rfloor}(-m)^k4^{n-2k} \binom{2n-2k}{n-k} \binom{n-k}ks_{n,k} \end{align*}
    \begin{align*} = &\sum\limits_{l = 0}^N \frac{ \binom{2l}l}{m^l}\sum\limits_{k = 0}^{N-l} \binom lk(-1)^k4^{l-k}s_{l+k,k} \\ = &\sum\limits_{l = 0}^{\lfloor N/2\rfloor} \frac{ \binom{2l}l}{m^l}\sum\limits_{k = 0}^l \binom lk(-1)^k4^{l-k}s_{l+k,k} \\&+\sum\limits_{N/2 < l \leq N} \frac{ \binom{2l}l}{m^l}\sum\limits_{k = 0}^{N-l} \binom lk(-1)^k4^{l-k}s_{l+k,k} \end{align*}

    and similarly

    \begin{align*} \sum\limits_{n = 0}^N \frac{nS_n(4,-m)}{m^n} = &\sum\limits_{l = 0}^N \frac{ \binom{2l}l}{m^l}\sum\limits_{k = 0}^{N-l} \binom lk(-1)^k4^{l-k}(k+l)s_{l+k,k} \\ = &\sum\limits_{l = 0}^N \frac{l \binom{2l}l}{m^l}\sum\limits_{k = 0}^{N-l} \left( \binom lk+ \binom{l-1}{k-1} \right)(-1)^k4^{l-k}s_{l+k,k} \\ = &\sum\limits_{l = 0}^{\lfloor N/2\rfloor} \frac{l \binom{2l}l}{m^l}\sum\limits_{k = 0}^{l} \left( \binom lk+ \binom{l-1}{k-1} \right)(-1)^k4^{l-k}s_{l+k,k} \\&+\sum\limits_{N/2 < l \leq N} \frac{l \binom{2l}l}{m^l}\sum\limits_{k = 0}^{N-l} \left( \binom lk+ \binom{l-1}{k-1} \right)(-1)^k4^{l-k}s_{l+k,k}, \end{align*}

    where we consider \binom x{-1} as 0 .

    If l is an integer in the interval (N/2,N] , then by Lemma 2.5 we have

    \begin{align*} & \bigg|\sum\limits_{k = 0}^{N-l} \binom lk(-1)^k4^{l-k}s_{l+k,k} \bigg| \\ \leq&\sum\limits_{k = 0}^l \binom lk4^{l-k}s_{l+k,k} \leq\sum\limits_{k = 0}^l \binom lk4^{l-k}(2k+1)4^kl \binom{k+l}l \\ \leq& l(2l+1)4^l\sum\limits_{k = 0}^l \binom lk \binom{l+k}k = l(2l+1)4^lP_l(3), \end{align*}

    where P_l(x) is the Legendre polynomial of degree l . Thus

    \begin{align*} & \bigg|\sum\limits_{N/2 < l \leq N} \frac{ \binom{2l}l}{m^l}\sum\limits_{k = 0}^{N-l} \binom lk(-1)^k4^{l-k}s_{l+k,k} \bigg| \\ \leq&\sum\limits_{N/2 < l \leq N}l(2l+1) \left( \frac{16}m \right)^lP_l(3) \leq\sum\limits_{l > N/2}l(2l+1)P_l(3) \left( \frac{16}m \right)^l \end{align*}

    and

    \begin{align*} & \bigg|\sum\limits_{N/2 < l \leq N} \frac{l \binom{2l}l}{m^l}\sum\limits_{k = 0}^{N-l} \left( \binom lk+ \binom{l-1}{k-1} \right)(-1)^k4^{l-k}s_{l+k,k} \bigg| \\ \leq&\sum\limits_{N/2 < l \leq N} \frac{l4^l}{m^l}\sum\limits_{k = 0}^l 2 \binom lk4^{l-k}s_{l+k,k} \end{align*}
    \begin{align*} \leq&\sum\limits_{N/2 < l \leq N}2l^2(2l+1) \left( \frac{16}m \right)^lP_l(3) \\ \leq&2\sum\limits_{l > N/2}l^2(2l+1)P_l(3) \left( \frac{16}m \right)^l. \end{align*}

    Recall that

    P_l(3) = T_l(3,2)\sim \frac{(3+2\sqrt2)^{l+1/2}}{2\root4\of{2}\sqrt{l\pi}}\ \ \text{as}\ l\to+\infty.

    As |m|{\geq}94 , we have |m|>16(3+2\sqrt2)\approx 93.255 and hence

    \sum\limits_{l = 0}^\infty l^2(2l+1)P_l(3) \left( \frac{16}m \right)^l

    converges. Thus

    \lim\limits_{N\to+\infty}\sum\limits_{l > N/2}l(2l+1)P_l(3) \left( \frac{16}m \right)^l = 0 = \lim\limits_{N\to+\infty}\sum\limits_{l > N/2}l^2(2l+1)P_l(3) \left( \frac{16}m \right)^l

    and hence by the above we have

    \sum\limits_{n = 0}^\infty \frac{S_n(4,-m)}{m^n} = \sum\limits_{l = 0}^{\infty} \frac{ \binom{2l}l}{m^l}\sum\limits_{k = 0}^l \binom lk(-1)^k4^{l-k}s_{l+k,k}

    and

    \sum\limits_{n = 0}^\infty \frac{nS_n(4,-m)}{m^n} = \sum\limits_{l = 0}^{\infty} \frac{l \binom{2l}l}{m^l}\sum\limits_{k = 0}^{l} \left( \binom lk+ \binom{l-1}{k-1} \right)(-1)^k4^{l-k}s_{l+k,k}.

    Therefore, with the aid of (2.19), we obtain

    \begin{equation} \sum\limits_{n = 0}^\infty \frac{S_n(4,-m)}{m^n} = \sum\limits_{n = 0}^\infty \frac{ \binom{2n}n}{m^n}f_n \end{equation} (2.24)

    and

    \begin{equation} \sum\limits_{n = 0}^\infty \frac{nS_n(4,-m)}{m^n} = \sum\limits_{n = 0}^\infty \frac{n \binom{2n}n}{m^n}(f_n+t_n). \end{equation} (2.25)

    In view of (2.25) and (2.20),

    \begin{align*} &(m+16)\sum\limits_{n = 0}^\infty \frac{nS_n(4,-m)}{m^n} \\ = &\sum\limits_{n = 1}^\infty \frac{n \binom{2n}n}{m^{n-1}}(f_n+t_n)+16\sum\limits_{n = 0}^\infty \frac{n \binom{2n}n}{m^n}(f_n+t_n) \\ = &\sum\limits_{n = 0}^\infty \frac{(n+1) \binom{2n+2}{n+1}(f_{n+1}+t_{n+1})+16n \binom{2n}n(f_n+t_n)}{m^n} \\ = &2\sum\limits_{n = 0}^\infty \frac{ \binom{2n}n}{m^n} \left((2n+1)(f_{n+1}+t_{n+1})+8n(f_n+t_n) \right) \end{align*}
    \begin{align*} = &2\sum\limits_{n = 0}^\infty \frac{ \binom{2n}n}{m^n} \left(2(2n+1)f_{n+1}+4(n-1)f_n \right) \\ = &2\sum\limits_{n = 0}^\infty \frac{(n+1) \binom{2n+2}{n+1}f_{n+1}}{m^n}+8\sum\limits_{n = 0}^\infty \frac{(n-1) \binom{2n}nf_n}{m^n} \\ = &2\sum\limits_{n = 0}^\infty \frac{n \binom{2n}nf_n}{m^{n-1}}+8\sum\limits_{n = 0}^\infty \frac{(n-1) \binom{2n}nf_n}{m^n} = 2\sum\limits_{n = 0}^\infty((m+4)n-4) \frac{ \binom{2n}nf_n}{m^n}. \end{align*}

    Combining this with (2.24), we immediately obtain the desired (2.23).

    Proof of Theorem 1.3. Let a,b,m\in{\Bbb Z} with |m|{\geq}6 . Since

    4^nT_n(1,m) = \sum\limits_{k = 0}^{\lfloor n/2\rfloor} \binom n{2k} \binom{2k}k4^{n-2k}(16m)^k = T_n(4,16m)

    for any n\in{\Bbb N} , we have 4^nS_n(1,m) = S_n(4,16m) for all n\in{\Bbb N} . Thus, in light of Theorem 2.6,

    \begin{align*} &\sum\limits_{n = 0}^\infty(an+b) \frac{S_n(1,m)}{(-4m)^n} \\ = &\sum\limits_{n = 0}^\infty(an+b) \frac{S_n(4,16m)}{(-16m)^n} \\ = & \frac1{16-16m}\sum\limits_{n = 0}^\infty(2a(4-16m)n-8a+(16-16m)b) \frac{ \binom{2n}nf_n}{(-16m)^n} \\ = & \frac1{2(m-1)}\sum\limits_{n = 0}^\infty(a(4m-1)n+a+2b(m-1)) \frac{ \binom{2n}nf_n}{(-16m)^n}. \end{align*}

    Therefore

    \begin{align*} \sum\limits_{k = 0}^\infty \frac{7k+3}{24^k}S_k(1,-6) = & \frac52\sum\limits_{k = 0}^\infty \frac{5k+1}{96^k} \binom{2k}kf_k, \\\sum\limits_{k = 0}^\infty \frac{12k+5}{(-28)^k}S_k(1,7) = &3\sum\limits_{k = 0}^\infty \frac{9k+2}{(-112)^k} \binom{2k}kf_k,\\ \sum\limits_{k = 0}^\infty \frac{84k+29}{80^k}S_k(1,-20) = &27\sum\limits_{k = 0}^\infty \frac{6k+1}{320^k} \binom{2k}kf_k, \\\sum\limits_{k = 0}^\infty \frac{3k+1}{(-100)^k}S_k(1,25) = & \frac1{16}\sum\limits_{k = 0}^\infty \frac{99k+17}{(-400)^k} \binom{2k}kf_k, \\\sum\limits_{k = 0}^\infty \frac{228k+67}{224^k}S_k(1,-56) = &5\sum\limits_{k = 0}^\infty \frac{90k+13}{896^k} \binom{2k}kf_k, \\\sum\limits_{k = 0}^\infty \frac{399k+101}{(-676)^k}S_k(1,169) = & \frac{15}{16}\sum\limits_{k = 0}^\infty \frac{855k+109}{(-2704)^k} \binom{2k}kf_k, \\ \sum\limits_{k = 0}^\infty \frac{2604k+563}{2600^k}S_k(1,-650) = &51\sum\limits_{k = 0}^\infty \frac{102k+11}{10400^k} \binom{2k}kf_k,\\ \sum\limits_{k = 0}^\infty \frac{39468k+7817}{(-6076)^k}S_k(1,1519) = &135\sum\limits_{k = 0}^\infty \frac{585k+58}{(-24304)^k} \binom{2k}kf_k, \\\sum\limits_{k = 0}^\infty \frac{41667k+7879}{9800^k}S_k(1,-2450) = & \frac{297}2\sum\limits_{k = 0}^\infty \frac{561k+53}{39200^k} \binom{2k}kf_k, \\\sum\limits_{k = 0}^\infty \frac{74613k+10711}{(-530^2)^k}S_k(1,265^2) = & \frac{23}{32}\sum\limits_{k = 0}^\infty \frac{207621k+14903}{(-1060^2)^k} \binom{2k}kf_k. \end{align*}

    It is known (cf. [5,4]) that

    \begin{gather*} \sum\limits_{k = 0}^\infty \frac{5k+1}{96^k} \binom{2k}kf_k = \frac{3\sqrt2}{\pi}, \ \ \sum\limits_{k = 0}^\infty \frac{9k+2}{(-112)^k} \binom{2k}kf_k = \frac{2\sqrt7}{\pi}, \\ \sum\limits_{k = 0}^\infty \frac{6k+1}{320^k} \binom{2k}kf_k = \frac{8\sqrt{15}}{9\pi},\ \ \sum\limits_{k = 0}^\infty \frac{99k+17}{(-400)^k} \binom{2k}kf_k = \frac{50}{\pi}, \\\sum\limits_{k = 0}^\infty \frac{90k+13}{896^k} \binom{2k}kf_k = \frac{16\sqrt7}{\pi},\ \ \sum\limits_{k = 0}^\infty \frac{855k+109}{(-2704)^k} \binom{2k}kf_k = \frac{338}{\pi}, \\\sum\limits_{k = 0}^\infty \frac{102k+11}{10400^k} \binom{2k}kf_k = \frac{50\sqrt{39}}{9\pi},\ \ \sum\limits_{k = 0}^\infty \frac{585k+58}{(-24304)^k} \binom{2k}kf_k = \frac{98\sqrt{31}}{3\pi}, \\\sum\limits_{k = 0}^\infty \frac{561k+53}{39200^k} \binom{2k}kf_k = \frac{1225\sqrt6}{18\pi}, \ \ \sum\limits_{k = 0}^\infty \frac{207621k+14903}{(-1060^2)^k} \binom{2k}kf_k = \frac{140450}{3\pi}. \end{gather*}

    So we get the identities (1.88)-(1.97) finally.

    Now we pose a conjecture related to the series (Ⅰ1)-(Ⅰ4) of Sun [34,40].

    Conjecture 3.1. We have the following identities:

    \sum\limits_{k = 0}^\infty \frac{50k+1}{(-256)^k} \binom{2k}k \binom{2k}{k+1}T_k(1,16) = \frac{8}{3\pi},\;\;\;\;\;\;\;\;(\mathrm{Ⅰ}1')
    \sum\limits_{k = 0}^\infty \frac{(100k^2-4k-7) \binom{2k}k^2T_k(1,16)}{(2k-1)^2(-256)^k} = - \frac{24}{\pi},\;\;\;\;\;\;\;\;(\mathrm{Ⅰ}1'')
    \sum\limits_{k = 0}^\infty \frac{30k+23}{(-1024)^k} \binom{2k}k \binom{2k}{k+1}T_k(34,1) = - \frac{20}{3\pi},\;\;\;\;\;\;\;(\mathrm{Ⅰ}2')
    \sum\limits_{k = 0}^\infty \frac{(36k^2-12k+1) \binom{2k}k^2T_k(34,1)}{(2k-1)^2(-1024)^k} = - \frac{6}{\pi},\;\;\;\;\;\;\;\;(\mathrm{Ⅰ}2'')
    \sum\limits_{k = 0}^\infty \frac{110k+103}{4096^k} \binom{2k}k \binom{2k}{k+1}T_k(194,1) = \frac{304}{\pi},\;\;\;\;\;\;\;\;\;(\mathrm{Ⅰ}3')
    \sum\limits_{k = 0}^\infty \frac{(20k^2+28k-11) \binom{2k}k^2T_k(194,1)}{(2k-1)^2 4096^k} = - \frac{6}{\pi},\;\;\;\;\;\;\;\;\;(\mathrm{Ⅰ}3'')
    \sum\limits_{k = 0}^\infty \frac{238k+263}{4096^k} \binom{2k}k \binom{2k}{k+1}T_k(62,1) = \frac{112\sqrt3}{3\pi},\;\;\;\;\;\;\;\;\;(\mathrm{Ⅰ}4')
    \sum\limits_{k = 0}^\infty \frac{(44k^2+4k-5) \binom{2k}k^2T_k(62,1)}{(2k-1)^2 4096^k} = - \frac{4\sqrt3}{\pi},\;\;\;\;\;\;\;\;\;(\mathrm{Ⅰ}4'')
    \sum\limits_{k = 0}^\infty \frac{6k+1}{256^k} \binom{2k}k^2T_k(8,-2) = \frac{2}{\pi}\sqrt{8+6\sqrt2},\;\;\;\;\;\;\;\;\;(\mathrm{Ⅰ}5)
    \sum\limits_{k = 0}^\infty \frac{2k+3}{256^k} \binom{2k}k \binom{2k}{k+1}T_k(8,-2) = \frac{6\sqrt{8+6\sqrt2}-16\root4\of{2}}{3\pi},\;\;\;\;\;\;\;\;\;(\mathrm{Ⅰ}5')
    \sum\limits_{k = 0}^\infty \frac{(4k^2+2k-1) \binom{2k}k^2T_k(8,-2)}{(2k-1)^2 256^k} = - \frac{3\root4\of{2}}{4\pi}.\;\;\;\;\;\;\;\;\;(\mathrm{Ⅰ}5'')

    Remark 3.1. For each k\in{\Bbb N} , we have

    ((1+\lambda_0-\lambda_1)k+\lambda_0)C_k = (k+\lambda_0) \binom{2k}k-(k+\lambda_1) \left(\begin{array}{c}2 k \\ k+1\end{array}\right)

    since \binom{2k}k = (k+1)C_k and \binom{2k}{k+1} = kC_k . Thus, for example, [40,(I1)] and (I1 ' ) together imply that

    \sum\limits_{k = 0}^\infty \frac{26k+5}{(-256)^k} \binom{2k}kC_kT_k(1,16) = \frac{16}{\pi},

    and (I5) and (I5 ' ) imply that

    \sum\limits_{k = 0}^\infty \frac{2k-1}{256^k} \binom{2k}kC_kT_k(8,-2) = \frac4{\pi} \left(\sqrt{8+6\sqrt2}-4\root4\of2 \right).

    For the conjectural identities in Conjecture 3.1, we have conjectures for the corresponding p -adic congruences. For example, in contrast with (I2 ' ), we conjecture that for any prime p>3 we have the congruences

    \sum\limits_{k = 0}^{p-1} \frac{30k+23}{(-1024)^k} \binom{2k}k \binom{2k}{k+1}T_k(34,1){\equiv} \frac p3 \left(21 \left( \frac 2p \right)-10 \left( \frac{-1}p \right)-11 \right)\ ({\rm{mod}}\ {p^2})

    and

    \sum\limits_{k = 0}^{p-1} \frac{2k+1}{(-1024)^k} \binom{2k}kC_kT_k(34,1){\equiv} \frac p3 \left(2-3 \left( \frac 2p \right)+4 \left( \frac{-1}p \right) \right)\ ({\rm{mod}}\ {p^2}).

    Concerning (I5) and (I5 '' ), we conjecture that

    \frac1{2^{\lfloor n/2\rfloor+1}n \binom{2n}n}\sum\limits_{k = 0}^{n-1}(6k+1) \binom{2k}k^2T_k(8,-2)256^{n-1-k}\in{\Bbb Z}^+

    and

    \frac1{ \binom{2n-2}{n-1}}\sum\limits_{k = 0}^{n-1} \frac{(1-2k-4k^2) \binom{2k}k^2T_k(8,-2)}{(2k-1)^2 256^k}\in{\Bbb Z}^+

    for each n = 2,3,\ldots , and that for any prime p{\equiv}1\ ({\rm{mod}}\ 4) with p = x^2+4y^2\ (x,y\in{\Bbb Z}) we have

    \sum\limits_{k = 0}^{p-1} \frac{ \binom{2k}k^2T_k(8,-2)}{256^k} {\equiv}\left\{ \begin{array}{l} (-1)^{y/2}(4x^2-2p)\ ({\rm{mod}}\ {p^2})& \text{if}\ p{\equiv}1\ ({\rm{mod}}\ 8),\\ (-1)^{(xy-1)/2}8xy\ ({\rm{mod}}\ {p^2})& \text{if}\ p{\equiv}5\ ({\rm{mod}}\ 8), \end{array} \right.

    and

    \sum\limits_{k = 0}^{p-1} \frac{(4k^2+2k-1) \binom{2k}k^2T_k(8,-2)}{(2k-1)^2256^k}{\equiv}0\ ({\rm{mod}}\ {p^2}).

    By [40,Theorem 5.1], we have

    \sum\limits_{k = 0}^{p-1} \frac{ \binom{2k}k^2T_k(8,-2)}{256^k}{\equiv}0\ ({\rm{mod}}\ {p^2})

    for any prime p{\equiv}3\ ({\rm{mod}}\ 4) . The identities (I5), (I5 ' ) and (I5 '' ) were formulated by the author on Dec. 9, 2019.

    Next we pose a conjecture related to the series (Ⅱ1)-(Ⅱ7) and (Ⅱ10)-(Ⅱ12) of Sun [34,40].

    Conjecture 3.2. We have the following identities:

    \sum\limits_{k = 0}^\infty \frac{3k+4}{972^k} \binom{2k}{k+1} \binom{3k}kT_k(18,6) = \frac{63\sqrt3}{40\pi},\;\;\;\;\;\;\;\;(Ⅱ1')
    \sum\limits_{k = 0}^\infty \frac{91k+107}{10^{3k}} \binom{2k}{k+1} \binom{3k}kT_k(10,1) = \frac{275\sqrt3}{18\pi},\;\;\;\;\;\;\;(Ⅱ2')
    \sum\limits_{k = 0}^\infty \frac{195k+83}{18^{3k}} \binom{2k}{k+1} \binom{3k}{k}T_k(198,1) = \frac{9423\sqrt3}{10\pi},\;\;\;\;\;\;\;(Ⅱ3')
    \sum\limits_{k = 0}^\infty \frac{483k-419}{30^{3k}} \binom{2k}{k+1} \binom{3k}kT_k(970,1) = \frac{6550\sqrt3}{\pi},\;\;\;\;\;\;\;(Ⅱ4')
    \sum\limits_{k = 0}^\infty \frac{666k+757}{30^{3k}} \binom{2k}{k+1} \binom{3k}{k}T_k(730,729) = \frac{3475\sqrt3}{4\pi},\;\;\;\;\;\;\;(Ⅱ5')
    \sum\limits_{k = 0}^\infty \frac{8427573k+8442107}{102^{3k}} \binom{2k}{k+1} \binom{3k}kT_k(102,1) = \frac{125137\sqrt6}{20\pi},\;\;\;\;\;\;\;(Ⅱ6')
    \sum\limits_{k = 0}^\infty \frac{959982231k+960422503}{198^{3k}} \binom{2k}{k+1} \binom{3k}kT_k(198,1) = \frac{5335011\sqrt3}{20\pi},\;\;\;\;\;\;\;(Ⅱ7')
    \sum\limits_{k = 0}^\infty \frac{99k+1}{24^{3k}} \binom{2k}{k+1} \binom{3k}kT_k(26,729) = \frac{16(289\sqrt{15}-645\sqrt3)}{15\pi},\;\;\;\;\;\;\;(Ⅱ10')
    \sum\limits_{k = 0}^\infty \frac{45k+1}{(-5400)^k} \binom{2k}{k+1} \binom{3k}kT_k(70,3645) = \frac{345\sqrt3-157\sqrt{15}}{6\pi},\;\;\;\;\;\;\;(Ⅱ11')
    \sum\limits_{k = 0}^\infty \frac{252k-1}{(-13500)^k} \binom{2k}{k+1} \binom{3k}kT_k(40,1458) = \frac{25(1212\sqrt3-859\sqrt6)}{24\pi},\;\;\;\;\;\;\;(Ⅱ12')
    \sum\limits_{k = 0}^\infty \frac{9k+2}{(-675)^k} \binom{2k}{k} \binom{3k}kT_k(15,-5) = \frac{7\sqrt{15}}{8\pi},\;\;\;\;\;\;\;(Ⅱ13)
    \sum\limits_{k = 0}^\infty \frac{45k+31}{(-675)^k} \binom{2k}{k+1} \binom{3k}kT_k(15,-5) = - \frac{19\sqrt{15}}{8\pi},\;\;\;\;\;\;\;(Ⅱ13')
    \sum\limits_{k = 0}^\infty \frac{39k+7}{(-1944)^k} \binom{2k}{k} \binom{3k}kT_k(18,-3) = \frac{9\sqrt{3}}{\pi},\;\;\;\;\;\;\;(Ⅱ14)
    \sum\limits_{k = 0}^\infty \frac{312k+263}{(-1944)^k} \binom{2k}{k+1} \binom{3k}kT_k(18,-3) = - \frac{45\sqrt{3}}{2\pi}.\;\;\;\;\;\;\;(Ⅱ14')

    Remark 3.2. We also have conjectures on related congruences. For example, concerning (Ⅱ), for any prime p>3 we conjecture that

    \sum\limits_{k = 0}^{p-1} \frac{39k+7}{(-1944)^k} \binom{2k}k \binom{3k}kT_k(18,-3){\equiv} \frac p2 \left(13 \left( \frac p3 \right)+1 \right) \ ({\rm{mod}}\ {p^2})

    and that

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac{ \binom{2k}k \binom{3k}kT_k(18,-3)}{(-1944)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \text{if}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p7) = 1\ &\ p = x^2+21y^2, \\2p-2x^2\ ({\rm{mod}}\ {p^2})& \text{if}\ ( \frac{-1}p) = ( \frac p3) = -1,\ ( \frac p7) = 1\ &\ 2p = x^2+21y^2, \\12x^2-2p\ ({\rm{mod}}\ {p^2})& \text{if}\ ( \frac{-1}p) = ( \frac p7) = -1,\ ( \frac p3) = 1\ &\ p = 3x^2+7y^2, \\2p-6x^2\ ({\rm{mod}}\ {p^2})& \text{if}\ ( \frac{-1}p) = 1,\ ( \frac p3) = ( \frac p7) = -1\ &\ 2p = 3x^2+7y^2, \\0\ ({\rm{mod}}\ {p^2})& \text{if}\ ( \frac{-21}p) = -1, \end{cases} \end{align*}

    where x and y are integers. The identities (Ⅱ13), (Ⅱ13 ' ), (Ⅱ14) and (Ⅱ14 ' ) were found by the author on Dec. 11, 2019.

    The following conjecture is related to the series (Ⅲ1)-(Ⅲ10) and (Ⅲ12) of Sun [34,40].

    Conjecture 3.3. We have the following identities:

    \sum\limits_{k = 0}^\infty \frac{17k+18}{66^{2k}} \binom{2k}{k+1} \binom{4k}{2k}T_k(52,1) = \frac{77\sqrt{33}}{12\pi},\;\;\;\;\;\;\;\;(Ⅲ1')
    \sum\limits_{k = 0}^\infty \frac{4k+3}{(-96^2)^k} \binom{2k}{k+1} \binom{4k}{2k}T_k(110,1) = - \frac{\sqrt6}{3\pi},\;\;\;\;\;\;\;\;(Ⅲ2')
    \sum\limits_{k = 0}^\infty \frac{8k+9}{112^{2k}} \binom{2k}{k+1} \binom{4k}{2k}T_k(98,1) = \frac{154\sqrt{21}}{135\pi},\;\;\;\;\;\;\;\;(Ⅲ3')
    \sum\limits_{k = 0}^\infty \frac{3568k+4027}{264^{2k}} \binom{2k}{k+1} \binom{4k}{2k}T_k(257,256) = \frac{869\sqrt{66}}{10\pi},\;\;\;\;\;\;\;\;(Ⅲ4')
    \sum\limits_{k = 0}^\infty \frac{144k+1}{(-168^2)^{k}} \binom{2k}{k+1} \binom{4k}{2k}T_k(7,4096) = \frac{7(1745\sqrt{42}-778\sqrt{210})}{120\pi},\;\;\;\;\;\;\;\;(Ⅲ5')
    \sum\limits_{k = 0}^\infty \frac{3496k+3709}{336^{2k}} \binom{2k}{k+1} \binom{4k}{2k}T_k(322,1) = \frac{182\sqrt7}{\pi},\;\;\;\;\;\;\;\;(Ⅲ6')
    \sum\limits_{k = 0}^\infty \frac{286k+229}{336^{2k}} \binom{2k}{k+1} \binom{4k}{2k}T_k(1442,1) = \frac{1113\sqrt{210}}{20\pi},\;\;\;\;\;\;\;\;(Ⅲ7')
    \sum\limits_{k = 0}^\infty \frac{8426k+8633}{912^{2k}} \binom{2k}{k+1} \binom{4k}{2k}T_k(898,1) = \frac{703\sqrt{114}}{20\pi},\;\;\;\;\;\;\;\;(Ⅲ8')
    \sum\limits_{k = 0}^\infty \frac{1608k+79}{912^{2k}} \binom{2k}{k+1} \binom{4k}{2k}T_k(12098,1) = \frac{67849\sqrt{399}}{105\pi},\;\;\;\;\;\;\;\;(Ⅲ9')
    \sum\limits_{k = 0}^\infty \frac{134328722k+134635283}{10416^{2k}} \binom{2k}{k+1} \binom{4k}{2k}T_k(10402,1) = \frac{93961\sqrt{434}}{4\pi},\;\;\;\;\;\;\;\;(Ⅲ10')

    and

    \begin{equation*} \begin{aligned}&\sum\limits_{k = 0}^\infty \frac{39600310408k+39624469807}{39216^{2k}} \binom{2k}{k+1} \binom{4k}{2k}T_k(39202,1) \\&\qquad\qquad = \frac{1334161\sqrt{817}}{\pi}.\end{aligned}\;\;\;\;\;\;\;\;(Ⅲ12') \end{equation*}

    The following conjecture is related to the series (Ⅳ1)-(Ⅳ21) of Sun [34,40].

    Conjecture 3.4. We have the following identities:

    \sum\limits_{k = 0}^\infty \frac{(356k^2+288k+7) \binom{2k}k^2T_{2k}(7,1)}{(k+1)(2k-1)(-48^2)^k} = - \frac{304}{3\pi},\;\;\;\;\;\;\;\;(Ⅳ1')
    \sum\limits_{k = 0}^\infty \frac{(172k^2+141k-1) \binom{2k}k^2T_{2k}(62,1)}{(k+1)(2k-1)(-480^2)^k} = - \frac{80}{3\pi},\;\;\;\;\;\;\;\;(Ⅳ2')
    \sum\limits_{k = 0}^\infty \frac{(782k^2+771k+19) \binom{2k}k^2T_{2k}(322,1)}{(k+1)(2k-1)(-5760^2)^k} = - \frac{90}{\pi},\;\;\;\;\;\;\;\;(Ⅳ3')
    \sum\limits_{k = 0}^\infty \frac{(34k^2+45k+5) \binom{2k}k^2T_{2k}(10,1)}{(k+1)(2k-1)96^{2k}} = - \frac{20\sqrt2}{3\pi},\;\;\;\;\;\;\;\;(Ⅳ4')
    \sum\limits_{k = 0}^\infty \frac{(106k^2+193k+27) \binom{2k}k^2T_{2k}(38,1)}{(k+1)(2k-1)240^{2k}} = - \frac{10\sqrt6}{\pi},\;\;\;\;\;\;\;\;(Ⅳ5')
    \sum\limits_{k = 0}^\infty \frac{(214166k^2+221463k+7227) \binom{2k}k^2T_{2k}(198,1)}{(k+1)(2k-1)39200^{2k}} = - \frac{9240\sqrt6}{\pi},\;\;\;\;\;\;\;\;(Ⅳ6')
    \sum\limits_{k = 0}^\infty \frac{(112k^2+126k+9) \binom{2k}k^2T_{2k}(18,1)}{(k+1)(2k-1)320^{2k}} = - \frac{6\sqrt{15}}{\pi},\;\;\;\;\;\;\;\;(Ⅳ7')
    \sum\limits_{k = 0}^\infty \frac{(926k^2+995k+55) \binom{2k}k^2T_{2k}(30,1)}{(k+1)(2k-1)896^{2k}} = - \frac{60\sqrt7}{\pi},\;\;\;\;\;\;\;\;(Ⅳ8')
    \sum\limits_{k = 0}^\infty \frac{(1136k^2+2962k+503) \binom{2k}k^2T_{2k}(110,1)}{(k+1)(2k-1)24^{4k}} = - \frac{90\sqrt7}{\pi},\;\;\;\;\;\;\;\;(Ⅳ9')
    \sum\limits_{k = 0}^\infty \frac{(5488k^2+8414k+901) \binom{2k}k^2T_{2k}(322,1)}{(k+1)(2k-1)48^{4k}} = - \frac{294\sqrt7}{\pi},\;\;\;\;\;\;\;\;(Ⅳ10')
    \sum\limits_{k = 0}^\infty \frac{(170k^2+193k+11) \binom{2k}k^2T_{2k}(198,1)}{(k+1)(2k-1)2800^{2k}} = - \frac{6\sqrt{14}}{\pi},\;\;\;\;\;\;\;\;(Ⅳ11')
    \sum\limits_{k = 0}^\infty \frac{(104386k^2+108613k+4097) \binom{2k}k^2T_{2k}(102,1)}{(k+1)(2k-1)10400^{2k}} = - \frac{2040\sqrt{39}}{\pi},\;\;\;\;\;\;\;\;(Ⅳ12')
    \sum\limits_{k = 0}^\infty \frac{(7880k^2+8217k+259) \binom{2k}k^2T_{2k}(1298,1)}{(k+1)(2k-1)46800^{2k}} = - \frac{144\sqrt{26}}{\pi},\;\;\;\;\;\;\;\;(Ⅳ13')
    \sum\limits_{k = 0}^\infty \frac{(6152k^2+45391k+9989) \binom{2k}k^2T_{2k}(1298,1)}{(k+1)(2k-1)5616^{2k}} = - \frac{663\sqrt3}{\pi},\;\;\;\;\;\;\;\;(Ⅳ14')
    \sum\limits_{k = 0}^\infty \frac{(147178k^2+2018049k+471431) \binom{2k}k^2T_{2k}(4898,1)}{(k+1)(2k-1)20400^{2k}} = -3740 \frac{\sqrt{51}}{\pi},\;\;\;\;\;\;\;\;(Ⅳ15')
    \sum\limits_{k = 0}^\infty \frac{(1979224k^2+5771627k+991993) \binom{2k}k^2T_{2k}(5778,1)}{(k+1)(2k-1)28880^{2k}} = -73872 \frac{\sqrt{10}}{\pi},\;\;\;\;\;\;\;\;(Ⅳ16')
    \sum\limits_{k = 0}^\infty \frac{(233656k^2+239993k+5827) \binom{2k}k^2T_{2k}(5778,1)}{(k+1)(2k-1)439280^{2k}} = -4080 \frac{\sqrt{19}}{\pi},\;\;\;\;\;\;\;\;(Ⅳ17')
    \sum\limits_{k = 0}^\infty \frac{(5890798k^2+32372979k+6727511) \binom{2k}k^2T_{2k}(54758,1)}{(k+1)(2k-1)243360^{2k}} = -600704 \frac{\sqrt{95}}{9\pi},\;\;\;\;\;\;\;\;(Ⅳ18')
    \sum\limits_{k = 0}^\infty \frac{(148k^2+272k+43) \binom{2k}k^2T_{2k}(10,-2)}{(k+1)(2k-1)4608^{k}} = -28 \frac{\sqrt{6}}{\pi},\;\;\;\;\;\;\;\;(Ⅳ19')
    \sum\limits_{k = 0}^\infty \frac{(3332k^2+17056k+3599) \binom{2k}k^2T_{2k}(238,-14)}{(k+1)(2k-1)1161216^{k}} = -744 \frac{\sqrt{2}}{\pi},\;\;\;\;\;\;\;\;(Ⅳ20')
    \sum\limits_{k = 0}^\infty \frac{(11511872k^2+10794676k+72929) \binom{2k}k^2T_{2k}(9918,-19)}{(k+1)(2k-1)(-16629048064)^{k}} = -390354 \frac{\sqrt{7}}{\pi}.\;\;\;\;\;\;\;\;(Ⅳ21')

    For the five open conjectural series (Ⅵ1), (Ⅵ2), (Ⅵ3), (ⅥI2) and (ⅥI7) of Sun [34,40], we make the following conjecture on related supercongruences.

    Conjecture 3.5. Let p be an odd prime and let n\in{\Bbb Z}^+ . If ( \frac 3p) = 1 , then

    \begin{equation*} \label{VI1} \sum\limits_{k = 0}^{pn-1} \frac{66k+17}{(2^{11}3^3)^k}T_k(10,11^2)^3 -p \left( \frac{-2}p \right)\sum\limits_{k = 0}^{n-1} \frac{66k+17}{(2^{11}3^3)^k}T_k(10,11^2)^3 \end{equation*}

    divided by (pn)^2 is a p -adic integer. If p\not = 5 , then

    \begin{equation*} \label{VI2} \sum\limits_{k = 0}^{pn-1} \frac{126k+31}{(-80)^{3k}}T_k(22,21^2)^3 -p \left( \frac{-5}p \right)\sum\limits_{k = 0}^{n-1} \frac{126k+31}{(-80)^{3k}}T_k(22,21^2)^3 \end{equation*}

    divided by (pn)^2 is a p -adic integer. If ( \frac 7p) = 1 but p\not = 3 , then

    \begin{equation*} \label{VI3} \sum\limits_{k = 0}^{pn-1} \frac{3990k+1147}{(-288)^{3k}}T_k(62,95^2)^3 -p \left( \frac{-2}p \right)\sum\limits_{k = 0}^{n-1} \frac{3990k+1147}{(-288)^{3k}}T_k(62,95^2)^3 \end{equation*}

    divided by (pn)^2 is a p -adic integer. If p{\equiv}\pm1\ ({\rm{mod}}\ 8) but p\not = 7 , then

    \begin{equation*} \label{VII2} \sum\limits_{k = 0}^{pn-1} \frac{24k+5}{28^{2k}} \binom{2k}kT_k(4,9)^2 -p \left( \frac p3 \right)\sum\limits_{k = 0}^{n-1} \frac{24k+5}{28^{2k}} \binom{2k}kT_k(4,9)^2 \end{equation*}

    divided by (pn)^2 is a p -adic integer. If ( \frac{-6}p) = 1 but p\not = 7,31 , then

    \sum\limits_{k = 0}^{pn-1} \frac{2800512k+435257}{434^{2k}} \binom{2k}kT_k(73,576)^2 \\ -p\sum\limits_{k = 0}^{n-1} \frac{2800512k+435257}{434^{2k}} \binom{2k}kT_k(73,576)^2

    divided by (pn)^2 is a p -adic integer.

    Now we pose four conjectural series for 1/\pi of type Ⅷ.

    Conjecture 3.6. We have

    \sum\limits_{k = 0}^\infty \frac{40k+13}{(-50)^k}T_k(4,1)T_k(1,-1)^2 = \frac{55\sqrt{15}}{9\pi},\;\;\;\;\;\;\;\;(Ⅷ1)
    \sum\limits_{k = 0}^\infty \frac{1435k+113}{3240^k}T_k(7,1)T_k(10,10)^2 = \frac{1452\sqrt{5}}{\pi},\;\;\;\;\;\;\;\;(Ⅷ2)
    \sum\limits_{k = 0}^\infty \frac{840k+197}{(-2430)^k}T_k(8,1)T_k(5,-5)^2 = \frac{189\sqrt{15}}{2\pi},\;\;\;\;\;\;\;\;(Ⅷ3)
    \sum\limits_{k = 0}^\infty \frac{39480k+7321}{(-29700)^k}T_k(14,1)T_k(11,-11)^2 = \frac{6795\sqrt{5}}{\pi}.\;\;\;\;\;\;\;\;(Ⅷ4)

    Remark 3.3. The author found the identity (Ⅷ1) on Nov. 3, 2019. The identities (Ⅷ2), (Ⅷ3) and (Ⅷ4) were formulated on Nov. 4, 2019.

    Below we present some conjectures on congruences related to Conjecture 3.6.

    Conjecture 3.7. (ⅰ) For each n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(40k+13)(-1)^k50^{n-1-k}T_k(4,1)T_k(1,-1)^2\in{\Bbb Z}^+, \end{equation} (3.1)

    and this number is odd if and only if n is a power of two ( i.e., n\in\{2^a:\ a\in{\Bbb N}\}) .

    (ⅱ) Let p\not = 2,5 be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{40k+13}{(-50)^k}T_k(4,1)T_k(1,-1)^2{\equiv} \frac p3 \left(12+5 \left( \frac3p \right)+22 \left( \frac {-15}p \right) \right) \ ({\rm{mod}}\ {p^2}). \end{equation} (3.2)

    If ( \frac 3p) = ( \frac{-5}p) = 1 , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{40k+13}{(-50)^k}T_k(4,1)T_k(1,-1)^2-p\sum\limits_{k = 0}^{n-1} \frac{40k+13}{(-50)^k}T_k(4,1)T_k(1,-1)^2\right) \in{\Bbb Z}_p \end{equation} (3.3)

    for all n\in{\Bbb Z}^+ .

    (ⅲ) Let p\not = 2,5 be a prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{T_k(4,1)T_k(1,-1)^2}{(-50)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,9\ ({\rm{mod}}\ {20})\ &\ p = x^2+5y^2\ (x,y\in{\Bbb Z}), \\2x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}3,7\ ({\rm{mod}}\ {20})\ &\ 2p = x^2+5y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-5}p) = -1.\end{cases} \end{aligned} \end{equation} (3.4)

    Remark 3.4. The imaginary quadratic field {\Bbb Q}(\sqrt{-5}) has class number two.

    Conjecture 3.8. (ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(40k+27)(-6)^{n-1-k}T_k(4,1)T_k(1,-1)^2\in{\Bbb Z}, \end{equation} (3.5)

    and the number is odd if and only if n is a power of two.

    (ⅱ) Let p>3 be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{40k+27}{(-6)^k}T_k(4,1)T_k(1,-1)^2{\equiv} \frac p9 \left(55 \left( \frac{-5}p \right)+198 \left( \frac 3p \right)-10 \right) \ ({\rm{mod}}\ {p^2}). \end{equation} (3.6)

    If ( \frac 3p) = ( \frac{-5}p) = 1 , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{40k+27}{(-6)^k}T_k(4,1)T_k(1,-1)^2-p\sum\limits_{k = 0}^{n-1} \frac{40k+27}{(-6)^k}T_k(4,1)T_k(1,-1)^2\right) \in{\Bbb Z}_p \end{equation} (3.7)

    for all n\in{\Bbb Z}^+ .

    (ⅲ) Let p>5 be a prime. Then

    \begin{equation} \begin{aligned}& \left( \frac p3 \right)\sum\limits_{k = 0}^{p-1} \frac{T_k(4,1)T_k(1,-1)^2}{(-6)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,9\ ({\rm{mod}}\ {20})\ &\ p = x^2+5y^2\ (x,y\in{\Bbb Z}), \\2p-2x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}3,7\ ({\rm{mod}}\ {20})\ &\ 2p = x^2+5y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-5}p) = -1.\end{cases} \end{aligned} \end{equation} (3.8)

    Remark 3.5. This conjecture can be viewed as the dual of Conjecture 3.7. Note that the series \sum_{k = 0}^\infty \frac{(40k+27}{(-6)^k}T_k(4,1)T_k(1,-1)^2 diverges.

    Conjecture 3.9. (ⅰ) For each n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{n10^{n-1}}\sum\limits_{k = 0}^{n-1}(1435k+113) 3240^{n-1-k}T_k(7,1)T_k(10,10)^2\in{\Bbb Z}^+. \end{equation} (3.9)

    (ⅱ) Let p>3 be a prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{1435k+113}{3240^k}T_k(7,1)T_k(10,10)^2 \\{\equiv}& \frac p9 \left(2420 \left( \frac{-5}p \right)+105 \left( \frac5p \right)-1508 \right) \ ({\rm{mod}}\ {p^2}).\end{aligned} \end{equation} (3.10)

    If p{\equiv}1,9\ ({\rm{mod}}\ {20}) , then

    \begin{equation} \sum\limits_{k = 0}^{pn-1} \frac{1435k+113}{3240^k}T_k(7,1)T_k(10,10)^2 -p\sum\limits_{k = 0}^{n-1} \frac{1435k+113}{3240^k}T_k(7,1)T_k(10,10)^2 \end{equation} (3.11)

    divided by (pn)^2 is a p -adic integer for each n\in{\Bbb Z}^+ .

    (ⅲ) Let p>5 be a prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{T_k(7,1)T_k(10,10)^2}{3240^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,4\ ({\rm{mod}}\ {15})\ &\ p = x^2+15y^2\ (x,y\in{\Bbb Z}), \\12x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}2,8\ ({\rm{mod}}\ {15})\ &\ p = 3x^2+5y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-15}p) = -1.\end{cases} \end{aligned} \end{equation} (3.12)

    Remark 3.6. The imaginary quadratic field {\Bbb Q}(\sqrt{-15}) has class number two.

    Conjecture 3.10. (ⅰ) For each n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac3{2n10^{n-1}}\sum\limits_{k = 0}^{n-1}(1435k+1322) 50^{n-1-k}T_k(7,1)T_k(10,10)^2\in{\Bbb Z}^+. \end{equation} (3.13)

    (ⅱ) Let p>5 be a prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{1435k+1322}{50^k}T_k(7,1)T_k(10,10)^2 \\{\equiv}& \frac p3 \left(3432 \left( \frac{5}p \right)+968 \left( \frac{-1}p \right)-434 \right) \ ({\rm{mod}}\ {p^2}).\end{aligned} \end{equation} (3.14)

    If p{\equiv}1,9\ ({\rm{mod}}\ {20}) , then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{pn-1} \frac{1435k+1322}{50^k}T_k(7,1)T_k(10,10)^2 -p\sum\limits_{k = 0}^{n-1} \frac{1435k+1322}{50^k}T_k(7,1)T_k(10,10)^2 \end{aligned} \end{equation} (3.15)

    divided by (pn)^2 is a p -adic integer for each n\in{\Bbb Z}^+ .

    (ⅲ) Let p>5 be a prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{T_k(7,1)T_k(10,10)^2}{50^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,4\ ({\rm{mod}}\ {15})\ &\ p = x^2+15y^2\ (x,y\in{\Bbb Z}), \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}2,8\ ({\rm{mod}}\ {15})\ &\ p = 3x^2+5y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-15}p) = -1.\end{cases} \end{aligned} \end{equation} (3.16)

    Remark 3.7. This conjecture can be viewed as the dual of Conjecture 3.9. Note that the series

    \sum\limits_{k = 0}^\infty \frac{1435k+1322}{50^k}T_k(7,1)T_k(10,10)^2

    diverges.

    Conjecture 3.11. (ⅰ) For each n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{n5^{n-1}}\sum\limits_{k = 0}^{n-1}(840k+197)(-1)^k 2430^{n-1-k}T_k(8,1)T_k(5,-5)^2\in{\Bbb Z}^+. \end{equation} (3.17)

    (ⅱ) Let p>3 be a prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{840k+197}{(-2430)^k}T_k(8,1)T_k(5,-5)^2 {\equiv} p \left(140 \left( \frac{-15}p \right)+5 \left( \frac{15}p \right)+52 \right) \ ({\rm{mod}}\ {p^2}).\end{aligned} \end{equation} (3.18)

    If ( \frac {-1}p) = ( \frac {15}p) = 1 , then

    \begin{equation} \sum\limits_{k = 0}^{pn-1} \frac{840k+197}{(-2430)^k}T_k(8,1)T_k(5,-5)^2 -p\sum\limits_{k = 0}^{n-1} \frac{840k+197}{(-2430)^k}T_k(8,1)T_k(5,-5)^2 \end{equation} (3.19)

    divided by (pn)^2 is an p -adic integer for any n\in{\Bbb Z}^+ .

    (ⅲ Let p>7 be a prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{T_k(8,1)T_k(5,-5)^2}{(-2430)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p5) = ( \frac p7) = 1,\ p = x^2+105y^2, \\2x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p7) = 1,\ ( \frac p3) = ( \frac p5) = -1,\ 2p = x^2+105y^2, \\12x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p5) = ( \frac p7) = -1,\ p = 3x^2+35y^2, \\6x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p7) = -1,\ ( \frac p3) = ( \frac p5) = 1,\ 2p = 3x^2+35y^2, \\2p-20x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p5) = 1,\ ( \frac p5) = ( \frac p7) = -1,\ p = 5x^2+21y^2, \\2p-10x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = 1,\ ( \frac p5) = ( \frac p7) = -1,\ 2p = 5x^2+21y^2, \\28x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p5) = -1,\ ( \frac p3) = ( \frac p7) = 1,\ p = 7x^2+15y^2, \\14x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = -1,\ ( \frac p5) = ( \frac p7) = 1,\ 2p = 7x^2+15y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-105}p) = -1,\end{cases} \end{aligned} \end{equation} (3.20)

    where x and y are integers.

    Remark 3.8. Note that the imaginary quadratic field {\Bbb Q}(\sqrt{-105}) has class number 8 .

    Conjecture 3.12. (ⅰ) For each n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{n}\sum\limits_{k = 0}^{n-1}(39480k+7321)(-1)^k 29700^{n-1-k}T_k(14,1)T_k(11,-11)^2\in{\Bbb Z}^+, \end{equation} (3.21)

    and this number is odd if and only if n is a power of two.

    (ⅱ) Let p>5 be a prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{39480k+7321}{(-29700)^k}T_k(14,1)T_k(11,-11)^2 \\{\equiv}& p \left(5738 \left( \frac{-5}p \right)+70 \left( \frac3p \right)+1513 \right) \ ({\rm{mod}}\ {p^2}).\end{aligned} \end{equation} (3.22)

    If ( \frac 3p) = ( \frac{-5}p) = 1 , then

    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^{pn-1} \frac{39480k+7321}{(-29700)^k}T_k(14,1)T_k(11,-11)^2 \\&-p\sum\limits_{k = 0}^{n-1} \frac{39480k+7321}{(-29700)^k}T_k(14,1)T_k(11,-11)^2 \end{aligned} \end{equation} (3.23)

    divided by (pn)^2 is a p -adic integer for each n\in{\Bbb Z}^+ .

    (ⅲ) Let p>5 be a prime with p\not = 11 . Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{T_k(14,1)T_k(11,-11)^2}{(-29700)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p5) = ( \frac p{11}) = 1,\ p = x^2+165y^2, \\2x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p5) = ( \frac p{11}) = -1,\ 2p = x^2+165y^2, \\12x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p5) = -1,\ ( \frac p3) = ( \frac p{11}) = 1,\ p = 3x^2+55y^2, \\6x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p5) = 1,\ ( \frac p3) = ( \frac p{11}) = -1,\ 2p = 3x^2+55y^2, \\2p-20x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{11}) = 1,\ ( \frac p3) = ( \frac p5) = -1,\ p = 5x^2+33y^2, \\2p-10x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{11}) = -1,\ ( \frac p3) = ( \frac p5) = 1,\ 2p = 5x^2+33y^2, \\44x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = -1,\ ( \frac p5) = ( \frac p{11}) = 1,\ p = 11x^2+15y^2, \\22x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = 1,\ ( \frac p5) = ( \frac p{11}) = -1,\ 2p = 11x^2+15y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-165}p) = -1,\end{cases} \end{aligned} \end{equation} (3.24)

    where x and y are integers.

    Remark 3.9. Note that the imaginary quadratic field {\Bbb Q}(\sqrt{-165}) has class number 8 .

    Conjectures 4.1–4.14 below provide congruences related to (1.88)–(1.97).

    Conjecture 4.1. (ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(7k+3)S_k(1,-6)24^{n-1-k}\in{\Bbb Z}^+. \end{equation} (4.1)

    (ⅱ) Let p>3 be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{7k+3}{24^k}S_k(1,-6){\equiv} \frac p2 \left(5 \left( \frac{-2}p \right)+ \left( \frac 6p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (4.2)

    If p{\equiv}1\ ({\rm{mod}}\ 3) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{7k+3}{24^k}S_k(1,-6)-p \left( \frac{-2}p \right)\sum\limits_{k = 0}^{n-1} \frac{7k+3}{24^k}S_k(1,-6)\right) \in{\Bbb Z}_p \end{equation} (4.3)

    for all n\in{\Bbb Z}^+ .

    (ⅲ) For any prime p>3 , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{S_k(1,-6)}{24^k} \\{\equiv}&\begin{cases}( \frac p3)(4x^2-2p)\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,3\ ({\rm{mod}}\ 8)\ &\ p = x^2+2y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}5,7\ ({\rm{mod}}\ 8). \end{cases}\end{aligned} \end{equation} (4.4)

    Conjecture 4.2. (ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(12k+5)S_k(1,7)(-1)^k28^{n-1-k}\in{\Bbb Z}^+, \end{equation} (4.5)

    and this number is odd if and only if n is a power of two.

    (ⅱ) Let p\not = 7 be an odd prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{12k+5}{(-28)^k}S_k(1,7){\equiv}5p \left( \frac p7 \right)\ ({\rm{mod}}\ {p^2}), \end{equation} (4.6)

    and moreover

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{12k+5}{(-28)^k}S_k(1,7)-p \left( \frac p7 \right)\sum\limits_{k = 0}^{n-1} \frac{12k+5}{(-28)^k}S_k(1,7)\right)\in{\Bbb Z}_p \end{equation} (4.7)

    for all n\in{\Bbb Z}^+ .

    (ⅲ) For any prime p\not = 2,7 , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{S_k(1,7)}{(-28)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p7) = 1\ &\ p = x^2+21y^2, \\2x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = -1,\ ( \frac p7) = 1\ &\ 2p = x^2+21y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p7) = -1,\ ( \frac p3) = 1\ &\ p = 3x^2+7y^2, \\2p-6x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = 1,\ ( \frac p3) = ( \frac p7) = -1\ &\ 2p = 3x^2+7y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-21}p) = -1, \end{cases}\end{aligned} \end{equation} (4.8)

    where x and y are integers.

    Conjecture 4.3. (ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(84k+29)S_k(1,-20)80^{n-1-k}\in{\Bbb Z}^+, \end{equation} (4.9)

    and this number is odd if and only if n is a power of two.

    (ⅱ) Let p be an odd prime with p\not = 5 . Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{84k+29}{80^k}S_k(1,-20){\equiv} p \left(2 \left( \frac 5p \right)+27 \left( \frac{-15}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (4.10)

    If p{\equiv}1\ ({\rm{mod}}\ 3) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{84k+29}{80^k}S_k(1,-20)- p \left( \frac p5 \right)\sum\limits_{k = 0}^{n-1} \frac{84k+29}{80^k}S_k(1,-20)\right)\in{\Bbb Z}_p \end{equation} (4.11)

    for all n\in{\Bbb Z}^+ .

    (ⅲ) For any prime p\not = 2,5 , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{S_k(1,-20)}{80^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p3) = ( \frac p5) = 1\ &\ p = x^2+30y^2, \\8x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = 1,\ ( \frac p3) = ( \frac p5) = -1\ &\ p = 2x^2+15y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p3) = 1,\ ( \frac 2p) = ( \frac p5) = -1\ &\ p = 3x^2+10y^2, \\20x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{p}5) = 1,\ ( \frac 2p) = ( \frac p3) = -1\ &\ p = 5x^2+6y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-30}p) = -1, \end{cases}\end{aligned} \end{equation} (4.12)

    where x and y are integers.

    Conjecture 4.4. (ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(3k+1)(-1)^k100^{n-1-k}S_k(1,25)\in{\Bbb Z}^+. \end{equation} (4.13)

    (ⅱ) Let p\not = 5 be an odd prime. Then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{3k+1}{(-100)^k}S_k(1,25)- p \left( \frac{-1}p \right)\sum\limits_{k = 0}^{n-1} \frac{3k+1}{(-100)^k}S_k(1,25)\right)\in{\Bbb Z}_p \end{equation} (4.14)

    for all n\in{\Bbb Z}^+ .

    (ⅲ) For any prime p>3 with p\not = 11 , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{S_k(1,25)}{(-100)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p{11}) = 1\ &\ p = x^2+33y^2, \\2x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}{p}) = 1,\ ( \frac p3) = ( \frac p{11}) = -1\ &\ 2p = x^2+33y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p{11}) = 1,\ ( \frac {-1}p) = ( \frac p3) = -1\ &\ p = 3x^2+11y^2, \\2p-6x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{p}3) = 1,\ ( \frac {-1}p) = ( \frac p{11}) = -1\ &\ 2p = 3x^2+11y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-33}p) = -1, \end{cases}\end{aligned} \end{equation} (4.15)

    where x and y are integers.

    Conjecture 4.5. (ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(228k+67)S_k(1,-56)224^{n-1-k}\in{\Bbb Z}^+, \end{equation} (4.16)

    and this number is odd if and only if n is a power of two.

    (ⅱ) Let p be an odd prime with p\not = 7 . Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{228k+67}{224^k}S_k(1,-56){\equiv} p \left(65 \left( \frac{-7}p \right)+2 \left( \frac {14}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (4.17)

    If p{\equiv}1,3\ ({\rm{mod}}\ 8) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{228k+67}{224^k}S_k(1,-56)- p \left( \frac p7 \right)\sum\limits_{k = 0}^{n-1} \frac{228k+67}{224^k}S_k(1,-56)\right)\in{\Bbb Z}_p \end{equation} (4.18)

    for all n\in{\Bbb Z}^+ .

    (ⅲ) For any prime p\not = 2,7 , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{S_k(1,-56)}{224^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-2}p) = ( \frac p3) = ( \frac p7) = 1\ &\ p = x^2+42y^2, \\8x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{p}7) = 1,\ ( \frac {-2}p) = ( \frac p3) = -1\ &\ p = 2x^2+21y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac {-2}p) = 1,\ ( \frac p3) = ( \frac p7) = -1\ &\ p = 3x^2+14y^2, \\2p-24x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{p}5) = 1,\ ( \frac 2p) = ( \frac p3) = -1\ &\ p = 6x^2+7y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-42}p) = -1, \end{cases}\end{aligned} \end{equation} (4.19)

    where x and y are integers.

    Conjecture 4.6. (ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(399k+101)(-1)^k676^{n-1-k}S_k(1,169)\in{\Bbb Z}^+. \end{equation} (4.20)

    (ⅱ) Let p\not = 13 be an odd prime. Then

    \begin{equation} \sum\limits_{k = 0}^{pn-1} \frac{399k+101}{(-676)^k}S_k(1,169)- p \left( \frac{-1}p \right)\sum\limits_{k = 0}^{n-1} \frac{399k+101}{(-676)^k}S_k(1,169) \end{equation} (4.21)

    divided by (pn)^2 is a p -adic integer for any n\in{\Bbb Z}^+ .

    (ⅲ) For any prime p>3 with p\not = 19 , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{S_k(1,169)}{(-676)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p{19}) = 1\ &\ p = x^2+57y^2, \\2x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}{p}) = 1,\ ( \frac p3) = ( \frac p{19}) = -1\ &\ 2p = x^2+57y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p{3}) = 1,\ ( \frac {-1}p) = ( \frac p{19}) = -1\ &\ p = 3x^2+19y^2, \\2p-6x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{p}{19}) = 1,\ ( \frac {-1}p) = ( \frac p{3}) = -1\ &\ 2p = 3x^2+19y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-57}p) = -1, \end{cases}\end{aligned} \end{equation} (4.22)

    where x and y are integers.

    Conjecture 4.7. (ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(2604k+563)S_k(1,-650)2600^{n-1-k}\in{\Bbb Z}^+, \end{equation} (4.23)

    and this number is odd if and only if n\in\{2^a:\ a\in{\Bbb N}\} .

    (ⅱ) Let p be an odd prime with p\not = 5,13 . Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{2604k+563}{2600^k}S_k(1,-650){\equiv} p \left(561 \left( \frac{-39}p \right)+2 \left( \frac {26}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (4.24)

    If ( \frac{-6}p) = 1 , then

    \begin{equation} \sum\limits_{k = 0}^{pn-1} \frac{2604k+563}{2600^k}S_k(1,-650)- p \left( \frac{26}p \right)\sum\limits_{k = 0}^{n-1} \frac{2604k+563}{2600^k}S_k(1,-650) \end{equation} (4.25)

    divided by (pn)^2 is a p -adic integer for any n\in{\Bbb Z}^+ .

    (ⅲ)For any odd prime p\not = 5,13 , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{S_k(1,-650)}{2600^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p3) = ( \frac p{13}) = 1\ &\ p = x^2+78y^2, \\8x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac2{p}) = 1,\ ( \frac p3) = ( \frac p{13}) = -1\ &\ p = 2x^2+39y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p{13}) = 1,\ ( \frac 2p) = ( \frac p3) = -1\ &\ p = 3x^2+26y^2, \\2p-24x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{p}3) = 1,\ ( \frac 2p) = ( \frac p{13}) = -1\ &\ p = 6x^2+13y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-78}p) = -1, \end{cases}\end{aligned} \end{equation} (4.26)

    where x and y are integers.

    Conjecture 4.8. (ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(39468k+7817)(-1)^k6076^{n-1-k}S_k(1,1519)\in{\Bbb Z}^+, \end{equation} (4.27)

    and this number is odd if and only if n\in\{2^a:\ a\in{\Bbb N}\} .

    (ⅱ) Let p\not = 7,31 be an odd prime. Then

    \begin{equation} \sum\limits_{k = 0}^{pn-1} \frac{39468k+7817}{(-6076)^k}S_k(1,1519)- p \left( \frac{-31}p \right)\sum\limits_{k = 0}^{n-1} \frac{39468k+7817}{(-6076)^k}S_k(1,1519) \end{equation} (4.28)

    divided by (pn)^2 is a p -adic integer for any n\in{\Bbb Z}^+ .

    (ⅲ) For any prime p>3 with p\not = 7,31 , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{S_k(1,1519)}{(-6076)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p{31}) = 1\ &\ p = x^2+93y^2, \\2x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{p}{31}) = 1,\ ( \frac {-1}p) = ( \frac p{3}) = -1\ &\ 2p = x^2+93y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p{3}) = 1,\ ( \frac {-1}p) = ( \frac p{31}) = -1\ &\ p = 3x^2+31y^2, \\2p-6x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = 1,\ ( \frac {p}3) = ( \frac p{31}) = -1\ &\ 2p = 3x^2+31y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-93}p) = -1, \end{cases}\end{aligned} \end{equation} (4.29)

    where x and y are integers.

    Conjecture 4.9. (ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(41667k+7879)9800^{n-1-k}S_k(1,-2450)\in{\Bbb Z}^+. \end{equation} (4.30)

    (ⅱ) Let p\not = 5,7 be an odd prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{41667k+7879}{9800^k}S_k(1,-2450) {\equiv} \frac p2 \left(15741 \left( \frac{-6}p \right)+17 \left( \frac 2p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (4.31)

    If p{\equiv}1\ ({\rm{mod}}\ 3) , then

    \begin{equation} \sum\limits_{k = 0}^{pn-1} \frac{41667k+7879}{9800^k}S_k(1,-2450)- p \left( \frac{2}p \right)\sum\limits_{k = 0}^{n-1} \frac{41667k+7879}{9800^k}S_k(1,-2450) \end{equation} (4.32)

    divided by (pn)^2 is a p -adic integer for any n\in{\Bbb Z}^+ .

    (ⅲ) For any prime p>7 with p\not = 17 , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{S_k(1,-2450)}{9800^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p3) = ( \frac p{17}) = 1\ &\ p = x^2+102y^2, \\8x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{p}{17}) = 1,\ ( \frac {2}p) = ( \frac p{3}) = -1\ &\ p = 2x^2+51y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p{3}) = 1,\ ( \frac {2}p) = ( \frac p{17}) = -1\ &\ p = 3x^2+34y^2, \\2p-24x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = 1,\ ( \frac {p}3) = ( \frac p{17}) = -1\ &\ p = 6x^2+17y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-102}p) = -1, \end{cases}\end{aligned} \end{equation} (4.33)

    where x and y are integers.

    Conjecture 4.10. (ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(74613k+10711)(-1)^k530^{2(n-1-k)}S_k(1,265^2)\in{\Bbb Z}^+. \end{equation} (4.34)

    \rm(ⅱ) Let p\not = 5,53 be an odd prime. Then

    \begin{equation} \sum\limits_{k = 0}^{pn-1} \frac{74613k+10711}{(-530^2)^k}S_k(1,265^2)- p \left( \frac{-1}p \right)\sum\limits_{k = 0}^{n-1} \frac{74613k+10711}{(-530^2)^k}S_k(1,265^2) \end{equation} (4.35)

    divided by (pn)^2 is a p -adic integer for any n\in{\Bbb Z}^+ .

    \rm(ⅲ) For any prime p>5 with p\not = 59 , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{S_k(1,265^2)}{(-530^2)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p{59}) = 1\ &\ p = x^2+177y^2, \\2x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}{p}) = 1,\ ( \frac {p}3) = ( \frac p{59}) = -1\ &\ 2p = x^2+177y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p{59}) = 1,\ ( \frac {-1}p) = ( \frac p{3}) = -1\ &\ p = 3x^2+59y^2, \\2p-6x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{p}3) = 1,\ ( \frac {-1}p) = ( \frac p{59}) = -1\ &\ 2p = 3x^2+59y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-177}p) = -1, \end{cases}\end{aligned} \end{equation} (4.36)

    where x and y are integers.

    Conjecture 4.11. For any odd prime p ,

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{S_k}{(-4)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ 12\mid p-1\ &\ p = x^2+y^2\ (x,y\in{\Bbb Z}\ &\ 3\nmid x), \\4xy\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ 12\mid p-5\ &\ p = x^2+y^2\ (x,y\in{\Bbb Z}\ &\ 3\mid x-y), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}3\ ({\rm{mod}}\ 4). \end{cases}\end{aligned} \end{equation} (4.37)

    Also, for any prime p{\equiv}1\ ({\rm{mod}}\ 4) we have

    \begin{equation} \sum\limits_{k = 0}^{p-1}(8k+5) \frac{S_k}{(-4)^k}{\equiv}4p\ ({\rm{mod}}\ {p^2}). \end{equation} (4.38)

    Conjecture 4.12. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(4k+3)4^{n-1-k}S_k(1,-1)\in{\Bbb Z}, \end{equation} (4.39)

    and this number is odd if and only if n is a power of two.

    \rm(ⅱ) For any odd prime p and positive integer n , we have

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{4k+3}{4^k}S_k(1,-1)- p\sum\limits_{k = 0}^{n-1} \frac{4k+3}{4^k}S_k(1,-1)\right)\in{\Bbb Z}_p. \end{equation} (4.40)

    \rm(ⅲ) Let p be an odd prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{S_k(1,-1)}{4^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,9\ ({\rm{mod}}\ {20})\ &\ p = x^2+5y^2\ (x,y\in{\Bbb Z}), \\2x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}3,7\ ({\rm{mod}}\ {20})\ &\ 2p = x^2+5y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-5}p) = -1. \end{cases}\end{aligned} \end{equation} (4.41)

    Conjecture 4.13. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(33k+25)S_k(1,-6)(-6)^{n-1-k}\in{\Bbb Z}, \end{equation} (4.42)

    and this number is odd if and only if n is a power of two.

    \rm(ⅱ) Let p>3 be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{33k+25}{(-6)^k}S_k(1,-6){\equiv} p \left(35-10 \left( \frac 3p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (4.43)

    If p{\equiv}\pm1\ ({\rm{mod}}\ {12}) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{33k+25}{(-6)^k}S_k(1,-6) -p\sum\limits_{k = 0}^{n-1} \frac{33k+25}{(-6)^k}S_k(1,-6)\right)\in{\Bbb Z}_p \end{equation} (4.44)

    for all n\in{\Bbb Z}^+ .

    \rm(ⅲ) For any prime p>3 , we have

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{S_k(1,-6)}{(-6)^k}{\equiv}\begin{cases}( \frac{-1}p)(4x^2-2p)\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p = x^2+3y^2\ (x,y\in{\Bbb Z}),\\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}2\ ({\rm{mod}}\ 3).\end{cases} \end{equation} (4.45)

    Conjecture 4.14. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} n\ \ \bigg| \ \sum\limits_{k = 0}^{n-1}(18k+13)S_k(2,9)8^{n-1-k}. \end{equation} (4.46)

    \rm(ⅱ) Let p be an odd prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{18k+13}{8^k}S_k(2,9) {\equiv} p \left(1+12 \left( \frac p3 \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (4.47)

    If p{\equiv}1\ ({\rm{mod}}\ 3) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{18k+13}{8^k}S_k(2,9)-p\sum\limits_{k = 0}^{n-1} \frac{18k+13}{8^k}S_k(2,9)\right)\in{\Bbb Z}_p \end{equation} (4.48)

    for all n\in{\Bbb Z}^+ .

    \rm(ⅲ) For any prime p>3 , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{S_k(1,-2)}{8^k}{\equiv} \left( \frac p3 \right)\sum\limits_{k = 0}^{p-1} \frac{S_k(2,9)}{8^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,7\ ({\rm{mod}}\ {24})\ &\ p = x^2+6y^2\ \\8x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}5,11\ ({\rm{mod}}\ {24})\ &\ p = 2x^2+3y^2,\\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-6}p) = -1,\end{cases} \end{aligned} \end{equation} (4.49)

    where x and y are integers.

    Conjecture 4.15. Let p be an odd prime with p\not = 5 . Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{S_k(3,1)}{4^k} {\equiv}\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,9\ ({\rm{mod}}\ {20})\ &\ p = x^2+5y^2,\ \\2x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}3,7\ ({\rm{mod}}\ {20})\ &\ 2p = x^2+5y^2,\\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}11,13,17,19\ ({\rm{mod}}\ {20}),\end{cases} \end{equation} (4.50)

    where x and y are integers. If ( \frac{-5}p) = 1 , then

    \sum\limits_{k = 0}^{p-1} \frac{40k+29}{4^k}S_k(3,1){\equiv} 18p\ ({\rm{mod}}\ {p^2}).

    Remark 4.1. We also have some similar conjectures involving

    \begin{gather*} \sum\limits_{k = 0}^{p-1} \frac{S_k(5,4)}{4^k},\ \sum\limits_{k = 0}^{p-1} \frac{S_k(4,-5)}{4^k}, \ \sum\limits_{k = 0}^{p-1} \frac{S_k(7,6)}{6^k}, \\ \sum\limits_{k = 0}^{p-1} \frac{S_k(10,-2)}{32^k}, \ \sum\limits_{k = 0}^{p-1} \frac{S_k(14,9)}{72^k},\ \sum\limits_{k = 0}^{p-1} \frac{S_k(19,9)}{36^k} \end{gather*}

    modulo p^2 , where p is a prime greater than 3 .

    Motivated by Theorem 2.6, we pose the following general conjecture.

    Conjecture 4.16. For any odd prime p and integer m\not{\equiv}0\ ({\rm{mod}}\ p) , we have

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{S_k(4,-m)}{m^k}{\equiv}\sum\limits_{k = 0}^{p-1} \frac{ \binom{2k}kf_k}{m^k}\ ({\rm{mod}}\ {p^2}). \end{equation} (4.51)

    and

    \begin{equation} \frac{m+16}2\sum\limits_{k = 0}^{p-1} \frac{kS_k(4,-m)}{m^k} -\sum\limits_{k = 0}^{p-1}((m+4)k-4) \frac{ \binom{2k}kf_k}{m^k}{\equiv}4p \left( \frac mp \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (4.52)

    Remark 4.2 We have checked this conjecture via \mathsf{Mathematica}. In view of the proof of Theorem 2.6, both (4.51) and (4.52) hold modulo p .

    The numbers

    Z_n: = \sum\limits_{k = 0}^n \binom nk \binom{2k}k \binom{2(n-k)}{n-k}\ \ (n = 0,1,2,\ldots)

    were first introduced by D. Zagier in his paper [51] the preprint of which was released in 2002. Thus we name such numbers as Zagier numbers. As pointed out by the author [41,Remark 4.3], for any n\in{\Bbb N} the number 2^nZ_n coincides with the so-called CLF (Catalan-Larcombe-French) number

    {\mathcal P}_n: = 2^n\sum\limits_{k = 1}^{\lfloor n/2\rfloor} \binom n{2k} \binom{2k}k^24^{n-2k} = \sum\limits_{k = 0}^n \frac{ \binom{2k}k^2 \binom{2(n-k)}{n-k}^2}{ \binom nk}.

    Let p be an odd prime. For any k = 0,\ldots,p-1 , we have

    {\mathcal P}_k{\equiv} \left( \frac{-1}p \right)128^k{\mathcal P}_{p-1-k}\ ({\rm{mod}}\ p)

    by F. Jarvis and H.A. Verrill [24,Corollary 2.2], and hence

    Z_k = \frac{{\mathcal P}_k}{2^k}{\equiv} \left( \frac{-1}p \right)64^k(2^{p-1-k}Z_{p-1-k}){\equiv} \left( \frac{-1}p \right)32^kZ_{p-1-k}\ ({\rm{mod}}\ p).

    Combining this with Remark 1.3(ⅱ), we see that

    \begin{align*} \sum\limits_{k = 0}^{p-1} \frac{Z_kT_k(b,c)}{m^k}{\equiv}& \left( \frac{4c-b^2}p \right)\sum\limits_{k = 0}^{p-1} \left( \frac{32(b^2-4c)}m \right)^kZ_{p-1-k}T_{p-1-k}(b,c) \\{\equiv}& \left( \frac{4c-b^2}p \right)\sum\limits_{k = 0}^{p-1} \frac{Z_kT_k(b,c)}{(32(b^2-4c)/m)^k}\ ({\rm{mod}}\ p) \end{align*}

    for any b,c,m\in{\Bbb Z} with p\nmid (b^2-4c)m .

    J. Wan and Zudilin [49] obtained the following irrational series for 1/\pi involving the Legendre polynomials and the Zagier numbers:

    \sum\limits_{k = 0}^\infty(15k+4-2\sqrt6)Z_kP_k \left( \frac{24-\sqrt6}{15\sqrt2} \right) \left( \frac{4-\sqrt6}{10\sqrt3} \right)^k = \frac{6}{\pi}(7+3\sqrt6).

    Via our congruence approach (including Conjecture 1.4), we find 24 rational series for 1/\pi involving T_n(b,c) and the Zagier numbers. Theorem 1 of [49] might be helpful to solve some of them.

    Conjecture 5.1. We have the following identities for 1/\pi .

    \begin{align} \sum\limits_{k = 1}^\infty \frac{5k+1}{32^k}T_kZ_k& = \frac{8(2+\sqrt5)}{3\pi}, \end{align} (5.1)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{21k+5}{(-252)^k}T_k(1,16)Z_k& = \frac{6\sqrt7}{\pi}, \end{align} (5.2)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{3k+1}{36^k}T_k(1,-2)Z_k& = \frac{3}{\pi}, \end{align} (5.3)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{k}{192^k}T_k(14,1)Z_k& = \frac{8}{3\pi}, \end{align} (5.4)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{30k+11}{(-192)^k}T_k(14,1)Z_k& = \frac{12}{\pi}, \end{align} (5.5)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{15k+1}{480^k}T_k(22,1)Z_k& = \frac{6\sqrt{10}}{\pi}, \end{align} (5.6)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{7k+2}{(-672)^k}T_k(26,1)Z_k& = \frac{2\sqrt{21}}{3\pi}, \end{align} (5.7)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{21k+2}{1152^k}T_k(34,1)Z_k& = \frac{18}{\pi}, \end{align} (5.8)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{30k-7}{640^k}T_k(62,1)Z_k& = \frac{160}{\pi}, \end{align} (5.9)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{195k+34}{(-9600)^k}T_k(98,1)Z_k& = \frac{80}{\pi}, \end{align} (5.10)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{195k+22}{11232^k}T_k(106,1)Z_k& = \frac{27\sqrt{13}}{\pi}, \end{align} (5.11)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{42k+17}{(-1440)^k}T_k(142,1)Z_k& = \frac{33}{\sqrt5\,\pi}, \end{align} (5.12)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{2k-1}{1792^k}T_k(194,1)Z_k& = \frac{56}{3\pi}, \end{align} (5.13)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{1785k+254}{(-37632)^k}T_k(194,1)Z_k& = \frac{672}{\pi}, \end{align} (5.14)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{210k+23}{40800^k}T_k(202,1)Z_k& = \frac{15\sqrt{34}}{\pi}, \end{align} (5.15)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{210k-1}{4608^k}T_k(254,1)Z_k& = \frac{288}{\pi}, \end{align} (5.16)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{21k-5}{5600^k}T_k(502,1)Z_k& = \frac{105}{\sqrt2\,\pi}, \end{align} (5.17)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{7410k+1849}{(-36992)^k}T_k(1154,1)Z_k& = \frac{2992}{\pi}, \end{align} (5.18)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{1326k+101}{57760^k}T_k(1442,1)Z_k& = \frac{2014}{\sqrt5\,\pi}, \end{align} (5.19)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{78k-131}{20800^k}T_k(2498,1)Z_k& = \frac{2600}{\pi}, \end{align} (5.20)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{62985k+11363}{(-394272)^k}T_k(5474,1)Z_k& = \frac{7659\sqrt{10}}{\pi}, \end{align} (5.21)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{358530k+33883}{486720^k}T_k(6082,1)Z_k& = \frac{176280}{\pi}, \end{align} (5.22)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{510k-1523}{78400^k}T_k(9602,1)Z_k& = \frac{33320}{\pi}, \end{align} (5.23)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{570k-457}{93600^k}T_k(10402,1)Z_k& = \frac{1590\sqrt{13}}{\pi}. \end{align} (5.24)

    Below we present some conjectures on congruences related to (5.1) , (5.2) , (5.4) and (5.9) .

    Conjecture 5.2. (ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} n\ \bigg|\ \sum\limits_{k = 0}^{n-1}(5k+1)T_kZ_k32^{n-1-k}. \end{equation} (5.25)

    \rm (ⅱ) Let p be an odd prime with p\not = 5 . Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{5k+1}{32^k}T_kZ_k{\equiv} \frac p3 \left(5 \left( \frac{-5}p \right)-2 \left( \frac{-1}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (5.26)

    If p{\equiv}\pm1\ ({\rm{mod}}\ {5}) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{5k+1}{32^k}T_kZ_k-p \left( \frac{-1}p \right)\sum\limits_{k = 0}^{n-1} \frac{5k+1}{32^k}T_kZ_k\right) \in{\Bbb Z}_p \end{equation} (5.27)

    for all n\in{\Bbb Z}^+ .

    \rm (ⅲ) For any prime p>5 , we have

    \begin{equation} \begin{aligned}& \left( \frac{-1}p \right)\sum\limits_{k = 0}^{p-1} \frac{T_kZ_k}{32^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,4\ ({\rm{mod}}\ {15})\ &\ p = x^2+15y^2\ (x,y\in{\Bbb Z}), \\12x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}2,8\ ({\rm{mod}}\ {15})\ &\ p = 3x^2+5y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-15}p) = -1. \end{cases} \end{aligned} \end{equation} (5.28)

    Conjecture 5.3. (ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(-1)^k(21k+5)T_k(1,16)Z_k252^{n-1-k}\in{\Bbb Z}^+. \end{equation} (5.29)

    \rm (ⅱ) Let p>3 be a prime with p\not = 7 . Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{21k+5}{(-252)^k}T_k(1,16)Z_k{\equiv} \frac p3 \left(16 \left( \frac{-7}p \right)- \left( \frac{-1}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (5.30)

    If ( \frac 7p) = 1 , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{21k+5}{(-252)^k}T_k(1,16)Z_k-p \left( \frac{-1}p \right) \sum\limits_{k = 0}^{n-1} \frac{21k+5}{(-252)^k}T_k(1,16)Z_k\right)\in{\Bbb Z}_p \end{equation} (5.31)

    for all n\in{\Bbb Z}^+ .

    \rm (ⅲ) For any prime p>3 with p\not = 7 , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{T_k(1,16)Z_k}{(-252)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,2,4\ ({\rm{mod}}\ {7})\ &\ p = x^2+7y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv} 3,5,6\ ({\rm{mod}}\ 7). \end{cases} \end{aligned} \end{equation} (5.32)

    Conjecture 5.4. \rm(i) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} n\ \bigg|\ \sum\limits_{k = 0}^{n-1}kT_k(14,1)Z_k192^{n-1-k}. \end{equation} (5.33)

    \rm (ⅱ) Let p>3 be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{k}{192^k}T_k(14,1)Z_k{\equiv} \frac p9 \left( \left( \frac{-1}p \right)- \left( \frac{2}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (5.34)

    If p{\equiv}1,3\ ({\rm{mod}}\ 8) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{k}{192^k}T_k(14,1)Z_k-p \left( \frac{-1}p \right) \sum\limits_{k = 0}^{n-1} \frac{k}{192^k}T_k(14,1)\right)\in{\Bbb Z}_p \end{equation} (5.35)

    for all n\in{\Bbb Z}^+ .

    \rm (ⅲ) For any prime p>3 , we have

    \begin{equation} \begin{aligned}& \left( \frac 3p \right)\sum\limits_{k = 0}^{p-1} \frac{T_k(14,1)Z_k}{192^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,3\ ({\rm{mod}}\ {8})\ &\ p = x^2+2y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv} 5,7\ ({\rm{mod}}\ 8). \end{cases} \end{aligned} \end{equation} (5.36)

    Conjecture 5.5. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} n\ \bigg|\ \sum\limits_{k = 0}^{n-1}(30k-7)T_k(62,1)Z_k640^{n-1-k}. \end{equation} (5.37)

    \rm (ⅱ) Let p be an odd prime with p\not = 5 . Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{30k-7}{640^k}T_k(62,1)Z_k{\equiv} p \left(2 \left( \frac{-1}p \right)-9 \left( \frac{15}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (5.38)

    If ( \frac{-15}p) = 1 , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{30k-7}{640^k}T_k(62,1)Z_k -p \left( \frac{-1}p \right)\sum\limits_{k = 0}^{n-1} \frac{30k-7}{640^k}T_k(62,1)Z_k\right)\in{\Bbb Z}_p \end{equation} (5.39)

    for all n\in{\Bbb Z}^+ .

    \rm (ⅲ) For any prime p>5 , we have

    \begin{equation} \begin{aligned}& \left( \frac{-1}p \right)\sum\limits_{k = 0}^{p-1} \frac{T_k(62,1)Z_k}{640^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac 2p) = ( \frac p3) = ( \frac p5) = 1\ &\ p = x^2+30y^2, \\8x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac 2p) = 1,\ ( \frac p3) = ( \frac p5) = -1\ &\ p = 2x^2+15y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p3) = 1,\ ( \frac 2p) = ( \frac p5) = -1\ &\ p = 3x^2+10y^2, \\20x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p5) = 1,\ ( \frac 2p) = ( \frac p3) = -1\ &\ p = 5x^2+6y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-30}p) = -1, \end{cases} \end{aligned} \end{equation} (5.40)

    where x and y are integers.

    Sun [36,37] obtained some supercongruences involving the Franel numbers f_n = \sum_{k = 0}^n \binom nk^3\ (n\in{\Bbb N}) . M. Rogers and A. Straub [30] confirmed the 520 -series for 1/\pi involving Franel polynomials conjectured by Sun [34].

    Let p be an odd prime. By [24,Lemma 2.6], we have f_k{\equiv}(-8)^kf_{p-1-k}\ ({\rm{mod}}\ p) for each k = 0,\ldots,p-1 . Combining this with Remark 1.3(ⅱ), we see that

    \begin{align*} \sum\limits_{k = 0}^{p-1} \frac{f_kT_k(b,c)}{m^k}{\equiv}& \left( \frac{b^2-4c}p \right)\sum\limits_{k = 0}^{p-1} \left( \frac{-8(b^2-4c)}m \right)^kf_{p-1-k}T_{p-1-k}(b,c) \\{\equiv}& \left( \frac{b^2-4c}p \right)\sum\limits_{k = 0}^{p-1} \frac{f_kT_k(b,c)}{(8(4c-b^2)/m)^k}\ ({\rm{mod}}\ p) \end{align*}

    for any b,c,m\in{\Bbb Z} with p\nmid (b^2-4c)m .

    Wan and Zudilin [49] deduced the following irrational series for 1/\pi involving the Legendre polynomials and the Franel numbers:

    \sum\limits_{k = 0}^\infty(18k+7-2\sqrt3)f_kP_k \left( \frac{1+\sqrt3}{\sqrt6} \right) \left( \frac{2-\sqrt3}{2\sqrt6} \right)^k = \frac{27+11\sqrt3}{\sqrt2\,\pi}.

    Via our congruence approach (including Conjecture 1.4), we find 12 rational series for 1/\pi involving T_n(b,c) and the Franel numbers; Theorem 1 of [49] might be helpful to solve some of them.

    Conjecture 6.1. We have

    \begin{align} \sum\limits_{k = 0}^\infty \frac{3k+1}{(-48)^k}f_kT_k(4,-2)& = \frac{4\sqrt2}{3\pi}, \end{align} (6.1)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{99k+23}{(-288)^k}f_kT_k(8,-2)& = \frac{39\sqrt2}{\pi}, \end{align} (6.2)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{105k+17}{480^k}f_kT_k(8,1)& = \frac{92\sqrt5}{3\pi}, \end{align} (6.3)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{45k-2}{441^k}f_kT_k(47,1)& = \frac{483\sqrt5}{4\pi}, \end{align} (6.4)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{165k+46}{(-2352)^k}f_kT_k(194,1)& = \frac{112\sqrt5}{3\pi}, \end{align} (6.5)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{42k+5}{11616^k}f_kT_k(482,1)& = \frac{374\sqrt2}{15\pi}, \end{align} (6.6)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{990k+31}{11200^k}f_kT_k(898,1)& = \frac{680\sqrt7}{\pi}, \end{align} (6.7)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{585k+172}{(-13552)^k}f_kT_k(1454,1)& = \frac{110\sqrt7}{\pi}, \end{align} (6.8)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{90k+11}{101568^k}f_kT_k(2114,1)& = \frac{92\sqrt{15}}{7\pi}, \end{align} (6.9)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{94185k+17014}{(-105984)^k}f_kT_k(2302,1)& = \frac{8520\sqrt{23}}{\pi}, \end{align} (6.10)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{5355k+1381}{(-61952)^k}f_kT_k(4354,1)& = \frac{968\sqrt{7}}{\pi}, \end{align} (6.11)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{210k+23}{475904^k}f_kT_k(16898,1)& = \frac{2912\sqrt{231}}{297\pi}. \end{align} (6.12)

    We now present a conjecture on congruence related to (6.3) .

    Conjecture 6.2. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(105k+17)480^{n-1-k}f_kT_k(8,1)\in{\Bbb Z}^+. \end{equation} (6.13)

    \rm (ⅱ) Let p>5 be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{105k+17}{480^k}f_kT_k(8,1) {\equiv} \frac p9 \left(161 \left( \frac{-5}p \right)-8 \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (6.14)

    If ( \frac{-5}p) = 1 , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{105k+17}{480^k}f_kT_k(8,1) -p\sum\limits_{k = 0}^{n-1} \frac{105k+17}{480^k}f_kT_k(8,1)\right)\in{\Bbb Z}_p \end{equation} (6.15)

    for all n\in{\Bbb Z}^+ .

    \rm (ⅲ) For any prime p>5 , we have

    \begin{equation} \begin{aligned}& \left( \frac{-1}p \right)\sum\limits_{k = 0}^{p-1} \frac{f_kT_k(8,1)}{480^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,4\ ({\rm{mod}}\ {15})\ &\ p = x^2+15y^2\ (x,y\in{\Bbb Z}), \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}2,8\ ({\rm{mod}}\ {15})\ &\ p = 3x^2+5y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-15}p) = -1.\end{cases} \end{aligned} \end{equation} (6.16)

    Remark 6.1 This conjecture was formulated by the author on Oct. 25, 2019.

    Conjecture 6.3. For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{4n}\sum\limits_{k = 0}^{n-1}(-1)^{n-1-k}(105k+88)f_kT_k(8,1)\in{\Bbb Z}^+. \end{equation} (6.17)

    \rm (ⅱ) Let p be an odd prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1}(-1)^k(105k+88)f_kT_k(8,1) {\equiv} \frac 83p \left(23 \left( \frac {-3}p \right)+10 \left( \frac{15}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (6.18)

    If ( \frac{-5}p) = 1 , then

    \begin{equation} \sum\limits_{k = 0}^{pn-1}(-1)^k(105k+88)f_kT_k(8,1)-p \left( \frac p3 \right)\sum\limits_{k = 0}^{n-1}(-1)^k(105k+88)f_kT_k(8,1) \end{equation} (6.19)

    divided by (pn)^2 is a p -adic integer for any n\in{\Bbb Z}^+ .

    \rm (ⅲ) Let p>5 be a prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1}(-1)^kf_kT_k(8,1) \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,4\ ({\rm{mod}}\ {15})\ &\ p = x^2+15y^2\ (x,y\in{\Bbb Z}), \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}2,8\ ({\rm{mod}}\ {15})\ &\ p = 3x^2+5y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-15}p) = -1.\end{cases} \end{aligned} \end{equation} (6.20)

    Remark 6.2. This conjecture is the dual of Conjecture 6.2.

    The following conjecture is related to the identity (6.8) .

    Conjecture 6.4. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{2n}\sum\limits_{k = 0}^{n-1}(-1)^k(585k+172)13552^{n-1-k}f_kT_k(1454,1)\in{\Bbb Z}^+. \end{equation} (6.21)

    \rm (ⅱ) Let p>2 be a prime with p\not = 7,11 . Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{585k+172}{(-13552)^k}f_kT_k(1454,1){\equiv} \frac p{11} \left(1580 \left( \frac{-7}p \right) +312 \left( \frac{273}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (6.22)

    If ( \frac {-39}p) = 1 , then

    \begin{equation} \sum\limits_{k = 0}^{pn-1} \frac{585k+172}{(-13552)^k}f_kT_k(1454,1) -p \left( \frac p7 \right)\sum\limits_{k = 0}^{n-1} \frac{585k+172}{(-13552)^k}f_kT_k(1454,1) \end{equation} (6.23)

    divided by (pn)^2 is a p -adic integer for any n\in{\Bbb Z}^+ .

    \rm (ⅲ) Let p>3 be a prime with p\not = 7,11,13 . Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{f_kT_k(1454,1)}{(-13552)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p7) = ( \frac p{13}) = 1,\ p = x^2+273y^2, \\2x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{7}) = 1,\ ( \frac p3) = ( \frac p{13}) = -1,\ 2p = x^2+273y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p7) = -1,\ ( \frac p3) = ( \frac p{13}) = 1,\ p = 3x^2+91y^2, \\2p-6x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p7) = ( \frac p{13}) = -1,\ 2p = 3x^2+91y^2, \\28x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{13}) = -1,\ ( \frac p3) = ( \frac p{7}) = 1,\ p = 7x^2+39y^2, \\14x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = -1,\ ( \frac p7) = ( \frac p{13}) = 1,\ 2p = 7x^2+39y^2, \\52x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{3}) = 1,\ ( \frac p7) = ( \frac p{13}) = -1,\ p = 13x^2+21y^2, \\26x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{13}) = 1,\ ( \frac p3) = ( \frac p{7}) = -1,\ 2p = 13x^2+21y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-273}p) = -1, \end{cases} \end{aligned} \end{equation} (6.24)

    where x and y are integers.

    Remark 6.3. Note that the imaginary quadratic field {\Bbb Q}(\sqrt{-273}) has class number 8 .

    The following conjecture is related to the identity (6.10) .

    Conjecture 6.5. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{2n}\sum\limits_{k = 0}^{n-1}(-1)^k(94185k+17014)105984^{n-1-k}f_kT_k(2302,1)\in{\Bbb Z}^+. \end{equation} (6.25)

    \rm (ⅱ) Let p>3 be a prime with p\not = 23 . Then

    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^{p-1} \frac{94185k+17014}{(-105984)^k}f_kT_k(2302,1) \\{\equiv}& \frac p{16} \left(22659+249565 \left( \frac{-23}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{aligned} \end{equation} (6.26)

    If ( \frac p{23}) = 1 , then

    \begin{equation} \sum\limits_{k = 0}^{pn-1} \frac{94185k+17014}{(-105984)^k}f_kT_k(2302,1) -p\sum\limits_{k = 0}^{n-1} \frac{94185k+17014}{(-105984)^k}f_kT_k(2302,1) \end{equation} (6.27)

    divided by (pn)^2 is a p -adic integer for any n\in{\Bbb Z}^+ .

    \rm (ⅲ) Let p>3 be a prime with p\not = 23 . Then

    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^{p-1} \frac{f_kT_k(2302,1)}{(-105984)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p5) = ( \frac p{23}) = 1,\ p = x^2+345y^2, \\2x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{23}) = 1,\ ( \frac p3) = ( \frac p{5}) = -1,\ 2p = x^2+345y^2, \\12x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p5) = -1,\ ( \frac p3) = ( \frac p{23}) = 1,\ p = 3x^2+115y^2, \\6x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = -1,\ ( \frac p5) = ( \frac p{23}) = 1,\ 2p = 3x^2+115y^2, \\2p-20x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{5}) = 1,\ ( \frac p3) = ( \frac p{23}) = -1,\ p = 5x^2+69y^2, \\2p-10x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = 1,\ ( \frac p5) = ( \frac p{23}) = -1,\ 2p = 5x^2+69y^2, \\2p-60x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{3}) = ( \frac p5) = ( \frac p{23}) = -1,\ p = 15x^2+23y^2, \\2p-30x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{23}) = -1,\ ( \frac p3) = ( \frac p{5}) = 1,\ 2p = 15x^2+23y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-345}p) = -1, \end{cases} \end{aligned} \end{equation} (6.28)

    where x and y are integers.

    Remark 6.4. Note that the imaginary quadratic field {\Bbb Q}(\sqrt{-345}) has class number 8 .

    The following conjecture is related to the identity (6.12) .

    Conjecture 6.6. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{n}\sum\limits_{k = 0}^{n-1}(210k+23)475904^{n-1-k}f_kT_k(16898,1)\in{\Bbb Z}^+. \end{equation} (6.29)

    \rm (ⅱ) Let p be an odd prime with p\not = 11,13 . Then

    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^{p-1} \frac{210k+23}{475904^k}f_kT_k(16898,1) \\{\equiv}& \frac p{1287} \left(40621 \left( \frac{-231}p \right)-11020 \left( \frac{66}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{aligned} \end{equation} (6.30)

    If ( \frac {-14}p) = 1 , then

    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^{pn-1} \frac{210k+23}{475904^k}f_kT_k(16898,1) \\&-p \left( \frac{66}p \right)\sum\limits_{k = 0}^{n-1} \frac{210k+23}{475904^k}f_kT_k(16898,1) \end{aligned} \end{equation} (6.31)

    divided by (pn)^2 is a p -adic integer for any n\in{\Bbb Z}^+ .

    \rm (ⅲ) Let p>3 be a prime with p\not = 7,11,13 . Then

    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^{p-1} \frac{f_kT_k(16898,1)}{475904^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p3) = ( \frac p7) = ( \frac p{11}) = 1\ &\ p = x^2+462y^2, \\8x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p7) = 1,\ ( \frac p3) = ( \frac p{11}) = -1\ &\ p = 2x^2+231y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p7) = -1,\ ( \frac p3) = ( \frac p{11}) = 1\ &\ p = 3x^2+154y^2, \\2p-24x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p3) = ( \frac p7) = ( \frac p{11}) = -1\ &\ p = 6x^2+77y^2, \\28x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p{3}) = 1,\ ( \frac p7) = ( \frac p{11}) = -1\ &\ p = 7x^2+66y^2, \\44x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p3) = -1,\ ( \frac p7) = ( \frac p{11}) = 1\ &\ p = 11x^2+42y^2, \\56x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p{11}) = 1,\ ( \frac p3) = ( \frac p7) = -1\ &\ p = 14x^2+33y^2, \\2p-84x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p{11}) = -1,\ ( \frac p3) = ( \frac p{7}) = 1\ &\ p = 21x^2+22y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-462}p) = -1, \end{cases} \end{aligned} \end{equation} (6.32)

    where x and y are integers.

    Remark 6.5. Note that the imaginary quadratic field {\Bbb Q}(\sqrt{-462}) has class number 8 .

    The identities (6.5),\, (6.6),\,(6.7),\,(6.9),\,(6.11) are related to the quadratic fields

    {\Bbb Q}(\sqrt{-165}),\ {\Bbb Q}(\sqrt{-210}),\ {\Bbb Q}(\sqrt{-210}),\ {\Bbb Q}(\sqrt{-330}),\ {\Bbb Q}(\sqrt{-357})

    (with class number 8 ) respectively. We also have conjectures on related congruences similar to Conjectures 6.4, 6.5 and 6.6.

    For n\in{\Bbb N} let

    g_n: = \sum\limits_{k = 0}^n \binom nk^2 \binom{2k}k.

    It is known that g_n = \sum_{k = 0}^n \binom nk f_k for all n\in{\Bbb N} . See [43,20,26] for some congruences on polynomials related to these numbers.

    Let p>3 be a prime. For any k = 0,\ldots,p-1 , we have

    g_k{\equiv} \left( \frac{-3}p \right)9^kg_{p-1-k}\ ({\rm{mod}}\ p)

    by [24,Lemma 2.7(ⅱ)]. Combining this with Remark 1.3(ⅱ), we see that

    \begin{align*} \sum\limits_{k = 0}^{p-1} \frac{g_kT_k(b,c)}{m^k}{\equiv}& \left( \frac{-3(b^2-4c)}p \right)\sum\limits_{k = 0}^{p-1} \left( \frac{9(b^2-4c)}m \right)^kg_{p-1-k}T_{p-1-k}(b,c) \\{\equiv}& \left( \frac{3(4c-b^2)}p \right)\sum\limits_{k = 0}^{p-1} \frac{g_kT_k(b,c)}{(9(b^2-4c)/m)^k}\ ({\rm{mod}}\ p) \end{align*}

    for any b,c,m\in{\Bbb Z} with p\nmid (b^2-4c)m .

    Wan and Zudilin [49] obtained the following irrational series for 1/\pi involving the Legendre polynomials and the sequence (g_n)_{n{\geq}0} :

    \sum\limits_{k = 0}^\infty(22k+7-3\sqrt3)g_kP_k \left( \frac{\sqrt{14\sqrt3-15}}3 \right) \left( \frac{\sqrt{2\sqrt3-3}}{9} \right)^k = \frac{9}{2\pi}(9+4\sqrt3).

    Using our congruence approach (including Conjecture 1.4), we find 12 rational series for 1/\pi involving T_n(b,c) and g_n ; Theorem 1 of [49] might be helpful to solve some of them.

    Conjecture 7.1. We have the following identities.

    \begin{align} \sum\limits_{k = 0}^\infty \frac{8k+3}{(-81)^k}g_kT_k(7,-8)& = \frac{9\sqrt3}{4\pi}, \end{align} (7.1)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{4k+1}{(-1089)^k}g_kT_k(31,-32)& = \frac{33}{16\pi}, \end{align} (7.2)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{7k-1}{540^k}g_kT_k(52,1)& = \frac{30\sqrt3}{\pi}, \end{align} (7.3)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{20k+3}{3969^k}g_kT_k(65,64)& = \frac{63\sqrt3}{8\pi}, \end{align} (7.4)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{280k+93}{(-1980)^k}g_kT_k(178,1)& = \frac{20\sqrt{33}}{\pi}, \end{align} (7.5)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{176k+15}{12600^k}g_kT_k(502,1)& = \frac{25\sqrt{42}}{\pi}, \end{align} (7.6)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{560k-23}{13068^k}g_kT_k(970,1)& = \frac{693\sqrt3}{\pi}, \end{align} (7.7)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{12880k+1353}{105840^k}g_kT_k(2158,1)& = \frac{4410\sqrt3}{\pi}, \end{align} (7.8)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{299k+59}{(-101430)^k}g_kT_k(2252,1)& = \frac{735\sqrt{115}}{64\pi}, \end{align} (7.9)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{385k+118}{(-53550)^k}g_kT_k(4048,1)& = \frac{2415\sqrt{17}}{64\pi}, \end{align} (7.10)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{385k-114}{114264^k}g_kT_k(10582,1)& = \frac{15939\sqrt3}{16\pi}, \end{align} (7.11)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{16016k+1273}{510300^k}g_kT_k(17498,1)& = \frac{14175\sqrt3}{2\pi}. \end{align} (7.12)

    Now we present a conjecture on congruences related to (7.6) .

    Conjecture 7.2. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{3n}\sum\limits_{k = 0}^{n-1}(176k+15)12600^{n-1-k}g_kT_k(502,1)\in{\Bbb Z}^+, \end{equation} (7.13)

    and this number is odd if and only if n\in\{2^a:\ a\in{\Bbb N}\} .

    \rm(ⅱ) Let p>7 be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{176k+15}{12600^k}g_kT_k(502,1){\equiv} p \left(26 \left( \frac{-42}p \right)-11 \left( \frac{21}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (7.14)

    If p{\equiv}1,3\ ({\rm{mod}}\ 8) , then

    \begin{equation} \sum\limits_{k = 0}^{pn-1} \frac{176k+15}{12600^k}g_kT_k(502,1) -p \left( \frac{21}p \right)\sum\limits_{k = 0}^{n-1} \frac{176k+15}{12600^k}g_kT_k(502,1) \end{equation} (7.15)

    divided by (pn)^2 is a p -adic integer for any n\in{\Bbb Z}^+ .

    \rm(ⅲ) Let p>7 be a prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{g_kT_k(502,1)}{12600^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-2}p) = ( \frac p3) = ( \frac p5) = ( \frac p7) = 1\ &\ p = x^2+210y^2, \\2p-8x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-2}p) = ( \frac p7) = 1,\ ( \frac p3) = ( \frac p5) = -1\ &\ p = 2x^2+105y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-2}p) = ( \frac p3) = 1,\ ( \frac p5) = ( \frac p7) = -1\ &\ p = 3x^2+70y^2, \\2p-20x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-2}p) = ( \frac p3) = ( \frac p5) = ( \frac p7) = -1\ &\ p = 5x^2+42y^2, \\24x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-2}p) = ( \frac p5) = 1,\ ( \frac p3) = ( \frac p7) = -1\ &\ p = 6x^2+35y^2, \\28x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-2}p) = ( \frac p5) = -1,\ ( \frac p3) = ( \frac p7) = 1\ &\ p = 7x^2+30y^2, \\40x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-2}p) = ( \frac p7) = -1,\ ( \frac p3) = ( \frac p5) = 1\ &\ p = 10x^2+21y^2, \\56x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-2}p) = ( \frac p3) = -1,\ ( \frac p5) = ( \frac p7) = 1\ &\ p = 14x^2+15y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-210}p) = -1, \end{cases} \end{aligned} \end{equation} (7.16)

    where x and y are integers.

    Remark 7.1. Note that the imaginary quadratic field {\Bbb Q}(\sqrt{-210}) has class number 8 .

    The following conjecture is related to the identity (7.8) .

    Conjecture 7.3. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{3n}\sum\limits_{k = 0}^{n-1}(12880k+1353)105840^{n-1-k}g_kT_k(2158,1)\in{\Bbb Z}^+, \end{equation} (7.17)

    and this number is odd if and only if n\in\{2^a:\ a\in{\Bbb N}\} .

    \rm(ⅱ) Let p>7 be a prime. Then

    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^{p-1} \frac{12880k+1353}{105840^k}g_kT_k(2158,1) \\{\equiv}& \frac p{2} \left(3419 \left( \frac {-3}p \right)-713 \left( \frac{5}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{aligned} \end{equation} (7.18)

    If ( \frac p3) = ( \frac p{5}) , then

    \begin{equation} \sum\limits_{k = 0}^{pn-1} \frac{12880k+1353}{105840^k}g_kT_k(2158,1) -p \left( \frac p3 \right)\sum\limits_{k = 0}^{n-1} \frac{12880k+1353}{105840^k}g_kT_k(2158,1) \end{equation} (7.19)

    divided by (pn)^2 is a p -adic integer for any n\in{\Bbb Z}^+ .

    \rm(ⅲ) Let p>11 be a prime. Then

    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^{p-1} \frac{g_kT_k(2158,1)}{105840^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p5) = ( \frac p{11}) = 1,\ p = x^2+330y^2, \\2p-8x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p5) = ( \frac p{11}) = -1,\ p = 2x^2+165y^2, \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{11}) = 1,\ ( \frac p3) = ( \frac p5) = -1,\ p = 3x^2+110y^2, \\2p-20x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = -1,\ ( \frac p5) = ( \frac p{11}) = 1,\ p = 5x^2+66y^2, \\24x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{11}) = -1,\ ( \frac p3) = ( \frac p5) = 1,\ p = 6x^2+55y^2, \\40x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = 1,\ ( \frac p5) = ( \frac p{11}) = -1,\ p = 10x^2+33y^2, \\44x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{5}) = 1,\ ( \frac p3) = ( \frac p{11}) = -1,\ p = 11x^2+30y^2, \\60x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p5) = -1,\ ( \frac p3) = ( \frac p{11}) = 1,\ p = 15x^2+22y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-330}p) = -1, \end{cases} \end{aligned} \end{equation} (7.20)

    where x and y are integers.

    Remark 7.2. Note that the imaginary quadratic field {\Bbb Q}(\sqrt{-330}) has class number 8 .

    Now we pose a conjecture related to the identity (7.10) .

    Conjecture 7.4. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{2n}\sum\limits_{k = 0}^{n-1}(-1)^k(385k+118)53550^{n-1-k}g_kT_k(4048,1)\in{\Bbb Z}^+. \end{equation} (7.21)

    \rm(ⅱ) Let p>7 be a prime with p\not = 17 . Then

    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^{p-1} \frac{385k+118}{(-53550)^k}g_kT_k(4048,1) \\{\equiv}& \frac p{320} \left(29279 \left( \frac{-17}p \right)+8481 \left( \frac{7}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{aligned} \end{equation} (7.22)

    If ( \frac p7) = ( \frac p{17}) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{385k+118}{(-53550)^k}g_kT_k(4048,1) -p \left( \frac{7}p \right)\sum\limits_{k = 0}^{n-1} \frac{385k+118}{(-53550)^k}g_kT_k(4048,1)\right) \end{equation} (7.23)

    is a p -adic integer for any n\in{\Bbb Z}^+ .

    \rm(ⅲ) Let p>7 be a prime with p\not = 17 . Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{g_kT_k(4048,1)}{(-53550)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p7) = ( \frac p{17}) = 1,\ p = x^2+357y^2, \\2p-2x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = -1,\ ( \frac p7) = ( \frac p{17}) = 1,\ 2p = x^2+357y^2, \\12x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = ( \frac p5) = ( \frac p7) = -1,\ p = 3x^2+119y^2, \\2p-6x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p3) = 1,\ ( \frac p7) = ( \frac p{17}) = -1,\ 2p = 3x^2+119y^2, \\28x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{17}) = -1,\ ( \frac p3) = ( \frac p7) = 1,\ p = 7x^2+51y^2, \\2p-14x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p7) = 1,\ ( \frac p3) = ( \frac p{17}) = -1,\ 2p = 7x^2+51y^2, \\2p-68x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p{17}) = 1,\ ( \frac p3) = ( \frac p7) = -1,\ p = 17x^2+21y^2, \\34x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-1}p) = ( \frac p7) = -1,\ ( \frac p3) = ( \frac p{17}) = 1,\ 2p = 17x^2+21y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-357}p) = -1, \end{cases} \end{aligned} \end{equation} (7.24)

    where x and y are integers.

    Remark 7.3. Note that the imaginary quadratic field {\Bbb Q}(\sqrt{-357}) has class number 8 .

    Now we pose a conjecture related to the identity (7.12) .

    Conjecture 7.5. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{n}\sum\limits_{k = 0}^{n-1}(16016k+1273)510300^{n-1-k}g_kT_k(17498,1)\in{\Bbb Z}^+, \end{equation} (7.25)

    and this number is odd if and only if n\in\{2^a:\ a\in{\Bbb N}\} .

    \rm(ⅱ) Let p>7 be a prime. Then

    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^{p-1} \frac{16016k+1273}{510300^k}g_kT_k(17498,1) \\{\equiv}& \frac p{3} \left(6527 \left( \frac{-3}p \right)-2708 \left( \frac{42}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{aligned} \end{equation} (7.26)

    If ( \frac {-14}p) = 1 , then

    \begin{equation} \begin{aligned} &\sum\limits_{k = 0}^{pn-1} \frac{16016k+1273}{510300^k}g_kT_k(17498,1) \\&-p \left( \frac{p}3 \right)\sum\limits_{k = 0}^{n-1} \frac{16016k+1273}{510300^k}g_kT_k(17498,1) \end{aligned} \end{equation} (7.27)

    divided by (pn)^2 is a p -adic integer for each n\in{\Bbb Z}^+ .

    \rm(ⅲ) Let p>11 be a prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{g_kT_k(17498,1)}{510300^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p3) = ( \frac p7) = ( \frac p{11}) = 1\ &\ p = x^2+462y^2, \\2p-8x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p7) = 1,\ ( \frac p3) = ( \frac p{11}) = -1\ &\ p = 2x^2+231y^2, \\12x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p7) = -1,\ ( \frac p3) = ( \frac p{11}) = 1\ &\ p = 3x^2+154y^2, \\2p-24x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p3) = ( \frac p7) = ( \frac p{11}) = -1\ &\ p = 6x^2+77y^2, \\28x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p{3}) = 1,\ ( \frac p7) = ( \frac p{11}) = -1\ &\ p = 7x^2+66y^2, \\44x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p3) = -1,\ ( \frac p7) = ( \frac p{11}) = 1\ &\ p = 11x^2+42y^2, \\2p-56x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p{11}) = 1,\ ( \frac p3) = ( \frac p7) = -1\ &\ p = 14x^2+33y^2, \\84x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{2}p) = ( \frac p{11}) = -1,\ ( \frac p3) = ( \frac p{7}) = 1\ &\ p = 21x^2+22y^2, \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-462}p) = -1, \end{cases} \end{aligned} \end{equation} (7.28)

    where x and y are integers.

    Remark 7.4. Note that the imaginary quadratic field {\Bbb Q}(\sqrt{-462}) has class number 8 . We believe that 462 is the largest positive squarefree number d for which the imaginary quadratic field {\Bbb Q}(\sqrt{-d}) can be used to construct a Ramanujan-type series for 1/\pi .

    The identities (7.5),\,(7.7),\,(7.9),\,(7.11) are related to the imaginary quadratic fields {\Bbb Q}(\sqrt{-165}) , {\Bbb Q}(\sqrt{-210}) , {\Bbb Q}(\sqrt{-345}) , {\Bbb Q}(\sqrt{-330}) (with class number 8 ) respectively. We also have conjectures on related congruences similar to Conjectures 7.2, 7.3, 7.4 and 7.5.

    To conclude this section, we confirm an open series for 1/\pi conjectured by the author (cf. [34,(3.28)] and [35,Conjecture 7.9]) in 2011.

    Theorem 7.1. We have

    \begin{equation} \sum\limits_{n = 0}^\infty \frac{16n+5}{324^n} \binom{2n}ng_n(-20) = \frac{189}{25\pi}, \end{equation} (7.29)

    where

    g_n(x): = \sum\limits_{k = 0}^n \binom nk^2 \binom{2k}kx^k.

    Proof. The Franel numbers of order 4 are given by f_n^{(4)} = \sum_{k = 0}^n \binom nk^4\ (n\in{\Bbb N}) . Note that

    f_n^{(4)} \leq\left(\sum\limits_{k = 0}^n \binom nk^2\right)^2 = \binom{2n}n^2 \leq ((1+1)^{2n})^2 = 16^n.

    By [11,(8.1)], for |x|<1/16 and a,b\in{\Bbb Z} , we have

    \begin{equation} \begin{aligned}&\sum\limits_{n = 0}^\infty \binom{2n}n \frac{(an+b)x^n}{(1+2x)^{2n}}\sum\limits_{k = 0}^n \binom nk^2 \binom{2(n-k)}{n-k}x^k \\ = &(1+2x)\sum\limits_{n = 0}^\infty \left( \frac{4a(1-x)(1+2x)n+6ax(2-x)}{5(1-4x)}+b \right)f_n^{(4)}x^n. \end{aligned} \end{equation} (7.30)

    Since

    \begin{align*} & \frac{x^n}{(1+2x)^{2n}}\sum\limits_{k = 0}^n \binom nk^2 \binom{2n-2k}{n-k}x^k \\ = & \frac{x^n}{(1+2x)^{2n}}\sum\limits_{k = 0}^n \binom nk^2 \binom{2k}{k}x^{n-k} = (2+x^{-1})^{-2n}g_n(x^{-1}), \end{align*}

    putting a = 16 , b = 5 and x = -1/20 in (7.30) we obtain

    \sum\limits_{n = 0}^\infty \frac{16n+5}{18^{2n}} \binom{2n}ng_n(-20) = \frac{378}{125}\sum\limits_{n = 0}^\infty \frac{3n+1}{(-20)^n}f_n^{(4)}.

    As

    \sum\limits_{n = 0}^\infty \frac{3n+1}{(-20)^n}f_n^{(4)} = \frac{5}{2\pi}

    by Cooper [9], we finally get

    \sum\limits_{n = 0}^\infty \frac{16n+5}{18^{2n}} \binom{2n}ng_n(-20) = \frac{378}{125}\times \frac 5{2\pi} = \frac{189}{25\pi}.

    This concludes the proof of (7.29).

    Recall that the numbers

    \beta_n: = \sum\limits_{k = 0}^n \binom nk^2 \binom{n+k}k\ \ \ (n = 0,1,2,\ldots)

    are a kind of Apéry numbers. Let p be an odd prime. For any k = 0,1,\ldots,p-1 , we have

    \beta_k{\equiv}(-1)^k\beta_{p-1-k}\ ({\rm{mod}}\ p)

    by [24,Lemma 2.7(ⅰ)]. Combining this with Remark 1.3(ⅱ), we see that

    \begin{align*} \sum\limits_{k = 0}^{p-1} \frac{\beta_kT_k(b,c)}{m^k}{\equiv}& \left( \frac{b^2-4c}p \right)\sum\limits_{k = 0}^{p-1} \left( \frac{-(b^2-4c)}m \right)^k\beta_{p-1-k}T_{p-1-k}(b,c) \\{\equiv}& \left( \frac{b^2-4c}p \right)\sum\limits_{k = 0}^{p-1} \frac{\beta_kT_k(b,c)}{((4c-b^2)/m)^k}\ ({\rm{mod}}\ p) \end{align*}

    for any b,c,m\in{\Bbb Z} with p\nmid (b^2-4c)m .

    Wan and Zudilin [49] obtained the following irrational series for 1/\pi involving the Legendre polynomials and the numbers \beta_n :

    \sum\limits_{k = 0}^\infty(60k+16-5\sqrt{10})\beta_kP_k \left( \frac{5\sqrt2+17\sqrt5}{45} \right) \left( \frac{5\sqrt2-3\sqrt5} 5 \right)^k = \frac{135\sqrt2+81\sqrt5}{\sqrt2\,\pi}.

    Using our congruence approach (including Conjecture 1.4), we find one rational series for 1/\pi involving T_n(b,c) and the Apéry numbers \beta_n (see (8.1) below); Theorem 1 of [49] might be helpful to solve it.

    Conjecture 8.1. (ⅰ) We have

    \begin{equation} \sum\limits_{k = 0}^\infty \frac{145k+9}{900^k}\beta_kT_k(52,1) = \frac{285}{\pi}. \end{equation} (8.1)

    Also, for any n\in{\Bbb Z}^+ we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(145k+9)900^{n-1-k}\beta_kT_k(52,1)\in{\Bbb Z}^+. \end{equation} (8.2)

    \rm(ⅱ) Let p>5 be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{145k+9}{900^k}\beta_kT_k(52,1) {\equiv} \frac p5 \left(133 \left( \frac{-1}p \right)-88 \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (8.3)

    If p{\equiv}1\ ({\rm{mod}}\ 4) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{145k+9}{900^k}\beta_kT_k(52,1) -p\sum\limits_{k = 0}^{n-1} \frac{145k+9}{900^k}\beta_kT_k(52,1)\right) \in{\Bbb Z}_p \end{equation} (8.4)

    for all n\in{\Bbb Z}^+ .

    \rm(ⅲ) Let p>5 be a prime. Then

    \begin{equation} \begin{aligned}& \left( \frac{-1}p \right)\sum\limits_{k = 0}^{p-1} \frac{\beta_kT_k(52,1)}{900^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,4\ ({\rm{mod}}\ {15})\ &\ p = x^2+15y^2\ (x,y\in{\Bbb Z}), \\2p-12x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}2,8\ ({\rm{mod}}\ {15})\ &\ p = 3x^2+5y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-15}p) = -1.\end{cases} \end{aligned} \end{equation} (8.5)

    Remark 8.1. This conjecture was formulated by the author on Oct. 27, 2019.

    Conjecture 8.2. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{2n}\sum\limits_{k = 0}^{n-1}(-1)^k(15k+8)\beta_kT_k(4,-1)\in{\Bbb Z}, \end{equation} (8.6)

    and this number is odd if and only if n\in\{2^a:\ a\in{\Bbb Z}^+\} .

    \rm(ⅱ) Let p be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1}(-1)^k(15k+8)\beta_kT_k(4,-1) {\equiv} \frac p4 \left(27 \left( \frac p3 \right)+5 \left( \frac p5 \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (8.7)

    If ( \frac {-15}p) = 1\ ( i.e., p{\equiv}1,2,4,8\ ({\rm{mod}}\ {15})) , then

    \begin{equation} \sum\limits_{k = 0}^{pn-1}(-1)^k(15k+8)\beta_kT_k(4,-1) -p \left( \frac p3 \right)\sum\limits_{k = 0}^{n-1}(-1)^k(15k+8)\beta_kT_k(2,2) \end{equation} (8.8)

    divided by (pn)^2 is a p -adic integer for any n\in{\Bbb Z}^+ .

    \rm(ⅲ) For any prime p>5 , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1}(-1)^k\beta_kT_k(4,-1) \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1,4\ ({\rm{mod}}\ {15})\ &\ p = x^2+15y^2\ (x,y\in{\Bbb Z}), \\12x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}2,8\ ({\rm{mod}}\ {15})\ &\ p = 3x^2+5y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac {-15}p) = -1.\end{cases} \end{aligned} \end{equation} (8.9)

    Remark 8.2. This conjecture was formulated by the author on Nov. 13, 2019.

    Conjecture 8.3. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac3{n2^{\lfloor n/2\rfloor}}\sum\limits_{k = 0}^{n-1}(2k+1)(-2)^{n-1-k}\beta_kT_k(2,2)\in{\Bbb Z}^+, \end{equation} (8.10)

    and this number is odd if and only if n is a power of two.

    \rm(ⅱ) Let p>3 be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{2k+1}{(-2)^k}\beta_kT_k(2,2) {\equiv} \frac p3 \left(1+2 \left( \frac{-1}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (8.11)

    If p{\equiv}1\ ({\rm{mod}}\ 4) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{2k+1}{(-2)^k}\beta_kT_k(2,2) -p\sum\limits_{k = 0}^{n-1} \frac{2k+1}{(-2)^k}\beta_kT_k(2,2)\right)\in{\Bbb Z}_p \end{equation} (8.12)

    for all n\in{\Bbb Z}^+ .

    \rm(ⅲ) For any odd prime p , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{\beta_kT_k(2,2)}{(-2)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1\ ({\rm{mod}}\ 4)\ &\ p = x^2+4y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}3\ ({\rm{mod}}\ 4).\end{cases} \end{aligned} \end{equation} (8.13)

    Remark 8.3. This conjecture was formulated by the author on Nov. 13, 2019.

    Conjecture 8.4. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{n2^{\lfloor(n+1)/2\rfloor}}\sum\limits_{k = 0}^{n-1}(3k+2)(-2)^{n-1-k}\beta_kT_k(20,2)\in{\Bbb Z}^+, \end{equation} (8.14)

    and this number is odd if and only if n\in\{2^a:\ a = 0,2,3,4,\ldots\} .

    \rm(ⅱ) Let p be any odd prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{3k+2}{(-2)^k}\beta_kT_k(20,2) {\equiv}2p \left( \frac 2p \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (8.15)

    If p{\equiv}\pm1\ ({\rm{mod}}\ 8) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{3k+2}{(-2)^k}\beta_kT_k(20,2) -p\sum\limits_{k = 0}^{n-1} \frac{3k+2}{(-2)^k}\beta_kT_k(20,2)\right)\in{\Bbb Z}_p \end{equation} (8.16)

    for all n\in{\Bbb Z}^+ .

    \rm(ⅲ) For any odd prime p , we have

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{\beta_kT_k(20,2)}{(-2)^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}1\ ({\rm{mod}}\ 4)\ &\ p = x^2+4y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}3\ ({\rm{mod}}\ 4).\end{cases} \end{aligned} \end{equation} (8.17)

    Conjecture 8.5. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac3n\sum\limits_{k = 0}^{n-1}(5k+3)4^{n-1-k}\beta_kT_k(14,-1)\in{\Bbb Z}. \end{equation} (8.18)

    \rm(ⅱ) Let p>3 be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{5k+3}{4^k}\beta_kT_k(14,-1) {\equiv} \frac p3 \left(4 \left( \frac{-2}p \right)+5 \left( \frac 2p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (8.19)

    If p{\equiv}1\ ({\rm{mod}}\ 4) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{5k+3}{4^k}\beta_kT_k(14,-1) -p \left( \frac 2p \right)\sum\limits_{k = 0}^{n-1} \frac{5k+3}{4^k}\beta_kT_k(14,-1)\right)\in{\Bbb Z}_p \end{equation} (8.20)

    for all n\in{\Bbb Z}^+ .

    \rm(ⅲ) Let p\not = 2,5 be a prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{\beta_kT_k(14,-1)}{4^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac {-2}p) = ( \frac 5p) = 1\ &\ p = x^2+10y^2\ (x,y\in{\Bbb Z}), \\8x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac {-2}p) = ( \frac 5p) = -1\ &\ p = 2x^2+5y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac {-10}p) = -1.\end{cases} \end{aligned} \end{equation} (8.21)

    Conjecture 8.6. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1{3n}\sum\limits_{k = 0}^{n-1}(22k+15)(-4)^{n-1-k}\beta_kT_k(46,1)\in{\Bbb Z}^+, \end{equation} (8.22)

    and this number is odd if and only if n is a power of two.

    \rm(ⅱ) Let p be an odd prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{22k+15}{(-4)^k}\beta_kT_k(46,1) {\equiv} \frac p4 \left(357-297 \left( \frac{33}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (8.23)

    If ( \frac{33}p) = 1 , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{22k+15}{(-4)^k}\beta_kT_k(46,1) -p\sum\limits_{k = 0}^{n-1} \frac{22k+15}{(-4)^k}\beta_kT_k(46,1)\right)\in{\Bbb Z}_p \end{equation} (8.24)

    for all n\in{\Bbb Z}^+ .

    \rm(ⅲ) Let p>3 be a prime. Then

    \begin{equation} \begin{aligned}&\sum\limits_{k = 0}^{p-1} \frac{\beta_kT_k(46,1)}{(-4)^k} \\{\equiv}&\begin{cases}x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p{11}) = 1\ &\ 4p = x^2+11y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p{11}) = -1.\end{cases} \end{aligned} \end{equation} (8.25)

    Conjecture 8.7. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(190k+91)(-60)^{n-1-k}\beta_kT_k(82,1)\in{\Bbb Z}^+, \end{equation} (8.26)

    and this number is odd if and only if n is a power of two.

    \rm(ⅱ) Let p>5 be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{190k+91}{(-60)^k}\beta_kT_k(82,1) {\equiv} \frac p4 \left(111+253 \left( \frac{-15}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (8.27)

    If ( \frac{-15}p) = 1 , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{190k+91}{(-60)^k}\beta_kT_k(82,1) -p\sum\limits_{k = 0}^{n-1} \frac{190k+91}{(-60)^k}\beta_kT_k(82,1)\right)\in{\Bbb Z}_p \end{equation} (8.28)

    for all n\in{\Bbb Z}^+ .

    \rm(ⅲ) For any prime p>7 , we have

    \begin{equation} \begin{aligned}& \left( \frac p3 \right)\sum\limits_{k = 0}^{p-1} \frac{\beta_kT_k(82,1)}{(-60)^k} \\{\equiv}&\begin{cases}x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p{5}) = ( \frac p7) = 1\ &\ 4p = x^2+35y^2\ (x,y\in{\Bbb Z}), \\2p-5x^2\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p{5}) = ( \frac p7) = -1\ &\ 4p = 5x^2+7y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac {-35}p) = -1.\end{cases} \end{aligned} \end{equation} (8.29)

    The numbers

    w_n: = \sum\limits_{k = 0}^{\lfloor n/3\rfloor}(-1)^k3^{n-3k} \binom n{3k} \binom{3k}k \binom{2k}k\ \ \ (n = 0,1,2,\ldots)

    were first introduced by Zagier [51] during his study of Apéry-like integer sequences, who noted the recurrence

    (n+1)^2w_{n+1} = (9n(n+1)+3)w_n-27n^2w_{n-1}\ (n = 1,2,3,\ldots).

    Lemma 9.1. Let p>3 be a prime. Then

    w_k{\equiv} \left( \frac{-3}p \right)27^kw_{p-1-k}\ ({\rm{mod}}\ p)\quad \mathit{\text{for all}}\ k = 0,\ldots,p-1.

    Proof. Note that

    \begin{align*} w_{p-1} = &\sum\limits_{k = 0}^{\lfloor(p-1)/3\rfloor}(-1)^k3^{p-1-3k} \binom{p-1}{3k} \binom{3k}k \binom{2k}k \\{\equiv}&\sum\limits_{k = 0}^{p-1} \frac{ \binom{2k}k \binom{3k}k}{27^k}{\equiv} \left( \frac p3 \right)\ ({\rm{mod}}\ p) \end{align*}

    with the help of the known congruence \sum_{k = 0}^{p-1} \binom{2k}k \binom{3k}k/27^k{\equiv}( \frac p3)\ ({\rm{mod}}\ {p^2}) conjectured by F. Rodriguez-Villegas [28] and proved by E. Mortenson [25]. Similarly,

    \begin{align*} w_{p-2} = &\sum\limits_{k = 0}^{\lfloor(p-2)/3\rfloor}(-1)^k3^{p-2-3k} \binom{p-2}{3k} \binom{3k}k \binom{2k}k \\ = &\sum\limits_{k = 0}^{\lfloor(p-2)/3\rfloor}(-1)^k3^{p-2-3k} \frac{3k+1}{p-1} \binom{p-1}{3k+1} \binom{3k}k \binom{2k}k \\{\equiv}& \frac19\sum\limits_{k = 0}^{p-1}(9k+3) \frac{ \binom{2k}k \binom{3k}k}{27^k} {\equiv} \frac19 \left( \frac p3 \right)+ \frac19\sum\limits_{k = 0}^{p-1}(9k+2) \frac{ \binom{2k}k \binom{3k}k}{27^k}\ ({\rm{mod}}\ p). \end{align*}

    By induction,

    \sum\limits_{k = 0}^n(9k+2) \frac{ \binom{2k}k \binom{3k}k}{27^k} = (3n+1)(3n+2) \frac{ \binom{2n}n \binom{3n}n}{27^n}

    for all n\in{\Bbb N} . In particular,

    \sum\limits_{k = 0}^{p-1}(9k+2) \frac{ \binom{2k}k \binom{3k}k}{27^k} = \frac{(3p-2)(3p-1)}{27^{p-1}}pC_{p-1} \binom{3p-3}{p-1}{\equiv}0\ ({\rm{mod}}\ p).

    So we have w_k{\equiv}( \frac{-3}p)27^kw_{p-1-k}\ ({\rm{mod}}\ p) for k = 0,1 . (Note that w_0 = 1 and w_1 = 3 .)

    Now let k\in\{1,\ldots,p-2\} and assume that

    w_j{\equiv} \left( \frac{-3}p \right)27^jw_{p-1-j}\quad\text{for all}\ j = 0,\ldots,k.

    Then

    \begin{align*} &(k+1)^2w_{k+1} = (9k(k+1)+3)w_k-27k^2w_{k-1} \\{\equiv}&(9(p-k)(p-k-1)+3) \left( \frac{-3}p \right)27^kw_{p-1-k} -27(p-k)^2 \left( \frac{-3}p \right)27^{k-1}w_{p-1-(k-1)} \\ = & \left( \frac{-3}p \right)27^k\times 27(p-k-1)^2w_{p-k-2}\ ({\rm{mod}}\ p) \end{align*}

    and hence

    w_{k+1}{\equiv} \left( \frac{-3}p \right)27^{k+1}w_{p-1-(k+1)}\ ({\rm{mod}}\ p).

    In view of the above, we have proved the desired result by induction.

    For Lemma 9.1 one may also consult [31,Corollary 3.1]. Let p>3 be a prime. In view of Lemma 9.1 and Remark 1.3(ⅱ), we have

    \begin{align*} \sum\limits_{k = 0}^{p-1} \frac{w_kT_k(b,c)}{m^k}{\equiv}& \left( \frac{-3(b^2-4c)}p \right)\sum\limits_{k = 0}^{p-1} \left( \frac{27(b^2-4c)}m \right)^kw_{p-1-k}T_{p-1-k}(b,c) \\{\equiv}& \left( \frac{-3(b^2-4c)}p \right)\sum\limits_{k = 0}^{p-1} \frac{w_kT_k(b,c)}{(27(b^2-4c)/m)^k}\ ({\rm{mod}}\ p) \end{align*}

    for any b,c,m\in{\Bbb Z} with p\nmid (b^2-4c)m .

    Wan and Zudilin [49] obtained the following irrational series for 1/\pi involving the Legendre polynomials and the numbers w_n :

    \sum\limits_{k = 0}^\infty(14k+7-\sqrt{21})w_kP_k \left( \frac{\sqrt{21}}{5} \right) \left( \frac{7\sqrt{21}-27} {90} \right)^k = \frac{5\sqrt{7(7\sqrt{21}+27)}}{4\sqrt2\,\pi}.

    Using our congruence approach (including Conjecture 1.4), we find five rational series for 1/\pi involving T_n(b,c) and the numbers w_n ; Theorem 1 of [49] might be helpful to solve them.

    Conjecture 9.1. We have

    \begin{align} \sum\limits_{k = 0}^\infty \frac{13k+3}{100^k}w_kT_k(14,-1)& = \frac{30\sqrt2}{\pi}, \end{align} (9.1)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{14k+5}{108^k}w_kT_k(18,1)& = \frac{27\sqrt3}{\pi}, \end{align} (9.2)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{19k+2}{486^k}w_kT_k(44,-2)& = \frac{81\sqrt3}{4\pi}, \end{align} (9.3)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{91k+32}{(-675)^k}w_kT_k(52,1)& = \frac{45\sqrt3}{2\pi}, \end{align} (9.4)
    \begin{align} \sum\limits_{k = 0}^\infty \frac{182k+37}{756^k}w_kT_k(110,1)& = \frac{315\sqrt3}{\pi}. \end{align} (9.5)

    Below we present our conjectures on congruences related to the identities (9.2) and (9.5).

    Conjecture 9.2. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(14k+5)108^{n-1-k}w_kT_k(18,1)\in{\Bbb Z}^+, \end{equation} (9.6)

    and this number is odd if and only if n\in\{2^a:\ a\in{\Bbb N}\} .

    \rm(ⅱ) Let p>3 be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{14k+5}{108^k}w_kT_k(18,1){\equiv} \frac p4 \left(27 \left( \frac {-3}p \right)-7 \left( \frac {21}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (9.7)

    If ( \frac p7) = 1\ ( i.e., p{\equiv}1,2,4\ ({\rm{mod}}\ 7)) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{14k+5}{108^k}w_kT_k(18,1)- \left( \frac p3 \right)\sum\limits_{k = 0}^{n-1} \frac{14k+5}{108^k}w_kT_k(18,1)\right)\in{\Bbb Z}_p \end{equation} (9.8)

    for all n\in{\Bbb Z}^+ .

    \rm(ⅲ) For any prime p>7 , we have

    \begin{equation} \begin{aligned}& \left( \frac p3 \right)\sum\limits_{k = 0}^{p-1} \frac{w_kT_k(18,1)}{108^k} \\{\equiv}&\begin{cases}x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p5) = ( \frac p7) = 1\ &\ 4p = x^2+35y^2\ (x,y\in{\Bbb Z}), \\5x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p5) = ( \frac p7) = -1\ &\ 4p = 5x^2+7y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-35}p) = -1. \end{cases}\end{aligned} \end{equation} (9.9)

    Conjecture 9.3. \rm(ⅰ) For any n\in{\Bbb Z}^+ , we have

    \begin{equation} \frac1n\sum\limits_{k = 0}^{n-1}(182k+37)756^{n-1-k}w_kT_k(110,1)\in{\Bbb Z}^+, \end{equation} (9.10)

    and this number is odd if and only if n\in\{2^a:\ a\in{\Bbb N}\} .

    \rm(ⅱ) Let p>3 be a prime with p\not = 7 . Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{182k+37}{756^k}w_kT_k(110,1){\equiv} \frac p4 \left(265 \left( \frac {-3}p \right)-117 \left( \frac {21}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (9.11)

    If ( \frac p7) = 1\ ( i.e., p{\equiv}1,2,4\ ({\rm{mod}}\ 7)) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{182k+37}{756^k}w_kT_k(110,1)- \left( \frac p3 \right)\sum\limits_{k = 0}^{n-1} \frac{182k+37}{756^k}w_kT_k(110,1)\right)\in{\Bbb Z}_p \end{equation} (9.12)

    for all n\in{\Bbb Z}^+ .

    \rm(ⅲ) For any prime p>3 with p\not = 7,13 , we have

    \begin{equation} \begin{aligned}& \left( \frac p3 \right)\sum\limits_{k = 0}^{p-1} \frac{w_kT_k(110,1)}{756^k} \\{\equiv}&\begin{cases}x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p7) = ( \frac p{13}) = 1\ &\ 4p = x^2+91y^2\ (x,y\in{\Bbb Z}), \\7x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac p7) = ( \frac p{13}) = -1\ &\ 4p = 7x^2+13y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ ( \frac{-91}p) = -1. \end{cases}\end{aligned} \end{equation} (9.13)

    Now we give one more conjecture in this section.

    Conjecture 9.4. \rm(ⅰ) For any integer n>1 , we have

    \begin{equation} \frac1{3n2^{\lfloor(n+1)/2\rfloor}} \sum\limits_{k = 0}^{n-1}(2k+1)54^{n-1-k}w_kT_k(10,-2)\in{\Bbb Z}^+. \end{equation} (9.14)

    \rm(ⅱ) Let p>3 be a prime. Then

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{2k+1}{54^k}w_kT_k(10,-2){\equiv} p \left( \frac p3 \right)+ \frac{p}2(2^{p-1}-1) \left(5 \left( \frac p3 \right)+3 \left( \frac 3p \right) \right)\ ({\rm{mod}}\ {p^3}). \end{equation} (9.15)

    If p{\equiv}1\ ({\rm{mod}}\ 4) , then

    \begin{equation} \frac1{(pn)^2}\left(\sum\limits_{k = 0}^{pn-1} \frac{2k+1}{54^k}w_kT_k(10,-2)- \left( \frac p3 \right)\sum\limits_{k = 0}^{n-1} \frac{2k+1}{54^k}w_kT_k(10,-2)\right)\in{\Bbb Z}_p \end{equation} (9.16)

    for all n\in{\Bbb Z}^+ .

    \rm(ⅲ) For any prime p>3 , we have

    \begin{equation} \begin{aligned}& \left( \frac p3 \right)\sum\limits_{k = 0}^{p-1} \frac{w_kT_k(10,-2)}{54^k} \\{\equiv}&\begin{cases}4x^2-2p\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ 4\mid p-1\ &\ p = x^2+4y^2\ (x,y\in{\Bbb Z}), \\0\ ({\rm{mod}}\ {p^2})& \mathit{\text{if}}\ p{\equiv}3\ ({\rm{mod}}\ 4). \end{cases}\end{aligned} \end{equation} (9.17)

    Remark 9.1. For primes p>3 with p{\equiv}3\ ({\rm{mod}}\ 4) , in general the congruence (9.16) is not always valid for all n\in{\Bbb Z}^+ . This does not violate Conjecture 1.2 since \lim_{k\to+\infty}|w_kT_k(10,-2)|^{1/k} = \sqrt{27}\times\sqrt{10^2-4(-2)} = 54 . If the series \sum_{k = 0}^\infty \frac{2k+1}{54^k}w_kT_k(10,-2) converges, its value times \pi/\sqrt3 should be a rational number.

    Let p be an odd prime and let a,b,c,d,m\in{\Bbb Z} with m(b^2-4c)\not{\equiv}0\ ({\rm{mod}}\ p) . Then

    \begin{align*} \sum\limits_{k = 1}^{p-1} \frac{a+dk}{m^k} \binom{2k}k^2T_k(b,c) {\equiv}&\sum\limits_{k = 1}^{(p-1)/2} \frac{a+dk}{k^2m^k} \left(k \binom{2k}k \right)^2T_k(b,c) \\{\equiv}&\sum\limits_{k = 1}^{(p-1)/2} \frac{a+dk}{k^2m^k} \left(- \frac{2p}{ \binom{2(p-k)}{p-k}} \right)^2T_k(b,c)\ ({\rm{mod}}\ p) \end{align*}

    with the aid of [33,Lemma 2.1]. Thus

    \begin{align*} &\sum\limits_{k = 1}^{p-1} \frac{a+dk}{m^k} \binom{2k}k^2T_k(b,c) \\{\equiv}&4p^2\sum\limits_{k = 1}^{(p-1)/2} \frac{a+dk}{k^2m^k}\times \frac{T_k(b,c)}{ \binom{2(p-k)}{p-k}^2} \\{\equiv}&4p^2\sum\limits_{p/2 < k < p} \frac{a+d(p-k)}{(p-k)^2m^{p-k}}\times \frac{T_{p-k}(b,c)}{ \binom{2k}k^2} \\{\equiv}&4p^2\sum\limits_{k = 1}^{p-1} \frac{(a-dk)m^{k-1}}{k^2 \binom{2k}k^2} \left( \frac{b^2-4c}p \right)(b^2-4c)^{p-k}T_{p-1-(p-k)}(b,c) \\{\equiv}& \left( \frac{b^2-4c}p \right)4p^2\sum\limits_{k = 1}^{p-1} \frac{(a-dk)T_{k-1}(b,c)}{k^2 \binom{2k}k^2} \left( \frac{m}{b^2-4c} \right)^{k-1} \ ({\rm{mod}}\ p) \end{align*}

    in view of Remark 1.3(ⅱ).

    Let p>3 be a prime. By the above, the author's conjectural congruence (cf. [35,Conjecture 1.3])

    \sum\limits_{k = 0}^{p-1}(105k+44)(-1)^k \binom{2k}k^2T_k{\equiv} p \left(20+24 \left( \frac p3 \right)(2-3^{p-1}) \right)\ ({\rm{mod}}\ {p^3})

    implies that

    p^2\sum\limits_{k = 1}^{p-1} \frac{(105k-44)T_{k-1}}{k^2 \binom{2k}k^23^{k-1}}{\equiv} 11 \left( \frac p3 \right)\ ({\rm{mod}}\ p).

    Motivated by this, we pose the following curious conjecture.

    Conjecture 10.1. We have the following identities:

    \begin{align} \sum\limits_{k = 1}^\infty \frac{(105k-44)T_{k-1}}{k^2 \binom{2k}k^23^{k-1}} = & \frac{5\pi}{\sqrt3}+6\log3, \end{align} (10.1)
    \begin{align} \sum\limits_{k = 2}^\infty \frac{(5k-2)T_{k-1}}{(k-1)k^2 \binom{2k}k^23^{k-1}} = & \frac{21-2\sqrt3\,\pi-9\log3}{12}. \end{align} (10.2)

    Remark 10.1. The two identities were conjectured by the author on Dec. 7, 2019. One can easily check them numerically via \mathsf{Mathematica} as the two series converge fast.

    Now we state our related conjectures on congruences.

    Conjecture 10.2. For any prime p>3 , we have

    \begin{equation} p^2\sum\limits_{k = 1}^{p-1} \frac{(105k-44)T_{k-1}}{k^2 \binom{2k}k^23^{k-1}} {\equiv} 11 \left( \frac p3 \right)+ \frac p2 \left(13-35 \left( \frac p3 \right) \right)\ ({\rm{mod}}\ {p^2}) \end{equation} (10.3)

    and

    \begin{equation} p^2\sum\limits_{k = 2}^{p-1} \frac{(5k-2)T_{k-1}}{(k-1)k^2 \binom{2k}k^23^{k-1}} {\equiv}- \frac12 \left( \frac p3 \right)- \frac p8 \left(7+ \left( \frac p3 \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (10.4)

    Conjecture 10.3. (ⅰ) We have

    \frac1{n \binom{2n}n}\sum\limits_{k = 0}^{n-1}(-1)^{n-1-k}(5k+2) \binom{2k}kC_kT_k\in{\Bbb Z}^+

    for all n\in{\Bbb Z}^+ , and also

    \sum\limits_{k = 0}^{p-1}(-1)^k(5k+2) \binom{2k}kC_kT_k{\equiv} 2p \left(1- \left( \frac p3 \right)(3^p-3) \right)\ ({\rm{mod}}\ {p^3})

    for each prime p>3 .

    \rm(ⅱ) For any prime p{\equiv}1\ ({\rm{mod}}\ 3) and n\in{\Bbb Z}^+ , we have

    \begin{equation} \begin{aligned}& \frac{\sum\limits_{k = 0}^{pn-1}(-1)^k(5k+2) \binom{2k}kC_kT_k-p\sum\limits_{k = 0}^{n-1}(-1)^k(5k+2) \binom{2k}kC_kT_k} {(pn)^2 \binom{2n}n^2} \\\quad\qquad&{\equiv} \left( \frac p3 \right) \frac{3^p-3}{2p}(-1)^nT_{n-1}\ ({\rm{mod}}\ {p}). \end{aligned} \end{equation} (10.5)

    Remark 10.2. See also [45,Conjecture 67] for a similar conjecture.

    Let p be an odd prime. We conjecture that

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{8k+3}{(-16)^k} \binom{2k}k^2T_k(3,-4){\equiv} p \left(1+2 \left( \frac{-1}p \right) \right)\ ({\rm{mod}}\ {p^2}) \end{equation} (10.6)

    and

    \begin{equation} \sum\limits_{k = 0}^{p-1} \frac{33k+14}{4^k} \binom{2k}k^2T_k(8,-2){\equiv} p \left(6 \left( \frac{-1}p \right)+8 \left( \frac{2}p \right) \right)\ ({\rm{mod}}\ {p^2}). \end{equation} (10.7)

    Though (10.6) implies the congruence

    p^2\sum\limits_{k = 1}^{p-1} \frac{(8k-3)T_{k-1}(3,-4)}{k^2 \binom{2k}k^2} \left(- \frac{16}{25} \right)^{k-1}{\equiv} \frac 34\ ({\rm{mod}}\ p),

    and (10.7) with p>3 implies the congruence

    p^2\sum\limits_{k = 1}^{p-1} \frac{(33k-14)T_{k-1}(8,-2)}{k^2 \binom{2k}k^218^{k-1}}{\equiv} \frac 7{2} \left( \frac 2p \right)\ ({\rm{mod}}\ p),

    we are unable to find the exact values of the two converging series

    \sum\limits_{k = 1}^\infty \frac{(8k-3)T_{k-1}(3,-4)}{k^2 \binom{2k}k^2} \left(- \frac{16}{25} \right)^{k-1} \ \ \text{and}\ \ \sum\limits_{k = 1}^{\infty} \frac{(33k-14)T_{k-1}(8,-2)}{k^2 \binom{2k}k^218^{k-1}}.

    The author would like to thank Prof. Qing-Hu Hou at Tianjin Univ. for his helpful comments on the proof of Lemma 2.3.



    [1] F. Alouges, A. Soyeur, On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084. doi: 10.1016/0362-546X(92)90196-L
    [2] B. Guo, M. Hong, The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps, Calc. Var. Patial. Dif., 1 (1993), 311-334. doi: 10.1007/BF01191298
    [3] W. E, X. Wang, Numerical methods for the Landau-Lifshitz equation, SIAM J. Numer. Anal., 38 (2000), 1647-1665. doi: 10.1137/S0036142999352199
    [4] J. Fan, H. Gao, B. Guo, Regularity criteria for the Navier-Stokes-Landau-Lifshitz system, J. Math. Anal. Appl. 363 (2010), 29-37. doi: 10.1016/j.jmaa.2009.07.047
    [5] J. Fan, Y. Zhou, Uniform local well-posedness for an Ericksen-Leslie's density-dependent parabolic-hyperbolic liquid crystals model, Appl. Math. Lett., 74 (2017), 79-84. doi: 10.1016/j.aml.2017.04.012
    [6] E. Feireisl, E. Rocca, G. Schimperna, et al. On a hyperbolic system arising in liquid crystals modeling, J. Hyperbol. Differ. Eq., 15 (2018), 15-35. doi: 10.1142/S0219891618500029
    [7] D. Golovaty, P. Sternberg, R. Venkatraman, A Ginzburg-Landau-type problem for highly anisotropic nematic liquid crystals, SIAM J. Math. Anal., 51 (2019), 276-320. doi: 10.1137/18M1178360
    [8] B. Guo, F. Liu, Weak and smooth solutions to incompressible Navier-Stokes-Landau-LifshitzMaxwell equations, Front. Math. China, 14 (2019), 1133-1161. doi: 10.1007/s11464-019-0800-x
    [9] T. Kato, Strong Lp-solutions of the Navier-Stokes equations in \mathbb{R}^m with applications to weak solutions, Math. Z., 187 (1984), 471-480. doi: 10.1007/BF01174182
    [10] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704
    [11] H. Koch, D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22- 35.
    [12] F. Lin, J. Lin, C. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x
    [13] F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible NavierStokes equations in \mathbb{R}^3, Ann. Inst. Henri Poincare, 13 (1996), 319-336.
    [14] M. Schonbek, Y. Shibata, Global well-posedness and decay for a \mathbb{Q} tensor model of incompressible nematic liquid crystals in \mathbb{R}^N, J. Differ. Equations, 266 (2019), 3034-3065.
    [15] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, USA, 1970.
    [16] I. W. Stewart, T. R. Faulkner, The stability of nematic liquid crystals under crossed electric and magnetic fields, Appl. Math. Lett., 13 (2000), 23-28.
    [17] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
    [18] G. Wang, B. Guo, Existence and uniqueness of the weak solution to the incompressible NavierStokes-Landau-Lifshitz model in 2-dimension, Acta Math. Sci. Ser. B (Engl. Ed.), 37 (2017), 1361- 1372.
    [19] G. Wang, B. Guo, Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6141-6166.
    [20] R. Wei, Y. Li, Z. Yao, Decay rates of higher-order norms of solutions to the Navier-Stokes-LandauLifshitz system, Appl. Math. Mech. (English Ed.), 39 (2018), 1499-1528. doi: 10.1007/s10483-018-2380-8
    [21] X. Zhai, Y. Li, W. Yan, Global solutions to the Navier-Stokes-Landau-Lifshitz system, Math. Nachr., 289 (2016), 377-388. doi: 10.1002/mana.201400419
    [22] C. Zhao, Y. Li, Z. Song, Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach, Nonlinear Anal. Real World Appl., 53 (2020), 103077.
    [23] X. Zhao, Y. Zhou, Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations, Discrete Cont. Dyn. Syst. B, In press, doi: 10.3934/dcdsb.2020142.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4147) PDF downloads(179) Cited by(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog