Research article

Universal enveloping Hom-algebras of regular Hom-Poisson algebras

  • Received: 19 November 2021 Revised: 23 December 2021 Accepted: 06 January 2022 Published: 11 January 2022
  • MSC : 16S10, 16W10, 17B35, 17B63

  • In this paper, we introduce universal enveloping Hom-algebras of Hom-Poisson algebras. Some properties of universal enveloping Hom-algebras of regular Hom-Poisson algebras are discussed. Furthermore, in the involutive case, it is proved that the category of involutive Hom-Poisson modules over an involutive Hom-Poisson algebra A is equivalent to the category of involutive Hom-associative modules over its universal enveloping Hom-algebra Ueh(A).

    Citation: Xianguo Hu. Universal enveloping Hom-algebras of regular Hom-Poisson algebras[J]. AIMS Mathematics, 2022, 7(4): 5712-5727. doi: 10.3934/math.2022316

    Related Papers:

    [1] Wen Teng, Jiulin Jin, Yu Zhang . Cohomology of nonabelian embedding tensors on Hom-Lie algebras. AIMS Mathematics, 2023, 8(9): 21176-21190. doi: 10.3934/math.20231079
    [2] Yunpeng Xiao, Wen Teng . Representations and cohomologies of modified $ \lambda $-differential Hom-Lie algebras. AIMS Mathematics, 2024, 9(2): 4309-4325. doi: 10.3934/math.2024213
    [3] Senrong Xu, Wei Wang, Jia Zhao . Twisted Rota-Baxter operators on Hom-Lie algebras. AIMS Mathematics, 2024, 9(2): 2619-2640. doi: 10.3934/math.2024129
    [4] Araya Kheawborisut, Siriluk Paokanta, Jedsada Senasukh, Choonkil Park . Ulam stability of hom-ders in fuzzy Banach algebras. AIMS Mathematics, 2022, 7(9): 16556-16568. doi: 10.3934/math.2022907
    [5] Lili Ma, Qiang Li . Cohomology and its applications on multiplicative Hom-$ \delta $-Jordan Lie color triple systems. AIMS Mathematics, 2024, 9(9): 25936-25955. doi: 10.3934/math.20241267
    [6] Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson $ n $-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327
    [7] Yuedi Zeng . Flat modules and coherent endomorphism rings relative to some matrices. AIMS Mathematics, 2023, 8(6): 14111-14131. doi: 10.3934/math.2023721
    [8] Ehsan Movahednia, Choonkil Park, Dong Yun Shin . Approximation of involution in multi-Banach algebras: Fixed point technique. AIMS Mathematics, 2021, 6(6): 5851-5868. doi: 10.3934/math.2021346
    [9] Haijun Cao, Fang Xiao . The category of affine algebraic regular monoids. AIMS Mathematics, 2022, 7(2): 2666-2679. doi: 10.3934/math.2022150
    [10] Bo Lu, Angmao Daiqing . Cartan-Eilenberg Gorenstein-injective $ m $-complexes. AIMS Mathematics, 2021, 6(5): 4306-4318. doi: 10.3934/math.2021255
  • In this paper, we introduce universal enveloping Hom-algebras of Hom-Poisson algebras. Some properties of universal enveloping Hom-algebras of regular Hom-Poisson algebras are discussed. Furthermore, in the involutive case, it is proved that the category of involutive Hom-Poisson modules over an involutive Hom-Poisson algebra A is equivalent to the category of involutive Hom-associative modules over its universal enveloping Hom-algebra Ueh(A).



    Poisson algebras originally arise from Hamiltonian mechanics and play an important role in Poisson geometry, algebraic geometry and deformation theory (see [3,4,9]). There are many interesting generalizations of Poisson structures developed by different authors from different perspectives (see, for instance, [5,8,12,13,22,23]). One way to generalize Poisson algebras is to twist the structure by a homomorphism. Such a structure is called a Hom-Poisson algebra, which was first defined in [15] by Makhlouf and Silvestrov. As a natural generalization of Poisson algebras, Hom-Poisson algebras play the same role in the deformation of commutative Hom-associative algebras as Poisson algebras do in the deformation of commutative associative algebras. Generally, a Hom-type algebraic structure (e.g., algebra, Lie algebra, coalgebra, Hopf algebra, etc.) is a vector space, endowed with an endomorphism, such that the classical definition of this algebraic structure is "deformed" by this endomorphism. The origins of the study of Hom-type algebras can be found in [7], where the notion of Hom-Lie algebra was introduced as part of a study of deformations of the Witt and the Virasoro algebras. The theory of Hom-type algebras has been widely studied in the past two decades (see [1,2,6,10,11,14,16,19,20,26] and the references therein).

    In nowadays mathematics, much of the research on certain algebraic object is to study its representation theory. The representation theory of an algebraic object is very important since it reveals some of its profound structures hidden underneath, so is for Hom-Poisson algebra. Similar to the definition of Poisson modules over Poisson algebras, Hom-Poisson modules over Hom-Poisson algebras are defined in a natural way. In this paper, in order to study the representation theory of Hom-Poisson algebras, we introduce the notion of universal enveloping Hom-algebras of Hom-Poisson algebras.

    The paper is organized as follows. In Section 2, we fix notation and recall some definitions and basic facts used throughout the paper. In particular, we recall the definitions of Hom-associative algebras, Hom-Lie algebras, Hom-Poisson algebras and Hom-Poisson modules. In section 3, we mainly study the universal enveloping Hom-algebra of a Hom-Poisson algebra. For any regular Hom-Poisson algebra (A,μ,[,],α), basic properties of its universal enveloping Hom-algebra Ueh(A) are discussed, including the relation to the usual universal enveloping algebra of A, whose Poisson structure is obtained by the action of α1. Moreover, in the involutive case, we show that the category of involutive Hom-Poisson modules over A is equivalent to the category of involutive Hom-associative modules over Ueh(A).

