Mathematics

Research article

Well-posedness for the Chern-Simons-Schrödinger equations

Jishan Fan ${ }^{1}$ and Tohru Ozawa ${ }^{2, *}$
${ }^{1}$ Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, China
${ }^{2}$ Department of Applied Physics, Waseda University, Tokyo, 169-8555, Japan
* Correspondence: Email: txozawa@ waseda.jp; Tel: +81352868487; Fax: +81352868487.

Abstract: First, we prove uniform-in- ϵ regularity estimates of local strong solutions to the Chern-Simons-Schrödinger equations in \mathbb{R}^{2}. Here ϵ is the dispersion coefficient. Then we prove the global well-posedness of strong solutions to the limit problem $(\epsilon=0)$.

Keywords: Chern-Simons-Schrödinger; Coulomb gauge; well-posedness
Mathematics Subject Classification: 35B30, 35B65, 35Q55

1. Introduction

In this paper, we consider the following Chern-Simons-Schrödinger equations [1,2]:

$$
\begin{align*}
& i \partial_{t} \phi+(\epsilon \nabla+i A)^{2} \phi=A_{0} \phi-\lambda|\phi|^{2} \phi+i f(x, t) \phi, \tag{1.1}\\
& \partial_{t} A-\nabla A_{0}=\operatorname{Im}\left(\epsilon \bar{\phi} \nabla^{\perp} \phi\right)+A^{\perp}|\phi|^{2}, \tag{1.2}\\
& \operatorname{rot} A=-\frac{1}{2}|\phi|^{2} \text { in } \mathbb{R}^{2} \times(0, \infty), \tag{1.3}\\
& \phi(\cdot, 0)=\phi_{0}(\cdot) \text { in } \mathbb{R}^{2}, \tag{1.4}
\end{align*}
$$

where ϕ is the complex scalar field, A_{0} and $A:=\binom{A_{1}}{A_{2}}$ are the real gauge fields. $\lambda>0$ is a coupling constant representing the strength of interaction potential. $\epsilon \geq 0$ is the dispersion coefficient. $i:=$ $\sqrt{-1}, \nabla^{\perp}:=\binom{-\partial_{2}}{\partial_{1}}, A^{\perp}:=\binom{-A_{2}}{A_{1}}, \operatorname{rot} \phi:=\binom{\partial_{2} \phi}{-\partial_{1} \phi}=-\nabla^{\perp} \phi$ and $\operatorname{rot} A:=\partial_{1} A_{2}-\partial_{2} A_{1} . f$ is a complex smooth function.

The system (1.1)-(1.3) was proposed in [1,2] to deal with the electromagnetic phenomena in planar domains, such as the fractional quantum Hall effect or high-temperature superconductivity.

The system (1.1)-(1.3) is invariant under the following gauge transformations:

$$
\begin{equation*}
\phi \rightarrow \phi e^{i \chi}, A_{0} \rightarrow A_{0}-\partial_{t} \chi, A \rightarrow A-\nabla \chi, \tag{1.5}
\end{equation*}
$$

where $\chi: \mathbb{R}^{2+1} \rightarrow \mathbb{R}$ is a smooth function. In this work, we fix the Coulomb gauge:

$$
\begin{equation*}
\operatorname{div} A=0 \text { in } \mathbb{R}^{2} \times(0, \infty) \tag{1.6}
\end{equation*}
$$

Taking div to (1.2), rot to (1.3), using $\operatorname{rot}^{2} A=-\Delta A+\nabla \operatorname{div} A$ and (1.6), we can reformulate (1.1)(1.3) as follows.

$$
\begin{align*}
& i \partial_{t} \phi+\epsilon^{2} \Delta \phi+2 i \epsilon A \cdot \nabla \phi-|A|^{2} \phi=A_{0} \phi-\lambda|\phi|^{2} \phi+\text { if } \phi, \tag{1.7}\\
& -\Delta A_{0}=\epsilon \operatorname{Im}\left(\partial_{1} \phi \partial_{2} \bar{\phi}-\partial_{2} \phi \partial_{1} \bar{\phi}\right)-\operatorname{rot}\left(|\phi|^{2} A\right), \tag{1.8}\\
& \Delta A=\frac{1}{2} \operatorname{rot}|\phi|^{2} \text { in } \mathbb{R}^{2} \times(0, \infty), \tag{1.9}\\
& \phi(\cdot, 0)=\phi_{0}(\cdot) \text { in } \mathbb{R}^{2} . \tag{1.10}
\end{align*}
$$

Bergé-de Bouard-Saut [3] proved that the Cauchy problem is locally well-posed when $\phi_{0} \in H^{2}$. Huh [4] improved it to the case $\phi_{0} \in H^{1}$. Lim [5] refined it to the case $\phi_{0} \in H^{s}$ for $s \geq 1$. In [3], the authors also showed, by deriving a virial identity, that solutions blow up in finite time under certain conditions. The existence of a standing wave solution has also been proved in [6, 7]. Liu-SmithTataru [8] proved the local well-posedness of (1.1)-(1.3) for small data $\phi_{0} \in H^{\sigma}$ with any $\sigma>0$ under the Lorentz (heat) gauge:

$$
\begin{equation*}
A_{0}=\operatorname{div} A . \tag{1.11}
\end{equation*}
$$

Please see [9-13] for other studies of the problem (1.1)-(1.3).
All the above results dealt with the case $\epsilon=1$. The aim of this paper is to prove the uniform regularity estimates independent of ϵ and prove the global well-posedness of strong solutions to the limit problem $(\epsilon=0)$. We will prove

Theorem 1.1. Let $\phi_{0} \in H^{s}$ with $s>1$. Then there exists $T_{0}>0$ such that the problem (1.7)-(1.10) has a unique local strong solution $\left(\phi, A_{0}, A\right)$ on $\left[0, T_{0}\right]$ satisfying

$$
\begin{equation*}
\sup _{\epsilon \in[0,1]} \sup _{t \in\left[0, T_{0}\right]}\left\|\left(\phi, \nabla A_{0}, \nabla A\right)(\cdot, t)\right\|_{H^{s}} \leq C . \tag{1.12}
\end{equation*}
$$

Remark 1.1. Our approach is very much technically simpler than that in [5] when $s>1$.
Remark 1.2. We are unable to prove a similar result for the Maxwell-Schrödinger system.
When $\epsilon=0$, the problem (1.7)-(1.10) reads as follows.

$$
\begin{align*}
& \partial_{t} \phi=-i A_{0} \phi-i|A|^{2} \phi+\lambda i|\phi|^{2} \phi+f \phi, \tag{1.13}\\
& \Delta A_{0}=\operatorname{rot}\left(|\phi|^{2} A\right), \tag{1.14}\\
& \Delta A=\frac{1}{2} \operatorname{rot}|\phi|^{2}, \tag{1.15}\\
& \operatorname{div} A=0 \text { in } \mathbb{R}^{2} \times(0, \infty), \tag{1.16}\\
& \phi(\cdot, 0)=\phi_{0}(\cdot) \text { in } \mathbb{R}^{2} . \tag{1.17}
\end{align*}
$$

We have
Theorem 1.2. Let $\phi_{0} \in H^{s} \cap L^{\infty}$ with $s \geq 1$. Then the problem (1.13)-(1.17) has a unique global strong solution (ϕ, A_{0}, A) satisfying (1.12).

Remark 1.3. For recent literature on the concept of "well-posedness," we refer the reader to [14-16]. Regarding vanishing dispersion limit for related equations, see [17-19].

In the following proofs, we will use the bilinear commutator and product estimates due to KatoPonce [20]:

$$
\begin{align*}
& \left\|\Lambda^{s}(f g)-f \Lambda^{s} g\right\|_{L^{p}} \leq C\left(\|\nabla f\|_{L^{p_{1}}}\left\|\Lambda^{s-1} g\right\|_{L^{q_{1}}}+\|g\|_{L^{p_{2}}}\left\|\Lambda^{s} f\right\|_{L^{q_{2}}}\right), \tag{1.18}\\
& \left\|\Lambda^{s}(f g)\right\|_{L^{p}} \leq C\left(\|f\|_{L^{p_{1}}}\left\|\Lambda^{s} g\right\|_{L^{q_{1}}}+\left\|\Lambda^{s} f\right\|_{L^{p_{2}}}\|g\|_{L^{q_{2}}}\right) \tag{1.19}
\end{align*}
$$

with $s>0, \Lambda:=(-\Delta)^{\frac{1}{2}}$ and $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{p_{2}}+\frac{1}{q_{2}}$.

2. Proof of Theorem 1.1

Since the local well-posedness of smooth solution is well-known [5], we only need to show (1.12). (1.7) can be written as

$$
\begin{equation*}
\partial_{t} \phi=i \epsilon^{2} \Delta \phi-2 \epsilon A \cdot \nabla \phi-i A_{0} \phi-i|A|^{2} \phi+i \lambda|\phi|^{2} \phi+f \phi . \tag{2.1}
\end{equation*}
$$

Testing (2.1) by $\bar{\phi}$, taking the real parts and using (1.5), we have

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int|\phi|^{2} \mathrm{~d} x=\operatorname{Re} \int f|\phi|^{2} \mathrm{~d} x \leq\|f\|_{L^{\infty}}\|\phi\|_{L^{2}}^{2}
$$

which gives

$$
\begin{equation*}
\|\phi\|_{L^{2}} \leq C \tag{2.2}
\end{equation*}
$$

Applying Λ^{s} to (2.1), testing by $\Lambda^{s} \bar{\phi}$, taking the real parts, and using (1.5), (1.17) and (1.18), we get

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int\left|\Lambda^{s} \phi\right|^{2} \mathrm{~d} x=-2 \epsilon \operatorname{Re} \int\left(\Lambda^{s}(A \cdot \nabla \phi)-A \cdot \nabla \Lambda^{s} \phi\right) \Lambda^{s} \bar{\phi} \mathrm{~d} x \\
& \quad-\operatorname{Re} i \int \Lambda^{s}\left(A_{0} \phi\right) \Lambda^{s} \bar{\phi} \mathrm{~d} x-\operatorname{Re} i \int \Lambda^{s}\left(|A|^{2} \phi\right) \Lambda^{s} \bar{\phi} \mathrm{~d} x \\
& \quad+\operatorname{Re} \lambda i \int \Lambda^{s}\left(|\phi|^{2} \phi\right) \Lambda^{s} \bar{\phi} \mathrm{~d} x+\operatorname{Re} \int \Lambda^{s}(f \phi) \Lambda^{s} \bar{\phi} \mathrm{~d} x \\
& \leq C\|\nabla A\|_{L^{\infty}}\left\|\Lambda^{s} \phi\right\|_{L^{2}}^{2}+C\|\nabla \phi\|_{L^{p}}\left\|\Lambda^{s} A\right\|_{L^{2 p}}^{\frac{2 p}{p-2}}\left\|\Lambda^{s} \phi\right\|_{L^{2}} \\
& \quad\left(p:=\frac{2}{(2-s)^{+}} \text {if } s<2 \text { and } p=4 \text { if } s \geq 2\right) \\
& \quad+C\left\|A_{0}\right\|_{L^{\infty}}\left\|\Lambda^{s} \phi\right\|_{L^{2}}^{2}+C\|\phi\|_{L^{\infty}}\left\|\Lambda^{s} A_{0}\right\|_{L^{2}}\left\|\Lambda^{s} \phi\right\|_{L^{2}} \\
& +C C\|A\|_{L^{\infty}}^{\infty}\left\|\Lambda^{s} \phi\right\|_{L^{2}}^{2}+C\|\phi\|_{L^{\infty}}\|A\|_{L^{\infty}}\left\|\Lambda^{s} A\right\|_{L^{2}}\left\|\Lambda^{s} \phi\right\|_{L^{2}} \\
& +C C \phi\left\|_{L^{\infty}}^{2}\right\| \Lambda^{s} \phi\left\|_{L^{2}}^{2}+C\right\| f\left\|_{L^{\infty}}\right\| \Lambda^{s} \phi\left\|_{L^{2}}^{2}+C\right\| \phi\left\|_{L^{\infty}}\right\| \Lambda^{s} f\left\|_{L^{2}}\right\| \Lambda^{s} \phi \|_{L^{2}} . \tag{2.3}
\end{align*}
$$

Noting

$$
\begin{aligned}
\|\nabla A\|_{L^{\infty}}+\left\|\Lambda^{s} A\right\|_{L^{\frac{2 p}{p-2}}}+\left\|\Lambda^{s} A\right\|_{L^{2}} & \leq C\|\nabla A\|_{L^{2}}+C\left\|\Lambda^{s+1} A\right\|_{L^{2}} \\
& \leq C\|\phi\|_{L^{4}}^{2}+C\left\|\Lambda^{s}\left(|\phi|^{2}\right)\right\|_{L^{2}}
\end{aligned}
$$

$$
\begin{equation*}
\leq C\|\phi\|_{L^{4}}^{2}+C\|\phi\|_{L^{\infty}}\left\|\Lambda^{s} \phi\right\|_{L^{2}} \leq\|\phi\|_{H^{s}}^{2} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|\Lambda^{s} A_{0}\right\|_{L^{2}} & \leq C\left\|\Lambda^{s-2} \operatorname{div}\left(\operatorname{Im}\left(\epsilon \bar{\phi} \nabla^{\perp} \phi\right)+A^{\perp}|\phi|^{2}\right)\right\|_{L^{2}} \\
& \leq C\|\phi\|_{H^{s}}^{2}+C\|\phi\|_{L^{\infty}}^{2}\left\|\Lambda^{s-1} A\right\|_{L^{2}}+C\|A\|_{L^{\infty}}\|\phi\|_{L^{\infty}}\left\|\Lambda^{s-1} \phi\right\|_{L^{2}} \\
& \leq C\|\phi\|_{H^{s}}^{4}+C, \tag{2.5}
\end{align*}
$$

we obtain

$$
\begin{align*}
\left\|A_{0}\right\|_{L^{\infty}} & \leq C\left\|A_{0}\right\|_{L^{4}}+C\left\|\Lambda^{s} A_{0}\right\|_{L^{2}} \\
& \leq C\left\|\nabla A_{0}\right\|_{L^{\frac{4}{3}}}+C\left\|\Lambda^{s} A_{0}\right\|_{L^{2}} \\
& \leq C\left\|\bar{\phi} \nabla^{\perp} \phi\right\|_{L^{\frac{4}{3}}}+C\left\|A^{\perp}|\phi|^{2}\right\|_{L^{\frac{4}{3}}}+C\left\|\Lambda^{s} A_{0}\right\|_{L^{2}} \\
& \leq C\|\phi\|_{L^{4}}\|\nabla \phi\|_{L^{2}}+C\|A\|_{L^{\infty}}\|\phi\|_{L^{\frac{8}{3}}}^{2}+C\left\|\Lambda^{s} A_{0}\right\|_{L^{2}} \\
& \leq C\|\phi\|_{H^{s}}^{4}+C \tag{2.6}
\end{align*}
$$

due to (1.2), and

$$
\begin{align*}
\|A\|_{L^{\infty}} & \leq C\|A\|_{L^{4}}+C\left\|\Lambda^{s+1} A\right\|_{L^{2}} \\
& \leq C\|\nabla A\|_{L^{\frac{4}{3}}}+C\left\|\Lambda^{s+1} A\right\|_{L^{2}} \\
& \leq C\|\phi\|_{L^{\frac{8}{3}}}^{2}+C\left\|\Lambda^{s}\left(|\phi|^{2}\right)\right\|_{L^{2}} \\
& \leq C\|\phi\|_{L^{\frac{8}{3}}}^{2}+C\|\phi\|_{L^{\infty}}\left\|\Lambda^{s} \phi\right\|_{L^{2}} \\
& \leq C\|\phi\|_{H^{s}}^{2} . \tag{2.7}
\end{align*}
$$

Inserting (2.4), (2.5), (2.6), and (2.7) into (2.3), we arrive at

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int\left|\Lambda^{s} \phi\right|^{2} \mathrm{~d} x \leq C\|\phi\|_{H^{s}}^{6}+C \tag{2.8}
\end{equation*}
$$

which gives (1.12).
The proof is complete.

3. Proof of Theorem 1.2

First, we still have (2.2).
It is clear that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}|\phi|^{2}=(f+\bar{f})|\phi|^{2} \leq 2\|f\|_{L^{\infty}}\|\phi\|_{L^{\infty}}^{2}
$$

and thus

$$
\|\phi\|_{L^{\infty}}^{2} \leq\left\|\phi_{0}\right\|_{L^{\infty}}^{2}+2 \int_{0}^{t}\|f\|_{L^{\infty}}\|\phi\|_{L^{\infty}}^{2} d \tau
$$

which yields

$$
\begin{equation*}
\|\phi\|_{L^{\infty}} \leq C . \tag{3.1}
\end{equation*}
$$

Applying ∇ to (1.12), testing by $\nabla \bar{\phi}$, taking the real parts and using (1.15), (2.2) and (3.1), we see that

$$
\begin{aligned}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int|\nabla \phi|^{2} \mathrm{~d} x= & -\operatorname{Re} i \int \phi \nabla A_{0} \nabla \bar{\phi} \mathrm{~d} x-\operatorname{Re} i \int \phi \nabla|A|^{2} \cdot \nabla \bar{\phi} \mathrm{~d} x \\
& +\lambda \operatorname{Re} i \int \phi \nabla \bar{\phi} \nabla|\phi|^{2} \mathrm{~d} x+\operatorname{Re} \int \nabla(f \phi) \nabla \bar{\phi} \mathrm{d} x \\
\leq & \|\phi\|_{L^{\infty}}\left\|\nabla A_{0}\right\|_{L^{2}}\|\nabla \phi\|_{L^{2}}+2\|\phi\|_{L^{\infty}}\|A\|_{L^{4}}\|\nabla A\|_{L^{4}}\|\nabla \phi\|_{L^{2}} \\
& +2 \lambda\|\phi\|_{L^{\infty}}^{2}\|\nabla \phi\|_{L^{2}}^{2}+\|f\|_{L^{\infty}}\|\nabla \phi\|_{L^{2}}^{2}+\|\phi\|_{L^{\infty}}\|\nabla f\|_{L^{2}}\|\nabla \phi\|_{L^{2}} \\
\leq & C\left\|\left\|\left.\phi\right|^{2} A\right\|_{L^{2}}\right\| \nabla \phi\left\|_{L^{2}}+C\right\| A\left\|_{L^{4}}\right\| \nabla A\left\|_{L^{4}}\right\| \nabla \phi\left\|_{L^{2}}+C\right\| \nabla \phi \|_{L^{2}}^{2}+C \\
\leq & C\|\phi\|_{L^{8}}^{2}\|A\|_{L^{4}}\|\nabla \phi\|_{L^{2}}+C\|\nabla A\|_{L^{\frac{4}{3}}}\|\nabla A\|_{L^{4}}\|\nabla \phi\|_{L^{2}}+C\|\nabla \phi\|_{L^{2}}^{2}+C \\
\leq & C\|\nabla A\|_{L^{4}}\|\nabla \phi\|_{L^{2}}+C\|\nabla A\|_{L^{4}}\|\nabla A\|_{L^{4}}\|\nabla \phi\|_{L^{2}}+C\|\nabla \phi\|_{L^{2}}^{2}+C \\
\leq & C\left\|\left.\phi \phi\right|^{2}\right\|_{L^{4}}\|\nabla \phi\|_{L^{2}}+\left.\left.C\| \| \phi\right|^{2}\left\|_{L^{4}}^{4}\right\| \phi\right|^{2}\left\|_{L^{4}}\right\| \nabla \phi\left\|_{L^{2}}+C\right\| \nabla \phi \|_{L^{2}}^{2}+C \\
\leq & C\|\nabla \phi\|_{L^{2}}^{2}+C,
\end{aligned}
$$

which implies

$$
\begin{equation*}
\|\phi(\cdot, t)\|_{H^{1}} \leq C . \tag{3.2}
\end{equation*}
$$

Here we have used the estimates

$$
\begin{equation*}
\|\nabla A\|_{L^{q}} \leq\left. C\| \|\right|^{2} \|_{L^{q}} \leq C \text { for } 1<q<\infty, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\nabla A_{0}\right\|_{L^{2}} \leq C\left\|A^{\perp}|\phi|^{2}\right\|_{L^{2}} \leq C\|A\|_{L^{4}} \leq C\|\nabla A\|_{L^{\frac{4}{3}}} \leq C, \tag{3.4}
\end{equation*}
$$

On the other hand, noting that

$$
\begin{align*}
\left\|A_{0}\right\|_{L^{\infty}} & \leq C\left\|A_{0}\right\|_{L^{4}}+C\left\|\nabla A_{0}\right\|_{L^{4}} \\
& \leq C\left\|\nabla A_{0}\right\|_{L^{\frac{4}{3}}}+C\left\|\nabla A_{0}\right\|_{L^{4}} \\
& \leq C\left\|\left.\phi\right|^{2} A\right\|_{L^{4}}+\left.C\| \| \phi\right|^{2} A \|_{L^{4}} \\
& \leq C\|A\|_{L^{4}} \leq C, \tag{3.5}
\end{align*}
$$

and

$$
\begin{equation*}
\|A\|_{L^{\infty}} \leq C\|A\|_{L^{4}}+C\|\nabla A\|_{L^{4}} \leq C . \tag{3.6}
\end{equation*}
$$

Then applying Λ^{s} to (1.12), testing by $\Lambda^{s} \bar{\phi}$, taking the real parts, using (1.18), (3.1), (3.5) and (3.6), we obtain

$$
\begin{aligned}
& \quad \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int\left|\Lambda^{s} \phi\right|^{2} \mathrm{~d} x=-\operatorname{Re} i \int \Lambda^{s}\left(A_{0} \phi\right) \Lambda^{s} \bar{\phi} \mathrm{~d} x-\operatorname{Re} i \int \Lambda^{s}\left(|A|^{2} \phi\right) \Lambda^{s} \bar{\phi} \mathrm{~d} x \\
& \quad+\lambda \operatorname{Re} i \int \Lambda^{s}\left(|\phi|^{2} \phi\right) \Lambda^{s} \bar{\phi} \mathrm{~d} x+\operatorname{Re} \int \Lambda^{s}(f \phi) \Lambda^{s} \bar{\phi} \mathrm{~d} x \\
& \leq C\left\|A_{0}\right\|_{L^{\infty}}\left\|\Lambda^{s} \phi\right\|_{L^{2}}^{2}+C\|\phi\|_{L^{\infty}}\left\|\Lambda^{s} A_{0}\right\|_{L^{2}}\left\|\Lambda^{s} \phi\right\|_{L^{2}} \\
& \\
& +C\|A\|_{L^{\infty}}^{2}\left\|\Lambda^{s} \phi\right\|_{L^{2}}^{2}+C\|\phi\|_{L^{\infty}}\|A\|_{L^{\infty}}\left\|\Lambda^{s} A\right\|_{L^{2}}\left\|\Lambda^{s} \phi\right\|_{L^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& +C\|\phi\|_{L^{\infty}}^{2}\left\|\Lambda^{s} \phi\right\|_{L^{2}}^{2}+C\|f\|_{L^{\infty}}\left\|\Lambda^{s} \phi\right\|_{L^{2}}^{2}+C\|\phi\|_{L^{\infty}}\left\|\Lambda^{s} f\right\|_{L^{2}}\left\|\Lambda^{s} \phi\right\|_{L^{2}} \\
\leq & C\left\|\Lambda^{s} \phi\right\|_{L^{2}}^{2}+C\left\|\Lambda^{s} A_{0}\right\|_{L^{2}}\left\|\Lambda^{s} \phi\right\|_{L^{2}}+C\left\|\Lambda^{s} A\right\|_{L^{2}}\left\|\Lambda^{s} \phi\right\|_{L^{2}}+C \\
\leq & C\left\|\Lambda^{s} \phi\right\|_{L^{2}}^{2}+C\left\|\Lambda^{s-1}\left(|\phi|^{2} A\right)\right\|_{L^{2}}\left\|\Lambda^{s} \phi\right\|_{L^{2}}+C\left\|\Lambda^{s-1}\left(|\phi|^{2}\right)\right\|_{L^{2}}\left\|\Lambda^{s} \phi\right\|_{L^{2}}+C \\
\leq & C\left\|\Lambda^{s} \phi\right\|_{L^{2}}^{2}+C\left\|\Lambda^{s-1} A\right\|_{L^{2}}\left\|\Lambda^{s} \phi\right\|_{L^{2}}+C\left\|\Lambda^{s-1} \phi\right\|_{L^{2}}\left\|\Lambda^{s} \phi\right\|_{L^{2}}+C \\
\leq & C\left\|\Lambda^{s} \phi\right\|_{L^{2}}^{2}+C,
\end{aligned}
$$

which leads to (1.12).
Here we have used the estimates

$$
\begin{align*}
\left\|\Lambda^{s} A\right\|_{L^{2}} & \leq C\left\|\Lambda^{s-1}\left(|\phi|^{2}\right)\right\|_{L^{2}} \\
& \leq C\left\|\Lambda^{s-1} \phi\right\|_{L^{2}} \leq C\left\|\Lambda^{s} \phi\right\|_{L^{2}}+C, \tag{3.7}
\end{align*}
$$

and

$$
\begin{align*}
\left\|\Lambda^{s} A_{0}\right\|_{L^{2}} & \leq C\left\|\Lambda^{s-1}\left(|\phi|^{2} A\right)\right\|_{L^{2}} \\
& \leq C\left\|\Lambda^{s-1} \phi\right\|_{L^{2}}+C\left\|\Lambda^{s-1} A\right\|_{L^{2}} \\
& \leq C\left\|\Lambda^{s} \phi\right\|_{L^{2}}+C . \tag{3.8}
\end{align*}
$$

The proof is complete.

4. Conclusions

We have obtained the Sobolev estimates on local time interval uniformly in the dispersion coefficient $\epsilon \in(0,1]$. Moreover, we have proved the existence and uniqueness of global solutions to the limit problem $\epsilon=0$.

Acknowledgments

Fan is partially supported by NSFC (No. 11971234).

Conflict of interest

The authors declare no conflict of interest.

References

1. R. Jackiw, S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513. https://doi.org/10.1103/PhysRevD.42.3500
2. R. Jackiw, S.-Y. Pi, Self-dual Chern-Simons solitons, Prog. Theor. Phys., 107 (1992), 1-40. https://doi.org/10.1143/PTPS.107.1
3. L. Bergé, A. de Bouard, J.-C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253. https://doi.org/10.1088/0951-7715/8/2/007
4. H. Huh, Energy solution to the Chern-Simons-Schrödinger equations, Abstr. Appl. Anal., 2013 (2013), 590653. https://doi.org/10.1155/2013/590653
5. Z. Lim, Large data well-posedness in the energy space of the Chern-Simons-Schrödinger system, J. Differ. Equations, 264 (2018), 2553-2597. https://doi.org/10.1016/j.jde.2017.10.026
6. J. Byeon, H. Huh, J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608. https://doi.org/10.1016/j.jfa.2012.05.024
7. H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53 (2012), 063702. https://doi.org/10.1063/1.4726192
8. B. Liu, P. Smith, D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Notices, 2014 (2014), 6341-6398. https://doi.org/10.1093/imrn/rnt161
9. S. Demoulini, Global existence for a nonlinear Schrödinger-Chern-Simons system on a surface, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 207-225. https://doi.org/10.1016/j.anihpc.2006.01.004
10. H. Huh, Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967-974. https://doi.org/10.1088/0951-7715/22/5/003
11. S. Demoulini, D. Stuart, Adiabatic limit and the slow motion of vortices in a Chern-SimonsSchrödinger system, Commun. Math. Phys., 290 (2009), 597-632. https://doi.org/10.1007/s00220-009-0844-y
12. B. Liu, P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equaiton, Rev. Mat. Iberoam., 32 (2016), 751-794. https://doi.org/10.4171/rmi/898
13. S.-J. Oh, F. Pusateri, Decay and scattering for the Chern-Simons-Schrödinger equations, Int. Math. Res. Notices, 2015 (2015), 13122-13147. https://doi.org/10.1093/imrn/rnv093
14. S. Jha, P. Das, S. Bandhyopadhyay, S. Treanţă, Well-posedness for multi-time variational inequality problems via generalized monotonicity and for variational problems with multitime variational inequality constraints, J. Comput. Appl. Math., 407 (2022), 114033. https://doi.org/10.1016/j.cam.2021.114033
15. S. Treanţă, S. Jha, On well-posedness associated with a class of controlled variational inequalities, Math. Model. Nat. Phenom., 16 (2021), 52. https://doi.org/10.1051/mmnp/2021046
16. S. Treanţă, On well-posed isoperimetric-type constrained variational control problems, J. Differ. Equations, 298 (2021), 480-499. https://doi.org/10.1016/j.jde.2021.07.013
17. Y. Cho, T. Ozawa, On the semi-relativistic Hartree type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074. https://doi.org/10.1137/060653688
18. J. Fan, T. Ozawa, Cauchy problem and vanishing dispersion limit for Schrödingerimproved Boussinesq equations, J. Math. Anal. Appl., 485 (2020), 123857. https://doi.org/10.1016/j.jmaa.2020.123857
19. T. Ozawa, K. Tomioka, Vanishing dispersion limit for Schrödinger-improved Boussinesq system in two space dimensions, Asymptotic Anal., in press. https://doi.org/10.3233/ASY-221758
20. T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891-907. https://doi.org/10.1002/cpa.3160410704
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