    Throughout this paper, all vector spaces and linear maps are over a fixed field k. In what follows, an unadorned means k. Given a k-module V, τ:VVVV interchanges the two variables, that is, τ(v1v2)=v2v1, for any v1,v2V.

    In this section, we briefly recall some definitions and notation used in this paper.

    By a Hom-module, we mean a pair (A,α) in which A is a vector space(i.e., k-module) and α:AA is a linear map, called the twisting map. Let (A,α) and (B,β) be two Hom-modules. A homomorphism f:(A,α)(B,β) of Hom-modules is a linear map f:AB such that βf=fα. A Hom-algebra is a triple (A,μ,α), where (A,α) is a Hom-module, and μ:AAA is a bilinear map, called the multiplication. For convenience, we shall write μ(ab) as ab, a,bA, whenever this does not cause confusion.

    Definition 2.1. Let (A,μ,α) be a Hom-algebra.

    (1) The Hom-algebra A is called a Hom-associative algebra if there exists an element 1AA such that

    α(1A)=1A,1Aa=α(a)=a1A,α(a)(bc)=(ab)α(c)

    for all a,b,cA. We usually denote a Hom-associative algebra by (A,μ,1A,α), or simply by (A,μ,α) or A if no confusions arise.

    (2) A Hom-associative algebra (A,μ,α) (resp. Hom-module (V,αV)) is said to be involutive if α2=Id (resp. α2V=Id).

    (3) A Hom-associative algebra (A,μ,α) (resp. Hom-module (V,αV)) is said to be regular if α is bijective (resp. αV is bijective).

    (4) Let (A,,1A,αA) and (B,,1B,αB) be two Hom-associative algebras. A homomorphism f:(A,αA)(B,αB) of Hom-modules (namely αBf=fαA) is a homomorphism of Hom-associative algebras if f(1A)=1B and f(ab)=f(a)f(b) for all a,bA.

    (5) Let (A,μ,1A,α) be a Hom-associative algebra.

    (5a) A submodule SA is called a Hom-associative subalgebra of A if 1AS, abS for all a,bS and α(S)S;

    (5b) A submodule IA is called a Hom-associative ideal of A if abI,baI for all aA,bI and α(I)I.

    (6) Let (A,μ,1A,α) be a Hom-associative algebra and (M,αM) a Hom-module. We call M a (left) Hom-associative module over A provided that there is a bilinear map :AMM such that

    (ⅰ) αM(am)=α(a)αM(m);

    (ⅱ) (ab)αM(m)=α(a)(bm);

    (ⅲ) 1Am=αM(m),

    for all elements a,bA,mM.

    Remark 2.2. In the definition of a Hom-associative algebra (A,μ,1A,α), the map α must satisfy the formula: α(ab)=α(a)α(b) for any a,bA, because

    α(ab)=1A(ab)=α(1A)(ab)=(1Aa)α(b)=α(a)α(b).

    Lemma 2.3. (1)[24] Let (V,μ,1A) be an associative algebra and α:VV an algebra endomorphism. Then (V,μα,1A,α), where μα:=αμ, is a Hom-associative algebra.

    (2) Let (A,μ,α) be a regular Hom-associative algebra. Then (A,α1μ) is an associative algebra.

    (3) Let (A,μ,α) be a Hom-associative algebra. If I is a Hom–associative ideal of A, then (A/I,¯μ,¯α), where ¯μ(a+I):=μ(a)+I,¯α(a+I):=α(a)+I for all aA, is a Hom-associative algebra.

    Let (M,αM) be a regular Hom-module. Set Endk(M):={f:MMfisalinearmap}, μE is the composition of the endomorphism algebra. Then (Endk(M),μE) is an associative algebra. Define a linear map αE:Endk(M)Endk(M) sending fEndk(M) to αMfα1M. Clearly, αE is an algebra endomorphism. By Lemma 2.3(1), (Endk(M),αEμE,αE) is a Hom-associative algebra. In the following, we always set Endk(M)α:=(Endk(M),αEμE,αE) if no confusions arise. Immediately, we have the following basic observations.

    Lemma 2.4. Let (A,μ,α) be a Hom-associative algebra and (M,αM) a regular Hom-module. If there exists a Hom-associative algebra morphism f:AEndk(M)α, define :AMM by am=f(a)(αM(m)) for any aA,mM. Then (M,,αM) is a Hom-associative module over A. Conversely, if α2M=IdM and (M,,αM) is a Hom-associative module over A, then the linear map g:AEndk(M)α, given by g(a)(m)=aαM(m) for any aA,mM, is a Hom-associative algebra morphism.

    Proof. First, we show that (M,,αM) is a Hom-associative module over A. Since f:AEndk(M)α is a Hom-associative algebra morphism, for any a,bA, mM, we have

    f(1A)=IdEndk(M),f(α(a))=αE(f(a))=αMf(a)α1M,f(ab)=αE(f(a)f(b))=αM(f(a)f(b))α1M,

    and then

    1Am=f(1A)(αM(m))=IdEndk(M)(αM(m))=αM(m),α(a)αM(m)=f(α(a))(αM(αM(m)))=αMf(a)α1M(α2M(m))=αMf(a)αM(m)=αM(am),α(a)(bm)=α(a)(f(b)αM(m))=f(α(a))(αMf(b)αM(m))=αMf(a)α1MαMf(b)αM(m)=αMf(a)f(b)αM(m)=αM(f(a)f(b))α1Mα2M(m)=f(ab)(α2M(m))=(ab)αM(m).

    Thus, (M,,αM) is a Hom-associative module over A.

    Next, we prove that g is a Hom-associative algebra morphism. Note that (M,,αM) is a Hom-associative module over A, for any a,bA, mM, we have

    g(1A)(m)=1AαM(m)=α2M(m)=m(α2M=IdM),αE(g(a)g(b))(m)=αM(g(a)g(b))α1M(m)=αMg(a)(bαMα1M(m))=αM(aαM(bm))=α(a)αMαM(bm)=α(a)(bm)(α2M=IdM)=(ab)αM(m)=g(ab)(m),αE(g(a))(m)=αMg(a)α1M(m)=αM(aαMα1M(m))=αM(am)=α(a)αM(m)=g(α(a))(m).

    Hence, g is a Hom-associative algebra morphism.

    Other examples and properties of Hom-associative algebras can be found in [16] and the references therein.

    Definition 2.5. (1) A Hom-Lie algebra is a triple (L,[,],α), which consists of a k-module L, a bilinear map [,]:LLL and a linear map α:LL, satisfying

    α([a,b])=[α(a),α(b)],[a,b]=[b,a],[α(a),[b,c]]+[α(b),[c,a]]+[α(c),[a,b]]=0,

    for all elements a,b,cL.

    (2) A Hom-Lie algebra (L,[,],α) is said to be involutive (resp. regular) if α2=Id (resp. α is bijective).

    (3) Let (L,[,],α) and (L,[,],α) be two Hom-Lie algebras. A linear map f:LL is called a homomorphism of Hom-Lie algebras if α(f(a))=f(α(a)), and f([a,b])=[f(a),f(b)] for all a,bL.

    (4) Let (A,[,],α) be a Hom-Lie algebra and (M,αM) a Hom-module. We call M a (left) Hom-Lie module over A if the following holds.

    (ⅰ) There is a bilinear map [,]M:AMM such that αM([a,m]M)=[α(a),αM(m)]M;

    (ⅱ) [,]M satisfies the formula: [[a,b],αM(m)]M=[α(a),[b,m]M]M[α(b),[a,m]M]M,

    for all elements a,bA,mM.

    Lemma 2.6. (1)[24] Let (L,[,]) be a Lie algebra and α:LL a Lie algebra morphism. Then (L,[,]α:=α[,],α) is a Hom-Lie algebra.

    (2) Let (L,[,],α) be a regular Hom-Lie algebra. Then (L,α1[,]) is a Lie algebra.

    As is noted in [17], given a Hom-associative algebra (A,μ,α), the triple (A,[,]L,α) is a Hom-Lie algebra, where

    [a,b]L:=abba,

    for all a,bA. We denote this Hom-Lie algebra by AL:=(AL,[,]L,α).

    Let us recall the definition of a Hom-Poisson algebra.

    Definition 2.7. A Hom-Poisson algebra is a quadruple (A,μ,[,],α) consisting of a Hom-module (A,α), bilinear maps μ:AAA and [,]:AAA, called the Hom-Poisson bracket, satisfying

    (ⅰ) (A,μ,α) is a commutative Hom-associative algebra;

    (ⅱ) (A,[,],α) is a Hom-Lie algebra;

    (ⅲ) For all a,b,cA,

    [α(a),bc]=α(b)[a,c]+[a,b]α(c). (2.1)

    Moreover, we call A an involutive (resp. regular) Hom-Poisson algebra provided that α2=Id (resp. α is bijective).

    By the anti-symmetry of the Hom-Poisson bracket [,], The formula (2.1) can be reformulated equivalently as

    [ab,α(c)]=α(a)[b,c]+[a,c]α(b).

    Let (A,,[,]A,αA) and (B,,[,]B,αB) be two Hom-Poisson algebras. A linear map f:AB is called a homomorphism of Hom-Poisson algebras if αB(f(a))=f(αA(a)), f(ab)=f(a)f(b) and f([a,b]A)=[f(a),f(b)]B for all a,bA.

    Lemma 2.8. (1)[25] Let (A,μ,[,]) be a Poisson algebra and α:AA a Poisson algebra morphism. Then (A,μα:=αμ,[,]α:=α[,],α) is a Hom-Poisson algebra.

    (2) Let (A,μ,[,],α) be a regular Hom-Poisson algebra. Then (A,α1μ,α1[,]) is a Poisson algebra.

    Lemma 2.9. Let (A,μ,[,],α) be a Hom-Poisson algebra. Then (Aop:=A,μop,[,]op,αop) is also a Hom-Poisson algebra, where

    μop(ab):=μτ(ab)=μ(ab),[,]op(ab):=[,]τ(ab)=[,](ab),αop:=α,

    for any elements a,bA.

    Lemma 2.10. [25]Let (A,μA,[,]A,αA) and (B,μB,[,]B,αB) be Hom-Poisson algebras. Define the linear maps α:ABBA and μ,[,]:(AB)(AB)AB by the following ways:

    α:=αAαB,μ(a1b1,a2b2):=μA(a1,a2)μB(b1,b2),[a1b1,a2b2]:=[a1,a2]AμB(b1,b2)+μA(a1,a2)[b1,b2]B

    for all aiA,biB,i=1,2. Then (AB,μ,[,],α) is a Hom-Poisson algebra.

    Example 2.11. Let (k[x,y],μ) be the commutative polynomial algebra in two variables. Define a Poisson structure on A:=k[x,y] by setting

    [f,g]=fxgygxfy

    for all f,gA, then A is a Poisson algebra. Define an algebra endomorphism α:AA on the affine plane A by setting

    α(x)=yandα(y)=x.

    It is easy to check that α is a Poisson algebra morphism with α4=Id. By Lemma 2.8(1), (A,αμ,α[,],α) is a Hom-Poisson algebra.

    In the following, we will consider Hom-Poisson modules over Hom-Poisson algebras.

    Definition 2.12. Let (A,μ,[,],α) be a Hom-Poisson algebra and (M,αM) a Hom-module. We call M a (left) Hom-Poisson module over A provided that

    (ⅰ) There exists a bilinear map :AMM such that (M,,αM) is a Hom-associative module over the Hom-associative algebra (A,μ,α);

    (ⅱ) There is a bilinear map [,]M:AMM such that (M,[,]M,αM) is a Hom-Lie module over the Hom-Lie algebra (A,[,],α);

    (ⅲ) The bilinear map is compatible with the bracket [,]M. That is, we have

    [ab,αM(m)]M=α(b)[a,m]M+α(a)[b,m]M;[a,b]αM(m)=[α(a),bm]Mα(b)[a,m]M,

    for all a,bA,mM.

    In addition, if A is an involutive (resp. regular) Hom-Poisson algebra, then the Hom-Poisson module (M,αM) is called involutive (resp. regular) if α2M=Id (resp. αM is bijective).

    Similar to the Lemmas 2.4 and 2.8, we have the following remarks, the proofs of which are left as easy exercises to the reader.

    Remark 2.13. Let (A,μ,[,],α) be a regular Hom-Poisson algebra and (M,μM,[,]M,αM) a Hom-Poisson module over A. Suppose that αM:MM is a linear isomorphism. Then (M,(αM)1μM,(αM)1[,]M) is a Poisson module over (A,α1μ,α1[,]).

    Remark 2.14. Let (A,μ,[,],α) be a Hom-Poisson algebra and (M,αM) a regular Hom-module. If there are a Hom-associative algebra morphism γ and a Hom-Lie algebra morphism δ from A into (Endk(M)α,:=αEμE,αE), such that

    γ([a,b])=δ(a)γ(b)γ(b)δ(a),δ(ab)=γ(a)δ(b)+γ(b)δ(a),

    for all a,bA. Define :AMM by am=γ(a)(αM(m)), and [,]M:AMM by [a,m]M=δ(a)(αM(m)) for any aA,mM. Then (M,,[,]M,αM) is a Hom-Poisson module.

    Remark 2.15. Let (A,μ,[,],α) be a Hom-Poisson algebra and (M,αM) an involutive Hom-module. If (M,,[,]M,αM) is a Hom-Poisson module, define γ:AEndk(M)α:=(Endk(M),:=αEμE,αE) by γ(a)(m)=aαM(m), and δ:AEndk(M)α by δ(a)(m)=[a,αM(m)]M for all aA,mM. Then γ is a Hom-associative algebra morphism, and δ is a Hom-Lie algebra morphism, such that

    γ([a,b])=δ(a)γ(b)γ(b)δ(a),δ(ab)=γ(a)δ(b)+γ(b)δ(a),

    for all a,bA.

    In this section, we study universal enveloping Hom-algebras of Hom-Poisson algebras.

    The universal enveloping algebra of an ordinary Poisson algebra is given in [18]. Our aim is to generalize the definition to the Hom-setting.

    Definition 3.1. Given a Hom-Poisson algebra (A,μ,[,],α), let (Ueh(A),,αU,η,θ) be a quintuple, which has property P described as

    (P1) (Ueh(A),,αU) is a Hom-associative algebra and η:AUeh(A) is a Hom-associative algebra morphism;

    (P2) θ:AUeh(A)L is a Hom-Lie algebra morphism;

    (P3) η([a,b])=θ(a)η(b)η(b)θ(a), and

    (P4) θ(ab)=η(a)θ(b)+η(b)θ(a) for all a,bA.

    Then (Ueh(A),η,θ) is called the universal enveloping Hom-algebra of A if for any other quintuple (D,,αD,γ,δ) that satisfies property P, there exists a unique Hom-associative algebra morphism φ:Ueh(A)D, making the diagram

    "bi-commute", i.e., φη=γ and φθ=δ.

    The relation about the universal enveloping Hom-algebra of a Hom-Poisson algebra and the universal enveloping algebra of a Poisson algebra is discussed in the following result, which shows that the universal enveloping algebra deforms into the universal enveloping Hom-algebra via an algebra homomorphism.

    Proposition 3.2. Let (A,μ,[,]) be a Poisson algebra and (U(A),μ) the universal enveloping algebra of A. Assume that α:AA is a Poisson algebra isomorphism. Then there exists an algebra homomorphism αU:U(A)U(A), such that (U(A),αUμ,αU) is the universal enveloping Hom-algebra of (A,αμ,α[,],α).

    Proof. Let (A,μ,[,]) be a Poisson algebra. The universal enveloping algebra (U(A),μ) of A can be constructed explicitly. Let mA={ma:aA} and hA={ha:aA} be two copies of the vector space A endowed with two linear isomorphisms m:AmA sending a to ma and h:AhA sending a to ha. Then (U(A),μ) is defined to be the quotient algebra of the free algebra generated by mA and hA, subject to the following relations:

    (ⅰ) m1A=1U(A),mab=mamb,

    (ⅱ) h[a,b]=hahbhbha,

    (ⅲ) m[a,b]=hambmbha,

    (ⅳ) hab=mahb+mbha

    for all elements a,bA. Define (η,θ) as follows:

    η:AU(A),η(a)=ma;θ:AU(A)L,θ(a)=ha.

    By the section 2 of [21], (U(A),μ,η,θ) is the universal enveloping algebra of A.

    Suppose that α:AA is a Poisson algebra isomorphism. By Lemma 2.8, (Aα:=A,:=αμ,[,]α:=α[,],α) is a Hom-Poisson algebra. Let αU:U(A)U(A) be an algebra homomorphism determined by

    αU(ma)=mα(a),αU(ha)=hα(a)

    for any element aA. Then (U(A)αU:=U(A),:=αUμ,αU) is the universal enveloping Hom-algebra of Aα by the following steps.

    Step 1: αU is a well-defined algebra homomorphism. It suffices to prove the following equations for a,bA:

    αU(m1A1U(A))=0,αU(mabmamb)=0,αU(h[a,b](hahbhbha))=0,αU(m[a,b](hambmbha))=0,αU(hab(mahb+mbha))=0,

    which follows from

    αU(m1A1U(A))=mα(1A)1U(A)=m1A1U(A)=0,
    αU(mabmamb)=mα(ab)αU(ma)αU(mb)=mα(a)α(b)mα(a)mα(b)=0,
    αU(h[a,b](hahbhbha))=hα([a,b])(αU(ha)αU(hb)αU(hb)αU(ha))=h[α(a),α(b)](hα(a)hα(b)hα(b)hα(a))=0,
    αU(m[a,b](hambmbha))=mα([a,b])(αU(ha)αU(mb)αU(mb)αU(ha))=m[α(a),α(b)](hα(a)mα(b)mα(b)hα(a))=0

    and

    αU(hab(mahb+mbha))=hα(ab)(αU(ma)αU(hb)+αU(mb)αU(ha))=hα(a)α(b)(mα(a)hα(b)+mα(b)hα(a))=0.

    Step 2: (U(A)αU,,αU,η,θ) satisfies property P.

    By step 1, αU is an algebra homomorphism. Then by Lemma 2.3, (U(A)αU,,αU) is a Hom-associative algebra. Moreover, for any a,bA, we have

    η(1A)=m1A=1U(A),αUη(a)=αU(ma)=mα(a)=ηα(a),αUθ(a)=αU(ha)=hα(a)=θα(a),
    η(ab)=η(α(ab))=η(α(a)α(b))=η(α(a))η(α(b))=mα(a)mα(b)=αU(ma)αU(mb)=αU(mamb)=mamb=η(a)η(b),
    θ([a,b]α)=θ(α([a,b]))=θ([α(a),α(b)])=θ(α(a))θ(α(b))θ(α(b))θ(α(a))=hα(a)hα(b)hα(b)hα(a)=αU(ha)αU(hb)αU(hb)αU(ha)=hahbhbha=[ha,hb]L=[θ(a),θ(b)]L,
    η([a,b]α)=η(α([a,b]))=η([α(a),α(b)])=θ(α(a))η(α(b))η(α(b))θ(α(a))=hα(a)mα(b)mα(b)hα(a)=αU(ha)αU(mb)αU(mb)αU(ha)=hambmbha=θ(a)η(b)η(b)θ(a)

    and

    θ(ab)=θ(α(ab))=θ(α(a)α(b))=η(α(a))θ(α(b))+η(α(b))θ(α(a))=mα(a)hα(b)+mα(b)hα(a)=αU(ma)αU(hb)+αU(mb)αU(ha)=mahb+mbha=η(a)θ(b)+η(b)θ(a).

    Thus, (U(A)αU,,αU,η,θ) satisfies property P.

    Step 3: The universal property is true. For any Hom-associative algebra (D,,αD,γ,δ) satisfying property P, define an algebra homomorphism φ:U(A)αUD by the rules: φ(ma):=γ(a),φ(ha)=δ(a). We show that φ is well-defined. Note that the Poisson algebra homomorphism α is bijective, then the relations of U(A)αU become the following relations:

    (ⅰ) m1Aα=1U(A)αU,mab=mamb,

    (ⅱ) h[a,b]α=hahbhbha,

    (ⅲ) m[a,b]α=hambmbha,

    (ⅳ) hab=mahb+mbha

    Then for any a,bA, we have

    φ(m1Aα)=γ(1Aα)=1D=φ(1U(A)αU),φ(mab)=γ(ab)=γ(a)γ(b)=φ(ma)φ(mb)=φ(mamb),φ(h[a,b]α)=δ([a,b]α)=δ(a)δ(b)δ(b)δ(a)=φ(ha)φ(hb)φ(hb)φ(ha)=φ(hahbhbha),φ(m[a,b]α)=γ([a,b]α)=δ(a)γ(b)γ(b)δ(a)=φ(ha)φ(mb)φ(mb)φ(ha)=φ(hambmbha),φ(hab)=δ(ab)=γ(a)δ(b)+γ(b)δ(a)=φ(ma)φ(hb)+φ(mb)φ(ha)=φ(mahb+mbha).

    Hence φ:U(A)αUD is a well-defined algebra morphism. Further,

    φαU(ma)=φ(mα(a))=γ(α(a))=γα(a)=αDγ(a)=αDφ(ma),
    φαU(ha)=φ(hα(a))=δ(α(a))=δα(a)=αDδ(a)=αDφ(ha).

    Therefore, φαU=αDφ, which means φ is a Hom-associative algebra morphism. By the construction of φ, we have φη=γ and φθ=δ. Note that U(A)αU is generated by m(A) and h(A). Since two Hom-associative algebra homomorphisms that coincide on generators are necessarily identical, the uniqueness of φ is true, as claim.

    Corollary 3.3. Given a regular Hom-Poisson algebra (A,μ,[,],α), its universal enveloping Hom-algebra exists and is unique up to isomorphisms.

    Proof. The uniqueness of the universal enveloping Hom-algebra of A, up to isomorphisms, follows immediately from the universal mapping property. Hence, it suffices to prove that the universal enveloping Hom-algebra of A exists.

    Let (A,μ,[,],α) be a regular Hom-Poisson algebra. Note that α is bijective, by Lemma 2.8(2), (Aα1:=A,α1μ,α1[,]) is a Poisson algebra. Suppose that (U(A),μ) is the universal enveloping algebra of Aα1. Note that α:AA is a Poisson algebra isomorphism. By Lemma 2.8(1), (A,α(α1μ),α(α1[,]),α) is a Hom-Poisson algebra. By Proposition 3.2, there exists an algebra homomorphism αU:U(A)U(A), such that (U(A),αUμ,αU) is the universal enveloping Hom-algebra of (A,α(α1μ),α(α1[,]),α), which exactly is (A,μ,[,],α).

    Example 3.4. Let (A:=k[x,y],μ,[,]) be the Poisson polynomial algebra in two variables. Here, [,]:AAA is defined by

    [f,g]=fxgygxfy

    for all f,gA. By the Example 4 of [18], the Weyl algebra (A2,μ,η,θ) is the universal enveloping algebra of (A,μ,[,]), where A2 is the associative algebra given by generators x1,x2,y1,y2 and defined relations

    x1x2=x2x1,y1y2=y2y1,yixjxjyi=δij,i,j=1,2.

    The linear maps η and θ are given by

    η(x)=y2,η(y)=x1,θ(x)=y1,θ(y)=x2.

    Define an algebra endomorphism α:AA on the affine plane A by setting

    α(x)=yandα(y)=x.

    By Example 2.11, α is a Poisson algebra automorphism and (Aα:=A,αμ,α[,],α) is a Hom-Poisson algebra. Define an associative algebra homomorphism αA2:A2A2 such that

    αA2(x1)=y2,αA2(x2)=y1,αA2(y1)=x2,αA2(y2)=x1.

    Then by the method in Proposition 3.2, (A2,αA2μ,αA2) is the universal enveloping Hom-algebra of (Aα,αμ,α[,],α).

    Note that the universal enveloping Hom-algebra exists for any regular Hom-Poisson algebra, from now on, we always consider regular Hom-Poisson algebras. In particular, involutive Hom-Poisson algebras are also considered.

    Proposition 3.5. Let (A,μA,[,]A,αA) and (B,μB,[,]B,αB) be regular Hom-Poisson algebras. Then we have

    (i) Ueh(Aop)(Ueh(A))op,

    (ii) Ueh(AB)Ueh(A)Ueh(B),

    (iii) Ueh(AAop)Ueh(A)Ueh(Aop).

    Proof. We only prove (ⅱ) here. We can get (ⅰ) from the same fashion, and (ⅲ) is a corollary of (ⅰ) and (ⅱ). Note that (A,μA,[,]A,αA) is a regular Hom-Poisson algebra, we know αA is invertible. By Lemma 2.8(2), (A,αA1μA,αA1[,]A) is a Poisson algebra. Suppose that (U(A),μU(A)) is the universal enveloping algebra of (A,αA1μA,αA1[,]A), where U(A) is generated by mA and hA, subject to some relations. Let αU(A):U(A)U(A) be an algebra homomorphism determined by

    αU(A)(ma)=mαA(a),αU(A)(ha)=hαA(a)

    for any element aA. then (U(A),αU(A)μU(A),αUA) is the universal enveloping Hom-algebra of (A,μA,[,]A,αA). Similarly, we get (U(B),αU(B)μU(B),αUB) is the universal enveloping Hom-algebra of (B,μB,[,]B,αB). Here, (U(B),μU(B)) is the universal enveloping algebra of (B,αB1μB,αB1[,]B).

    On the one hand, (U(A)U(B),(μU(A)μU(B))(IdτU(A),U(B)Id)) is the universal enveloping algebra of (AB,(αA1μAαB1μB)(IdτA,BId),(αA1[,]AαB1μB+αA1μAαB1[,]B)(IdτA,BId)). Set αUAUB:=αUAαUB, then (U(A)U(B),αUAUB(μU(A)μU(B))(IdτU(A),U(B)Id),αUAUB) is the universal enveloping Hom-algebra of (AB,(μAμB)(IdτA,BId),([,]AμB+μA[,]B)(IdτA,BId),αAαB).

    On the other hand,

    (U(A),αU(A)μU(A),αUA)(U(B),αU(B)μU(B),αUB)(U(A)U(B),(αU(A)μU(A)αU(B)μU(B))(IdτU(A),U(B)Id),αUAαUB),

    which is equal to (U(A)U(B),αUAUB(μU(A)μU(B))(IdτU(A),U(B)Id),αUAUB). Hence Ueh(AB)Ueh(A)Ueh(B).

    Recall that a Hom-Poisson algebra (A,μ,[,],α) is involutive if α2=Id. Generally, if there exists t>0 such that αt=Id, then we call A is t-involutive. Particularly, when t=1, A is a Poisson algebra. When t=2, A is an involutive Hom-Poisson algebra.

    Proposition 3.6. Let A:=(A,μ,[,],α) be a t-involutive Hom-Poisson algebra with t>0.

    (a) Let (B,,αB) be a Hom-associative algebra, f:(A,μ,α)(B,,αB) a homomorphism of Hom-associative algebras and g:(A,[,],α)(BL,[,]L,αB) a homomorphism of Hom-Lie algebras. Suppose that E is the Hom-associative subalgebra of B generated by f(A) and g(A). Then E is t-involutive.

    (b) The universal enveloping Hom-algebra (Ueh(A),η,θ) of A is t-involutive.

    (c) In order to verify the universal property of Ueh(A) in Definition 3.1, we only need to consider t-involutive Hom-associative algebras (D,,αD,γ,δ).

    Proof. (a) Let

    C:={bBαtB(b)=b}.

    Note that A is t-involutive, f is a homomorphism of Hom-associative algebras and g is a homomorphism of Hom-Lie algebras. Then for any element aA, we have

    αtB(f(a))=f(αt(a))=f(a)andαtB(g(a))=g(αt(a))=g(a).

    Thus f(A) and g(A) are contained in C. In order to prove (a), it remains to show C is a Hom-associative subalgebra of B, which means C contains E. Here E is the Hom-associative subalgebra of B generated by f(A) and g(A). Indeed, C is a submodule of B. For b,cC, by the formula αB(bc)=αB(b)αB(c), we have

    αtB(bc)=αtB(b)αtB(c)=bcandαtB(αB(b))=αB(αtB(b))=αB(b),

    and hence C is a Hom-associative subalgebra of B. Therefore E is t-involutive.

    (b) By the universal property of (Ueh(A),η,θ), Ueh(A) is the Hom-associative algebra generated by η(A) and θ(A), and so (b) is a special case of (a).

    (c) For any quintuple (D,,αD,γ,δ) satisfies property P, where D is a Hom-associative algebra. Let C:={dDαtD(d)=d} be a t-involutive Hom-associative subalgebra of D defined in the proof of (a). By (a), γ(A) and δ(A) are contained in C and thus γ(resp. δ) is the composition of a homomorphism γC:AC (resp. δC:AC) of Hom-associative algebras (resp. Hom-Lie algebras) with the inclusion CD. Note that (C,γC,δC) also satisfies property P. By the assumption, there is a homomorphism φC:Ueh(A)C of Hom-associative algebras such that φCη=γC and φCθ=δC. Then composing with the inclusion CD, we obtain a homomorphism φ:Ueh(A)D of Hom-associative algebras such that φη=γ and φθ=δ. Note that Ueh(A) is a t-involutive Hom-associative algebra by (b), similar to the previous proof, it is obvious to see the uniqueness of φ such that φη=γ and φθ=δ, which completes the proof.

    Proposition 3.7. Let A:=(A,μ,[,],α) be an involutive Hom-Poisson algebra and Ueh(A):=(Ueh(A),η,θ) the universal enveloping Hom-algebra of A.Then η is injective.

    Proof. Note that (A,μ,[,],α) is an involutive Hom-Poisson module, define γ:AEndk(A)α:=(Endk(A),:=αEμE,αE) by γ(a)(m)=aα(m), and δ:AEndk(A)α by δ(a)(m)=[a,α(m)]M for all aA,mM. By Remark 2.15, γ is a Hom-associative algebra morphism, and δ is a Hom-Lie algebra morphism, such that

    γ([a,b])=δ(a)γ(b)γ(b)δ(a),δ(ab)=γ(a)δ(b)+γ(b)δ(a),

    for all a,bA. By Definition 3.1, there is a Hom-associative algebra morphism φ from Ueh(A) into Endk(A)α such that φη=γ and φθ=δ. If aker(η), then 0=φη(a)=γ(a). Thus, 0=γ(a)(1A)=aα(1A)=a1A=α(a). But α2=Id, we have a=0, as required.

    Now our main result is stated as follows.

    Theorem 3.8. Let A:=(A,μ,[,],α) be a regular Hom-Poisson algebra and Ueh(A):=(Ueh(A),αU,η,θ) the universal enveloping Hom-algebra of A.

    (1) If M is a regular Hom-associative module over Ueh(A), then M is a regular Hom-Poisson module over A.

    (2) Assume that A is involutive. If M is an involutive Hom-Poisson module over A, then M is an involutive Hom-associative module over Ueh(A).

    Proof. (1) If (M,,αM) is a regular Hom-associative module over (Ueh(A),αU), define :AMM by am=η(a)m, and [,]M:AMM by [a,m]M=θ(a)m for any aA,mM. In fact, for any a,bA, mM, we have

    1Am=η(1A)m=1Ueh(A)m=αM(m),αM(am)=αM(η(a)m)=αU(η(a))αM(m)=ηα(a)αM(m)=α(a)αM(m),(ab)αM(m)=η(ab)αM(m)=(η(a)η(b))αM(m)=αU(η(a))(η(b)m)=ηα(a)(bm)=α(a)(bm),
    αM([a,m]M)=αM(θ(a)m)=αU(θ(a))αM(m)=θα(a)αM(m)=[α(a),αM(m)]M,[[a,b],αM(m)]M=θ([a,b])αM(m)=(θ(a)θ(b)θ(b)θ(a))αM(m)=αU(θ(a))(θ(b)m)αU(θ(b))(θ(a)m)=θα(a)([b,m]M)θα(b)([a,m]M)=[α(a),[b,m]M]M[α(b),[a,m]M]M,
    [ab,αM(m)]M=θ(ab)αM(m)=(η(a)θ(b)+η(b)θ(a))αM(m)=αU(η(a))(θ(b)m)+αU(η(b))(θ(a)m)=ηα(a)([b,m]M)+ηα(b)([a,m]M)=α(a)[b,m]M+α(b)[a,m]M,[a,b]αM(m)=η([a,b])αM(m)=(θ(a)η(b)η(b)θ(a))αM(m)=αU(θ(a))(η(b)m)αU(η(b))(θ(a)m)=θα(a)(bm)ηα(b)([a,m]M)=[α(a),bm]Mα(b)[a,m]M.

    Therefore, (M,,[,]M,αM) is a regular Hom-Poisson module over A.

    (2) Assume that A is involutive, if M is an involutive Hom-Poisson module over A, by Remark 2.15, there exist a Hom-associative algebra morphism γ, and a Hom-Lie algebra morphism δ from A into Endk(M)α:=(Endk(M),:=αEμE,αE), such that

    γ([a,b])=δ(a)γ(b)γ(b)δ(a),δ(ab)=γ(a)δ(b)+γ(b)δ(a),

    for all a,bA. By the definition of the universal enveloping Hom-algebra of A, there is a unique Hom-associative algebra morphism φ:Ueh(A)Endk(M)α, such that φη=γ and φθ=δ. By Lemma 2.4, we have M is an involutive Hom-associative module over Ueh(A).

    We first introduced universal enveloping Hom-algebras of Hom-Poisson algebras, and discussed their properties. Moreover, we proved that the category of involutive Hom-Poisson modules over an involutive Hom-Poisson algebra A is equivalent to the category of involutive Hom-associative modules over its universal enveloping Hom-algebra Ueh(A).

    The author would like to thank Professor Changchang Xi for his guidance and encouragement. Additional thanks are given to the anonymous referees for comments and suggestions.

    The author declares no conflicts of interest in this paper.



    [1] F. Ammar, A. Makhlouf, Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra, 324 (2010), 1513–1528. https://doi.org/10.1016/j.jalgebra.2010.06.014 doi: 10.1016/j.jalgebra.2010.06.014
    [2] S. Caenepeel, I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra, 39 (2011), 2216–2240. https://doi.org/10.1080/00927872.2010.490800 doi: 10.1080/00927872.2010.490800
    [3] M. De Wilde, P. Lecomte, Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys., 7 (1983), 487–496. https://doi.org/10.1007/BF00402248 doi: 10.1007/BF00402248
    [4] B. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Geom., 40 (1994), 213–238. https://doi.org/10.4310/jdg/1214455536 doi: 10.4310/jdg/1214455536
    [5] M. T. Guo, X. G. Hu, J. F. Lü, X. T. Wang, The structures on the universal enveloping algebras of differential graded Poisson Hopf algebras, Comm. Algebra, 46 (2018), 2714–2729. https://doi.org/10.1080/00927872.2017.1408811 doi: 10.1080/00927872.2017.1408811
    [6] L. Guo, B. Zhang, S. Zheng, Universal enveloping algebras and Poincaré-Birkhoff-Witt theorem for involutive Hom-Lie algebras, J. Lie Theory, 28 (2018), 739–759.
    [7] J. T. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra, 295 (2006), 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.036 doi: 10.1016/j.jalgebra.2005.07.036
    [8] X. G. Hu, J. F. Lü, X. T. Wang, PBW-Basis for Universal Enveloping Algebras of Differential Graded Poisson Algebras, Bull. Malays. Math. Sci. Soc., 42 (2019), 3343–3377. https://doi.org/10.1007/s40840-018-0673-2 doi: 10.1007/s40840-018-0673-2
    [9] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66 (2003), 157–216. https://doi.org/10.1023/B:MATH.0000027508.00421.bf doi: 10.1023/B:MATH.0000027508.00421.bf
    [10] C. Laurent-Gengoux, A. Makhlouf, J. Teles, Universal algebra of a Hom-Lie algebra and group-like elements, J. Pure Appl. Algebra, 222 (2018), 1139–1163. https://doi.org/10.1016/j.jpaa.2017.06.012 doi: 10.1016/j.jpaa.2017.06.012
    [11] D. Larsson, S. D. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra, 288 (2005), 321–344. https://doi.org/10.1016/j.jalgebra.2005.02.032 doi: 10.1016/j.jalgebra.2005.02.032
    [12] J. F. Lü, X. T. Wang, G. B. Zhuang, Universal enveloping algebras of Poisson Hopf algebras, J. Algebra, 426 (2015), 92–136. https://doi.org/10.1016/j.jalgebra.2014.12.010 doi: 10.1016/j.jalgebra.2014.12.010
    [13] J. F. Lü, X. T. Wang, G. B. Zhuang, DG Poisson algebra and its universal enveloping algebra, Sci. China Math., 59 (2016), 849–860. https://doi.org/10.1007/s11425-016-5127-4 doi: 10.1007/s11425-016-5127-4
    [14] A. Makhlouf, F. Panaite, Hom-L-R-smash products, Hom-diagonal crossed products and the Drinfeld double of a Hom-Hopf algebra, J. Algebra, 441 (2015), 314–343. https://doi.org/10.1016/j.jalgebra.2015.05.032 doi: 10.1016/j.jalgebra.2015.05.032
    [15] A. Makhlouf, S. Silvestrov, Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math., 22 (2010), 715–739. https://doi.org/10.1515/forum.2010.040 doi: 10.1515/forum.2010.040
    [16] A. Makhlouf, S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl., 9 (2010), 553–589. https://doi.org/10.1142/S0219498810004117 doi: 10.1142/S0219498810004117
    [17] A. Makhlouf, S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51–64. https://doi.org/10.4303/jglta/S070206 doi: 10.4303/jglta/S070206
    [18] S. Q. Oh, Poisson enveloping algebras, Comm. Algebra, 27 (1999), 2181–2186. https://doi.org/10.1080/00927879908826556 doi: 10.1080/00927879908826556
    [19] Y. H. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Theory, 15 (2012), 1081–1098. https://doi.org/10.1007/s10468-011-9280-8 doi: 10.1007/s10468-011-9280-8
    [20] Y. H. Sheng, C. M. Bai, A new approach to hom-Lie bialgebras, J. Algebra, 399 (2014), 232–250. https://doi.org/10.1016/j.jalgebra.2013.08.046 doi: 10.1016/j.jalgebra.2013.08.046
    [21] U. Umirbaev, Universal enveloping algebras and universal derivations of Poisson algebras, J. Algebra, 354 (2012), 77–94. https://doi.org/10.1016/j.jalgebra.2012.01.003 doi: 10.1016/j.jalgebra.2012.01.003
    [22] M. Van den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc., 360 (2008), 5711–5769. https://doi.org/10.1090/S0002-9947-08-04518-2 doi: 10.1090/S0002-9947-08-04518-2
    [23] Y. Yao, Y. Ye, P. Zhang, Quiver Poisson Algebras, J. Algebra, 312 (2007), 570–589. https://doi.org/10.1016/j.jalgebra.2007.03.034 doi: 10.1016/j.jalgebra.2007.03.034
    [24] D. Yau, Hom-algebras and homology, J. Lie Theory, 19 (2009), 409–421.
    [25] D. Yau, Non-commutative Hom-Poisson algebras, arXiv, (2010), 1010.3408.
    [26] S. Zheng, L. Guo, Free involutive Hom-semigroups and Hom-associative algebras, Front. Math. China, 11 (2016), 497–508. https://doi.org/10.1007/s11464-015-0448-0 doi: 10.1007/s11464-015-0448-0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2100) PDF downloads(91) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog