Loading [MathJax]/jax/output/SVG/jax.js
Research article

New results for a coupled system of ABR fractional differential equations with sub-strip boundary conditions

  • Received: 09 October 2021 Revised: 05 December 2021 Accepted: 13 December 2021 Published: 21 December 2021
  • MSC : 34A08, 34B15, 34A12, 47H10

  • In this article, we investigate sufficient conditions for the existence, uniqueness and Ulam-Hyers (UH) stability of solutions to a new system of nonlinear ABR fractional derivative of order 1<ϱ2 subjected to multi-point sub-strip boundary conditions. We discuss the existence and uniqueness of solutions with the assistance of Leray-Schauder alternative theorem and Banach's contraction principle. In addition, by using some mathematical techniques, we examine the stability results of Ulam-Hyers (UH). Finally, we provide one example in order to show the validity of our results.

    Citation: Mohammed A. Almalahi, Satish K. Panchal, Tariq A. Aljaaidi, Fahd Jarad. New results for a coupled system of ABR fractional differential equations with sub-strip boundary conditions[J]. AIMS Mathematics, 2022, 7(3): 4386-4404. doi: 10.3934/math.2022244

    Related Papers:

    [1] Bashir Ahmad, P. Karthikeyan, K. Buvaneswari . Fractional differential equations with coupled slit-strips type integral boundary conditions. AIMS Mathematics, 2019, 4(6): 1596-1609. doi: 10.3934/math.2019.6.1596
    [2] Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880
    [3] Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510
    [4] Madeaha Alghanmi, Shahad Alqurayqiri . Existence results for a coupled system of nonlinear fractional functional differential equations with infinite delay and nonlocal integral boundary conditions. AIMS Mathematics, 2024, 9(6): 15040-15059. doi: 10.3934/math.2024729
    [5] Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486
    [6] F. Minhós, F. Carapau, G. Rodrigues . Coupled systems with Ambrosetti-Prodi-type differential equations. AIMS Mathematics, 2023, 8(8): 19049-19066. doi: 10.3934/math.2023972
    [7] Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071
    [8] Salma Noor, Aman Ullah, Anwar Ali, Saud Fahad Aldosary . Analysis of a hybrid fractional coupled system of differential equations in n-dimensional space with linear perturbation and nonlinear boundary conditions. AIMS Mathematics, 2024, 9(6): 16234-16249. doi: 10.3934/math.2024785
    [9] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [10] Dumitru Baleanu, S. Hemalatha, P. Duraisamy, P. Pandiyan, Subramanian Muthaiah . Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdélyi-Kober integral conditions. AIMS Mathematics, 2021, 6(12): 13004-13023. doi: 10.3934/math.2021752
  • In this article, we investigate sufficient conditions for the existence, uniqueness and Ulam-Hyers (UH) stability of solutions to a new system of nonlinear ABR fractional derivative of order 1<ϱ2 subjected to multi-point sub-strip boundary conditions. We discuss the existence and uniqueness of solutions with the assistance of Leray-Schauder alternative theorem and Banach's contraction principle. In addition, by using some mathematical techniques, we examine the stability results of Ulam-Hyers (UH). Finally, we provide one example in order to show the validity of our results.



    For the last three decades, fractional calculus has caught importance and popularity among researchers due to its applicability in modeling many phenomena of the real-world such as propagation in complex mediums, polymers, biological tissues, earth sediments, etc. For more details about applications of fractional calculus, we refer the reader to monographs of Podlubny [1], Samko [2], Kilbas [3], Hilfer [4], and references therein. One of the features of fractional calculus is the fact there are many types of derivatives and thus the researchers can use the most suitable fractional derivative for the model they work on. Some of these researchers realized the need for fractional operators with non-singular kernels in modeling some phenomena. Caputo and Fabrizio in [5] studied a new kind of fractional derivative with an exponential kernel. A new type and interesting fractional derivative with Mittag-Leffler kernels were developed by Atangana and Baleanu in [6]. Abdeljawad in [7] extended this fractional derivative from order between zero and one to higher arbitrary order and formulated their associated integral operators. Atangana [8,9] introduced some new types of fractional derivatives in the form of power-law and generalized Mittag-Leffler. Many researchers have realized the importance of these new fractional derivatives and applied them to study some properties of solutions for some problems in different fields of science and engineering (see [10,11,12,13,14]). The famous kinds of stability of fractional differential equations are Ulam, Ulam-Hyers, and Ulam-Hyers-Rassias stability. For more details on kinds of stability, we refer the reader to monographs of Ulam [15], Hyers [16] and Rassias [17].

    Coupled systems of fractional differential equations appear in modeling many phenomena of real-world problems. Ahmad et al. [18,19] studied existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Recently, Almalahi et al. [20] studied the existence, uniqueness, and Ulam-Hyers stability results for a coupled system of generalized Hilfer sequential fractional differential equations with two-point boundary conditions by means of Leray-Schauder alternative and Banach fixed point theorem. Almalahi et al. [21] studied stability results of positive solutions for a system of generalized Hilfer fractional differential equations building upper and lower control functions and using some techniques of nonlinear functional analysis. Utilizing the Banach and Krasnoselskii fixed point theorems. Alsaedi et al. [22] studied the existence and uniqueness results for a nonlinear Caputo-Riemann-Liouville type fractional integro-differential boundary value problem with multi-point sub-strip boundary conditions in the form

    {CDϱϑ(σ)+ki=1Ipigi(σ,ϑ(σ))=f(σ,ϑ(σ)),ϑ(0)=0,ϑ(0)=0,ϑ(0)=0,.....,ϑ(m2)(0)=0,αϑ(1)+βϑ(1)=ϖ1τ0ϑ(s)ds+pi=1μiϑ(ηi)+ϖ21τϑ(s)ds,

    where CDϱ represents the Caputo fractional derivative operator of order ϱ(m1,m],mN,m2,pi>0,0<τ,η1,η2,...,ηp<1, α,β,ϖ1,ϖ2R, μiR,i=1,2,...p and f,gi:[0,1]×RR,i=1,2,...k are continuous functions.

    In [23], Alsaedi et al. discussed the existence and uniqueness of solutions for the following coupled system

    {CDϱ1ϑ1(σ)+ki=1Ipigi(σ,ϑ1(σ),ϑ2(σ))=f1(σ,ϑ1(σ),ϑ2(σ)),CDϱ2ϑ1(σ)+lj=1Ivjgj(σ,ϑ1(σ),ϑ2(σ))=f1(σ,ϑ1(σ),ϑ2(σ)),

    subjected to the conditions

    {ϑ1(0)=a1,ϑ2(0)=a2,α1ϑ1(1)+β1ϑ1(1)=ϖ1τ0ϑ2(s)ds+mi=1μiϑ2(ηi),α2ϑ2(1)+β2ϑ2(1)=ϖ2τ0ϑ1(s)ds+mi=1ξiϑ1(ηi),

    where CDϱ1,CDϱ2 represents the Caputo fractional derivative of order ϱ1,ϱ2(1,2].

    Motivated by the novel advancements of Atangana-Baleanu and its applications and the above argumentations, the intent of this work is to investigate the existence, uniqueness, and stability results of a new coupled system under a new fractional derivative so-called ABR fractional derivative of order 1<ϱ1,ϱ22 with multi-point sub-strip boundary conditions described by

    {ABR0+Dϱ1ϑ1(σ)=f1(σ,ϑ1(σ),ϑ2(σ)),σ[0,1],ABR0+Dϱ2ϑ2(σ)=f2(σ,ϑ1(σ),ϑ2(σ))σ[0,1],α1ϑ1(1)=ϖ1τ0ϑ2(s)ds+mi=1μiϑ2(ηi),α2ϑ2(1)=ϖ2τ0ϑ1(s)ds+mi=1ξiϑ1(ηi), (1.1)

    where

    ABRDpa+ represents the Atangana-Baleanu-Riemann fractional derivative of order p={ϱ1,ϱ2}(1,2].

    α1,α2,ϖ1,ϖ2,μi,ξiR, and ηi,τ(0,1), i=1,2,,...,m.

    fj:[0,1]×R2R are continuous function, j=1,2.

    In this work, we consider a new type of coupled system involving new fractional operators which extended lately to higher-order by Abdeljawad [7]. We considered the system (1.1) with multipoint sub strip conditions, which means our results yield some new results related to choosing the parameters, if ϖ1=ϖ2=0, then the system (1.1) reduce to the system with coupled multi-point boundary conditions and if μi=ξi=0, then the system (1.1) reduce to the system with coupled sub-strip boundary conditions.

    We investigated the existence and uniqueness of the solution as well as Ulam-Hyers and generalized Ulam-Hyers stability of the proposed coupled system by using minimal conditions.

    The main contribution of this work is to find an equivalent fractional integral equation for the suggested system and to prove its existence, uniqueness, and Ulam-Hyers (UH) stability results for a new system under a new fractional derivative. The fixed point theorems of Banach and Leray-Schauder are used in our analysis. Despite the fact that we employ common methods to get our conclusions, the application of it to the suggested system is novel. Furthermore, the results acquired in this study may be extended to an n-tuple fractional system. Our results obtained include the results of Alsaedi et al. in [22,23]. With regard to the boundary condition at the terminal position σ=1 used in this work, the linear combination of the unknown function and its derivative is associated with the contribution due to sub-strip (0,τ) and finitely many nonlocal positions between them within the domain [0.1]. This boundary condition covers many interesting situations, for example, it corresponds to the two-strip aperture condition for all μi=ξi=0,i=1,2,....,m. By choosing ϖ1=ϖ2=0, this condition reduces to a multi-point nonlocal boundary condition. It's worth noting that integral boundary conditions play a critical role in the research of practical problems like blood flow problems [24] and bacterial self-regularization [25], among others. For more applications about strip conditions in engineering and real-world problems (see [26,27]). To the best of our knowledge, this is the first work dealing with the ABR fractional derivative of order ϱ1,ϱ2 (1,2] with multi-point sub-strip boundary conditions. In consequence, the results of this work will be a useful contribution to the existing literature on this topic.

    The paper is organized as follows: In Section 2, we present notations and some preliminary facts used throughout the paper. Section 3 discusses the existence and uniqueness results for ABR-System (1.1). The stability analysis in the frame of Ulam-Hyers has been discussed in Section 4. Section 5 provides an example to illustrate the validity of our results. Concluding remarks about our results in the last Section.

    To achieve our main objectives, we present here some definitions and basic auxiliary results that are required throughout the paper. Let J=[0,1]R and X=C(J,R) be the space of continuous functions ϑ:JR equipped with the norm ϑ=supσJ|ϑ(σ)|. Evidently, (X, ) is a Banach space and hence the product space H:=X×X is also a Banach space with the following norm (ϑ1,ϑ2)=ϑ1+ϑ2.

    Definition 2.1. [6] Let 0<ϱ1 and ϑH1(J). Then the left-sided ABR fractional derivative of order ϱ for a function ϑ with the lower limit zero is defined by

    ABRDϱ0+ϑ(σ)=B(ϱ)1ϱddσσ0Eϱ(ϱϱ1(σθ)ϱ)ϑ(θ)dθ,σ>a,

    where B(ϱ)=ϱ2ϱ>0 is the normalization function such that B(0)=B(1)=1 and Eϱ is the Mittag-Leffler function defined by

    Eϱ(ϑ)=i=0ϑiΓ(iϱ+1),Re(ϱ)>0,ϑC.

    The associated Atangana-Baleanu (AB) fractional integral is given by

    ABIϱ0+ϑ(σ)=1ϱB(ϱ)ϑ(σ)+ϱB(ϱ)Γ(ϱ)σ0(σs)ϱ1ϑ(s)ds.

    Definition 2.2. [7] The relation between the ABR and ABC fractional differential equations is given by

    ABCDϱa+ϑ(σ)=ABRDϱa+ϑ(σ)+B(ϱ)1ϱϑ(a)Eϱ(ϱϱ1(σa)ϱ).

    Lemma 2.3. [6] Let ϑ>0. Then ABIϱ0+ isbounded from X into X.

    Definition 2.4. ([7] Definition 3.1) Let n<ϱn+1  and ϑ(n)H1(0,1). Let β=ϱn. Then, 0<β1 and the left-sided ABR fractional derivative of order ϱ for a function ϑ with the lower limit zero is defined by

    (ABRDϱ0+ϑ)(σ)=(ABRDβ0+ϑ(n))(σ).

    The correspondent fractional integral is given by

    (ABIϱ0+ϑ)(σ)=(InAB0+Iβ0+ϑ)(σ).

    Lemma 2.5. ([7] Proposition 3.1) Let ϑ(σ) be afunction defined on [0,b] and n<ϱn+1. Then, forsome nN0, we have

    (ABRDϱAB0+Iϱ0+ϑ)(σ)=ϑ(σ),.
    (ABIϱABR0+Dϱ0+ϑ)(σ)=ϑ(σ)n1i=0ϑ(i)(0)i!σi.  
    (ABIϱABC0+Dϱ0+ϑ)(σ)=ϑ(σ)ni=0ϑ(i)(0)i!σi.

    Lemma 2.6. ([7] Theorem 4.2) Let ϱ(1,2]and iX,i=1,2. Then the solution of the followingproblem

    ABRDϱ0+ϑ(σ)=(σ),ϑ(a)=c,

    is given by

    ϑ(σ)=c+2ϱB(ϱ1)σ0(s)ds+ϱ1B(ϱ1)Γ(ϱ)σ0(σs)ϱ1(s)ds.

    Theorem 2.7. [28] Let K be closed subset from a Banach space X, and G:KK, be a strictcontraction i.e., G(x)G(y)Lxy for some 0<L<1 and all x,yK.Then G has a fixed point in K.

    Lemma 2.8. [29] Let G:XX bean operator satisfies

    The operator G is completely continuous,

    The set ξ(G)={ϑX:ϑ=δG(ϑ),δ[0,1]} is bounded.

    Then, G has at least one fixed point.

    Theorem 2.9. Let ϱ1,ϱ2(1,2],Θ=α1α2(ϖ1τ+mi=1μiηi)(ϖ2τ+mi=1ξiηi)0,α1,α2,ϖ1,ϖ2,μi,ξiR, and ηi,τ(0,1), i=1,2,,...,m and 1,2X. The unique solution (ϑ1,ϑ2)H of the following problem

    {ABRDϱ10+ϑ1(σ)=1(σ),σ[0,1],ABRDϱ20+ϑ2(σ)=2(σ)σ[0,1],α1ϑ1(1)ϖ1τ0ϑ2(s)ds=mi=1μiϑ2(ηi),α2ϑ2(1)ϖ2τ0ϑ1(s)ds=mi=1ξiϑ1(ηi), (2.1)

    is given by

    ϑ1(σ)={1Θ[α2ϖ1(2ϱ2)B(ϱ21)τ0s02(u)duds+α2ϖ1(ϱ21)B(ϱ21)Γ(ϱ2)τ0s0(su)ϱ212(u)duds+mi=1μi(α2(2ϱ2)B(ϱ21)ηi02(s)ds+α2(ϱ21)B(ϱ21)Γ(ϱ2)ηi0(ηis)ϱ212(s)ds)α2α1(2ϱ1)B(ϱ11)101(s)dsα2α1(ϱ11)B(ϱ11)Γ(ϱ1)10(1s)ϱ111(s)ds+π1τ0s01(u)duds+π2Γ(ϱ1)τ0s0(su)ϱ111(u)duds+mi=1ξi(π3ηi01(s)ds+π4Γ(ϱ1)ηi0(ηis)ϱ111(s)ds)π5102(s)dsπ6Γ(ϱ2)10(1s)ϱ212(s)ds]+2ϱ1B(ϱ11)σ01(s)ds+ϱ11B(ϱ11)Γ(ϱ1)σ0(σs)ϱ111(s)ds (2.2)

    and

    ϑ2(σ)={1Θ[α1ϖ2(2ϱ1)B(ϱ11)τ0s01(u)duds+α1ϖ2(ϱ11)B(ϱ11)Γ(ϱ1)τ0s0(su)ϱ111(u)duds+mi=1ξi(α1(2ϱ1)B(ϱ11)ηi01(s)ds+α1(ϱ11)B(ϱ11)Γ(ϱ1)ηi0(ηis)ϱ111(s)ds)α2α1(2ϱ2)B(ϱ21)102(s)dsα2α1(ϱ21)B(ϱ21)Γ(ϱ2)10(1s)ϱ212(s)ds+ψ1τ0s02(u)duds+ψ2Γ(ϱ2)τ0s0(su)ϱ212(u)duds+mi=1μi(ψ3ηi02(s)ds+ψ4Γ(ϱ2)ηi0(ηis)ϱ212(s)ds)ψ5101(s)dsψ6Γ(ϱ1)10(1s)ϱ111(s)ds]+2ϱ2B(ϱ21)σ02(s)ds+ϱ21B(ϱ21)Γ(ϱ2)σ0(σs)ϱ212(s)ds, (2.3)

    where

    {π1=(ϖ1τ+mi=1μiηi)ϖ2(2ϱ1)B(ϱ11),π2=(ϖ1τ+mi=1μiηi)ϖ2(ϱ11)B(ϱ11),π3=(ϖ1τ+mi=1μiηi)(2ϱ1)B(ϱ11),π4=(ϖ1τ+mi=1μiηi)(ϱ11)B(ϱ11),π5=α2(ϖ1τ+mi=1μiηi)(2ϱ2)B(ϱ21),π6=α2(ϖ1τ+mi=1μiηi)(ϱ21)B(ϱ21)

    and

    {ψ1=ϖ1(ϖ2τ+mi=1ξiηi)(2ϱ2)B(ϱ21),ψ2=ϖ1(ϖ2τ+mi=1ξiηi)(ϱ21)B(ϱ21),ψ3=(ϖ2τ+mi=1ξiηi)(2ϱ2)B(ϱ21),ψ4=(ϖ2τ+mi=1ξiηi)(ϱ21)B(ϱ21),ψ5=α1(ϖ2τ+mi=1ξiηi)(2ϱ1)B(ϱ11),ψ6=α1(ϖ2τ+mi=1ξiηi)(ϱ11)B(ϱ11).

    Proof. Assume that (ϑ1,ϑ2)H is a solution of the following equations

    {ABRDϱ10+ϑ1(σ)=1(σ),σ[0,1],ABRDϱ20+ϑ2(σ)=2(σ)σ[0,1].

    Then, by Lemma 2.6, we get

    ϑ1(σ)=c1+2ϱ1B(ϱ11)σ01(s)ds+ϱ11B(ϱ11)Γ(ϱ1)σ0(σs)ϱ111(s)ds, (2.4)
    ϑ2(σ)=c2+2ϱ2B(ϱ21)σ02(s)ds+ϱ21B(ϱ21)Γ(ϱ2)σ0(σs)ϱ212(s)ds, (2.5)

    where, c1,c2 are arbitrary constants. Applying the conditions (α1ϑ1(1)ϖ1τ0ϑ2(s)ds=mi=1μiϑ2(ηi) and α2ϑ2(1)ϖ2τ0ϑ1(s)ds=mi=1ξiϑ1(ηi)), we obtain

    α1(c1+2ϱ1B(ϱ11)101(s)ds+ϱ11B(ϱ11)Γ(ϱ1)10(1s)ϱ111(s)ds)ϖ1τ0(c2+2ϱ2B(ϱ21)s02(u)du+ϱ21B(ϱ21)Γ(ϱ2)s0(su)ϱ212(u)du)ds=mi=1μi(c2+2ϱ2B(ϱ21)ηi02(s)ds+ϱ21B(ϱ21)Γ(ϱ2)ηi0(ηis)ϱ212(s)ds) (2.6)

    and

    α2(c2+2ϱ2B(ϱ21)102(s)ds+ϱ21B(ϱ21)Γ(ϱ2)10(1s)ϱ212(s)ds)ϖ2τ0(c1+2ϱ1B(ϱ11)s01(u)du+ϱ11B(ϱ11)Γ(ϱ1)s0(su)ϱ111(u)du)ds=mi=1ξi(c1+2ϱ1B(ϱ11)ηi01(s)ds+ϱ11B(ϱ11)Γ(ϱ1)ηi0(ηis)ϱ111(s)ds). (2.7)

    Equations (2.6) and (2.7) can be written as the following system

    {α1c1Z1c2=P1,Z2c1+α2c2=P2, (2.8)

    where

    Z1=(ϖ1τ+mi=1μi),Z2=(ϖ2τ+mi=1ξi),
    P1={ϖ1(2ϱ2)B(ϱ21)τ0s02(u)duds+ϖ1(ϱ21)B(ϱ21)Γ(ϱ2)τ0s0(su)ϱ212(u)duds+mi=1μi(2ϱ2B(ϱ21)ηi02(s)ds+ϱ21B(ϱ21)Γ(ϱ2)ηi0(ηis)ϱ212(s)ds)α1(2ϱ1)B(ϱ11)101(s)dsα1(ϱ11)B(ϱ11)Γ(ϱ1)10(1s)ϱ111(s)ds

    and

    P2={ϖ2(2ϱ1)B(ϱ11)τ0s01(u)duds+ϖ2(ϱ11)B(ϱ11)Γ(ϱ1)τ0s0(su)ϱ111(u)duds+mi=1ξi(2ϱ1B(ϱ11)ηi01(s)ds+ϱ11B(ϱ11)Γ(ϱ1)ηi0(ηis)ϱ111(s)ds)α2(2ϱ2)B(ϱ21)102(s)dsα2(ϱ21)B(ϱ21)Γ(ϱ2)10(1s)ϱ212(s)ds.

    Solving system (2.8) for c1 and c2, we obtain

    c1=α2P1+Z1P2α1α2Z1Z2 and c2=Z2P1+α1P2α1α2Z1Z2.

    Substituting the values of c1 and c2 in (2.4) and (2.5) respectively, we get (2.2) and 2.3. Conversely, apply the operators ABRDϱ10+,ABRDϱ20+ on (2.2) and (2.3) respectively and making use the Lemma 2.5 and note that ABRDϱi0+c=ABRDβi0+ddσc=0,(βi=ϱin),i=1,2, we obtain (2.1). Hence, (ϑ1,ϑ2) satisfies (2.1) if and only if it satisfies (2.2) and (2.3). The proof is completed.

    In view of Lemma 2.9, we define an operator Υ:HH by

    Υ(ϑ1,ϑ2)=(Υ1(ϑ1,ϑ2),Υ2(ϑ1,ϑ2)), (3.1)

    where

    Υ1(ϑ1,ϑ2)={1Θ[α2ϖ1(2ϱ2)B(ϱ21)τ0s0F2,ϑ(u)duds+α2ϖ1(ϱ21)B(ϱ21)Γ(ϱ2)τ0s0(su)ϱ21F2,ϑ(u)duds+mi=1μi(α2(2ϱ2)B(ϱ21)ηi0F2,ϑ(s)ds+α2(ϱ21)B(ϱ21)Γ(ϱ2)ηi0(ηis)ϱ21F2,ϑ(s)ds)α2α1(2ϱ1)B(ϱ11)10F1,ϑ(s)dsα2α1(ϱ11)B(ϱ11)Γ(ϱ1)10(1s)ϱ11F1,ϑ(s)ds+π1τ0s0F1,ϑ(u)duds+π2Γ(ϱ1)τ0s0(su)ϱ11F1,ϑ(u)duds+mi=1ξi(π3ηi0F1,ϑ(s)ds+π4Γ(ϱ1)ηi0(ηis)ϱ11F1,ϑ(s)ds)π510F2,ϑ(s)dsπ6Γ(ϱ2)10(1s)ϱ21F2,ϑ(s)ds]+2ϱ1B(ϱ11)σ0F1,ϑ(s)ds+ϱ11B(ϱ11)Γ(ϱ1)σ0(σs)ϱ11F1,ϑ(s)ds

    and

    Υ2(ϑ1,ϑ2)={1Θ[α1ϖ2(2ϱ1)B(ϱ11)τ0s0F1,ϑ(u)duds+α1ϖ2(ϱ11)B(ϱ11)Γ(ϱ1)τ0s0(su)ϱ11F1,ϑ(u)duds+mi=1ξi(α1(2ϱ1)B(ϱ11)ηi0F1,ϑ(s)ds+α1(ϱ11)B(ϱ11)Γ(ϱ1)ηi0(ηis)ϱ11F1,ϑ(s)ds)α2α1(2ϱ2)B(ϱ21)10F2,ϑ(s)dsα2α1(ϱ21)B(ϱ21)Γ(ϱ2)10(1s)ϱ21F2,ϑ(s)ds+ψ1τ0s0F2,ϑ(u)duds+ψ2Γ(ϱ2)τ0s0(su)ϱ21F2,ϑ(u)duds+mi=1μi(ψ3ηi0F2,ϑ(s)ds+ψ4Γ(ϱ2)ηi0(ηis)ϱ21F2,ϑ(s)ds)ψ510F1,ϑ(s)dsψ6Γ(ϱ1)10(1s)ϱ11F1,ϑ(s)ds]+2ϱ2B(ϱ21)σ0F2,ϑ(s)ds+ϱ21B(ϱ21)Γ(ϱ2)σ0(σs)ϱ21F2,ϑ(s)ds,

    such that, Fi,ϑ(s)=fi(s,ϑ1(s),ϑ2(s)),i=1,2. In the sequel, to simplify our analysis, we take the following notations

    Qπ=α2ϖ1(2ϱ2)2ΘB(ϱ21)+α2ϖ1(ϱ21)ΘB(ϱ21)Γ(ϱ2+2)+α2(2ϱ2)mi=1μiηiΘB(ϱ21)+α2(ϱ21)mi=1μiηiΘB(ϱ21)Γ(ϱ2+2)+π5Θ+π6ΘΓ(ϱ2+1),
    Qψ=α1ϖ2(2ϱ1)2ΘB(ϱ11)+α1ϖ2(ϱ11)ΘB(ϱ11)Γ(ϱ1+2)+α1(2ϱ1)mi=1μiηiΘB(ϱ11)+α1(ϱ11)mi=1μiηiΘB(ϱ11)Γ(ϱ1+2)+ψ5Θ+ψ6ΘΓ(ϱ1+1),
    Mπ=π12Θ+π2ΘΓ(ϱ1+2)+α2α1(2ϱ1)ΘB(ϱ11)+α2α1(ϱ11)ΘB(ϱ11)Γ(ϱ1+1)+π3mi=1ξiηiΘ+π4mi=1ξiηiΘΓ(ϱ1+2)+(2ϱ1)B(ϱ11)+(ϱ11)B(ϱ11)Γ(ϱ1+1)

    and

    Mψ=ψ12Θ+ψ2ΘΓ(ϱ2+2)+α2α1(2ϱ2)ΘB(ϱ21)+α2α1(ϱ21)ΘB(ϱ21)Γ(ϱ2+1)+ψ3mi=1ξiηiΘ+ψ4mi=1ξiηiΘΓ(ϱ1+2)+(2ϱ2)B(ϱ21)+(ϱ21)B(ϱ21)Γ(ϱ2+1).

    In the forthcoming theorems, we will prove the existence and uniqueness of solutions for the ABR-System (1.1) utilizing Leray-Schauder alternative and Banach contraction mapping principle.

    Theorem 3.1. Let f1,f2:[0,1]×R×RR be are continuous functions. In addition, we assume that:

    (H1):|fi(σ,ϑ,v)|εi+θi|ϑ|+λi|v|,εi,θi,λi>0,i=1,2.

    Then, the ABR-System (1.1) has at least one solution, provided that Λ1<1, where

    Λ1=2max{(θ1+θ2),(λ1+λ2)}.

    Proof. Notice that the ABR-System (1.1) has at least one solution (ϑ1,ϑ2) if the operator Υ defined by (3.1) has a fixed point. For that, we shall divide the proof into the next steps:

    Step 1: Υ is continuous. Since the functions f1 and f2 are continuous, we conclude that the operator Υ is continuous too.

    Step 2: Υ is compact.

    Define a closed ball BR={(ϑ1,ϑ2)H:(ϑ1,ϑ2)R} with

    RΛ21Λ1 where Λ2:=ε2(Qπ+Qψ)+ε1(Mπ+Mψ). (3.2)

    First, we show that Υ is uniformly bounded on BR. For each (ϑ1,ϑ2)BR, we have

    Υ1(ϑ1,ϑ2)1Θ[α2ϖ1(2ϱ2)B(ϱ21)τ0s0|F2,ϑ(u)|duds+α2ϖ1(ϱ21)B(ϱ21)Γ(ϱ2)τ0s0(su)ϱ21|F2,ϑ(u)|duds+mi=1μi(α2(2ϱ2)B(ϱ21)ηi0|F2,ϑ(s)|ds+α2(ϱ21)B(ϱ21)Γ(ϱ2)ηi0(ηis)ϱ21|F2,ϑ(s)|ds)+α2α1(2ϱ1)B(ϱ11)10|F1,ϑ(s)|ds+α2α1(ϱ11)B(ϱ11)Γ(ϱ1)10(1s)ϱ11|F1,ϑ(s)|ds+π1τ0s0|F1,ϑ(u)|duds+π2Γ(ϱ1)τ0s0(su)ϱ11|F1,ϑ(u)|duds+mi=1ξi(π3ηi0|F1,ϑ(s)|ds+π4Γ(ϱ1)ηi0(ηis)ϱ11|F1,ϑ(s)|ds)+π510|F2,ϑ(s)|ds+π6Γ(ϱ2)10(1s)ϱ21|F2,ϑ(s)|ds]+2ϱ1B(ϱ11)σ0|F1,ϑ(s)|ds+ϱ11B(ϱ11)Γ(ϱ1)σ0(σs)ϱ11|F1,ϑ(s)|ds(ε2+θ2ϑ1+λ2ϑ2)(α2ϖ1(2ϱ2)τ22ΘB(ϱ21)+α2ϖ1(ϱ21)τϱ2+1ΘB(ϱ21)Γ(ϱ2+2)+α2(2ϱ2)mi=1μiηiΘB(ϱ21)+α2(ϱ21)mi=1μiηiΘB(ϱ21)Γ(ϱ2+2)+π5Θ+π6ΘΓ(ϱ2+1))+(ε1+θ1ϑ1+λ1ϑ2)(π1τ22Θ+π2τϱ1+1ΘΓ(ϱ1+2)+α2α1(2ϱ1)ΘB(ϱ11)+α2α1(ϱ11)ΘB(ϱ11)Γ(ϱ1+1)+π3mi=1ξiηiΘ+π4mi=1ξiηiΘΓ(ϱ1+2)+(2ϱ1)σB(ϱ11)+(ϱ11)σϱ1B(ϱ11)Γ(ϱ1+1))=(ε2+θ2ϑ1+λ2ϑ2)Qπ+(ε1+θ1ϑ1+λ1ϑ2)Mπ.

    Similarly, we can find that

    Υ2(ϑ1,ϑ2)(ε2+θ2ϑ1+λ2ϑ2)Qψ+(ε1+θ1ϑ1+λ1ϑ2)Mψ.

    Consequently, we get

    Υ(ϑ1,ϑ2)Υ1(ϑ1,ϑ2)+Υ2(ϑ1,ϑ2)ε2(Qπ+Qψ)+ε1(Mπ+Mψ)+2(θ1+θ2)ϑ1+2(λ1+λ2)ϑ2ε2(Qπ+Qψ)+ε1(Mπ+Mψ)+2max{(θ1+θ2),(λ1+λ2)}(ϑ1+ϑ2)=ε2(Qπ+Qψ)+ε1(Mπ+Mψ)+2max{(θ1+θ2),(λ1+λ2)}((ϑ1,ϑ2))=Λ2+Λ1RR.

    Hence Υ is uniformly bounded.

    Next, we show that Υ is equicontinuous. Since BRH is bounded. Then, for all (ϑ1,ϑ2)BR, there exist constants φ1,φ2>0 such that |F1,ϑ(σ)|φ1 and |F2,ϑ(σ)|φ2. Let σ1,σ2J such that σ1<σ2. Then, we have

    Υ1(ϑ1(σ2),ϑ2(σ2))Υ1(ϑ1(σ1),ϑ2(σ1))=|2ϱ1B(ϱ11)σ20F1,ϑ(s)ds2ϱ1B(ϱ11)σ10F1,ϑ(s)ds+ϱ11B(ϱ11)Γ(ϱ1)σ20(σ2s)ϱ11F1,ϑ(s)dsϱ11B(ϱ11)Γ(ϱ1)σ10(σ1s)ϱ11F1,ϑ(s)ds|(2ϱ1)φ1B(ϱ11)(σ2σ2)+(ϱ11)φ1B(ϱ11)Γ(ϱ1)σ10((σ2s)ϱ11(σ1s)ϱ11)ds+(ϱ11)φ1B(ϱ11)Γ(ϱ1)σ2σ1(σ2s)ϱ11ds(2ϱ1)φ1B(ϱ11)(σ2σ2)+(ϱ11)φ1B(ϱ11)Γ(ϱ1+1)[(σ2σ1)ϱ1+σϱ12σϱ11].

    Take σ2σ1, we get

    Υ1(ϑ1(σ2),ϑ2(σ2))Υ1(ϑ1(σ1),ϑ2(σ1))0asσ2σ1.

    In the same technique, we get

    Υ2(ϑ1(σ2),ϑ2(σ2))Υ2(ϑ1(σ1),ϑ2(σ1))0asσ2σ1.

    It follows that

    Υ(ϑ1(σ2),ϑ2(σ2))Υ(ϑ1(σ1),ϑ2(σ1))0asσ2σ1.

    Hence Υ is equicontinuous. Due to the Arzelá-Ascoli theorem, we conclude that the operator Υ is compact in H. Therefore, from the above steps, we deduce that Υ is completely continuous.

    Step 3: In the last step, we show tht the set ξ(Υ)={(ϑ1,ϑ2)H:(ϑ1,ϑ2)=βΥ(ϑ1,ϑ2),β(0,1)} is bounded.

    Let (ϑ1,ϑ2)ξ(Υ). Then (ϑ1,ϑ2)=βΥ(ϑ1,ϑ2). Now, for σJ, we have ϑ1(σ)=βΥ1(ϑ1,ϑ2) and ϑ2(σ)=βΥ2(ϑ1,ϑ2). According to (H1), we obtain

    ϑ1=supσ[0,1]|βΥ1(ϑ1,ϑ2)(σ)|Υ1(ϑ1,ϑ2)ε2Qπ+ε1Mπ+(θ1+θ2)ϑ1+(λ1+λ2)ϑ2.

    By the same technique, we get

    ϑ2ε2Qψ+ε1Mψ+(θ1+θ2)ϑ1+(λ1+λ2)ϑ2.

    Then, we have

    (ϑ1,ϑ2)=ϑ1+ϑ2ε2(Qπ+Qψ)+ε1(Mπ+Mψ)+2(θ1+θ2)ϑ1+2(λ1+λ2)ϑ2=ε2(Qπ+Qψ)+ε1(Mπ+Mψ)+2max{(θ1+θ2),(λ1+λ2)}((ϑ1,ϑ2))=Λ2+Λ1(ϑ1,ϑ2).

    Since Λ1<1, therefore

    (ϑ1,ϑ2)Λ21Λ1R.

    Hence, the set ξ(Υ) is bounded. Due to the above steps with Theorem 2.8, we deduce that Υ has at least one fixed point. Consequently, the ABR-System (1.1) has at least one solution.

    Theorem 3.2. Let f1,f2:[0,1]×R×RR be are continuous functions. In addition, we assume that:

    (H2):|fi(σ,ϑ1,v1)fi(σ,ϑ2,v2)|Li(|ϑ1ϑ2|+|v1v2|),Li>0,i=1,2.

    Then, the system (2.1) has a unique solution, provided that σ<1,where

    σ=L2(Qπ+Qψ)+L1(Mπ+Mψ).

    Proof. Let us consider a closed ball set BR defined in Theorem 3.1. In order to apply Theorem 2.7, we will divide the proof into the following steps:

    Step (1): We show that Υ(BR)BR. By the second step in Theorem 3.1, we have Υ(BR)BR.

    Step (1): We need to prove that Υ is a contraction map. Let (ϑ1,ϑ2),(x1,x2)H and σJ. Then, we obtain

    Υ1(ϑ1,ϑ2)Υ1(x1,x2)supσ[0,1]1|Θ|[α2ϖ1(2ϱ2)B(ϱ21)τ0s0|F2,ϑ(u)F2,x(u)|duds+α2ϖ1(ϱ21)B(ϱ21)Γ(ϱ2)τ0s0(su)ϱ21|F2,ϑ(u)F2,x(u)|duds+α2(2ϱ2)B(ϱ21)mi=1μiηi0|F2,ϑ(s)F2,x(s)|ds+α2(ϱ21)B(ϱ21)Γ(ϱ2)mi=1μiηi0(ηis)ϱ21|F2,ϑ(s)F2,x(s)|ds+α2α1(2ϱ1)B(ϱ11)10|F1,ϑ(s)F1,x(s)|ds+α2α1(ϱ11)B(ϱ11)Γ(ϱ1)10(1s)ϱ11|F1,ϑ(s)F1,x(s)|ds+π1τ0s0|F1,ϑ(u)F1,x(u)|duds+π2Γ(ϱ1)τ0s0(su)ϱ11|F1,ϑ(u)F1,x(u)|duds+|π3|mi=1ξiηi0|F1,ϑ(s)F1,x(s)|ds+π4Γ(ϱ1)mi=1ξiηi0(ηis)ϱ11|F1,ϑ(s)F1,x(s)|ds+π510|F2,ϑ(s)F2,x(s)|ds+π6Γ(ϱ2)10(1s)ϱ21|F2,ϑ(s)F2,x(s)|ds]+2ϱ1B(ϱ11)σ0|F1,ϑ(s)F1,x(s)|ds+ϱ11B(ϱ11)Γ(ϱ1)σ0(σs)ϱ11|F1,ϑ(s)F1,x(s)|ds(L2Qπ+L1Mπ)(ϑ1x1+ϑ2x2),

    and consequently, we obtain

    Υ1(ϑ1,ϑ2)Υ1(x1,x2)(L2Qπ+L1Mπ)(ϑ1x1+ϑ2x2). (3.3)

    By the same way, one can obtain

    Υ1(ϑ1,ϑ2)Υ1(x1,x2)(L2Qψ+L1Mψ)(ϑ1x1+ϑ2x2). (3.4)

    It follows from (3.3) and (3.4) that

    Υ(ϑ1,ϑ2)Υ(x1,x2)=Υ1(ϑ1,ϑ2)Υ1(x1,x2)+Υ1(ϑ1,ϑ2)Υ1(x1,x2)L2(Qπ+Qψ)+L1(Mπ+Mψ)(ϑ1x1+ϑ2x2)σ(ϑ1x1+ϑ2x2)

    Due to σ<1, we conclude that the operator Υ is a contraction. Hence, by Theorem 2.7, the ABR-System (1.1) has a unique solution.

    In this section, we shall discuss the Ulam-Hyers (UH) stability of the ABR-System (1.1).

    Remark 4.1. [20] A function (ˆϑ1,ˆϑ2)H satisfies the following inequalities

    {|ABRDϱ10+ˆϑ1(σ)F1,ˆϑ(σ)|ε1,|ABRDϱ20+ˆϑ2(σ)F2,ˆϑ(σ)|ε2, (4.1)

    if and only if there exists a functions κ1,κ2D such that

    (i) {|κ1(σ)|ε1,|κ2(σ)|ε2.

    (ii) {ABRDϱ10+ˆϑ1(σ)=F1,ˆϑ(σ)+κ1(σ),ABRDϱ20+ˆϑ2(σ)=F2,ˆϑ(σ)+κ2(σ)..

    Definition 4.2. [20] The ABR-System (1.1) is UH stable if there exists M>0 such that, for each ε=max{ε1,ε2}>0 and each solution (ˆϑ1,ˆϑ2)H of the inequalities (4.1), there exists a solution (ϑ1,ϑ2)H of the ABR-System (1.1) with

    (ˆϑ1,ˆϑ2)(ϑ1,ϑ2)Mε,  σJ

    Lemma 4.3. Let ϱ1,ϱ2(1,2). If afunction (ˆϑ1,ˆϑ2)H satisfies the inequalities (4.1), then (ˆϑ1,ˆϑ2) satisfies thefollowing integral inequalities

    {|ˆϑ1(σ)Rˆϑ12ϱ1B(ϱ11)σ0F1,ˆϑ(s)dsϱ11B(ϱ11)Γ(ϱ1)σ0(σs)ϱ11F1,ˆϑ(s)ds|ε2Qπ+ε1Mπ,|ˆϑ2(σ)Rˆϑ22ϱ2B(ϱ21)σ0F2,ˆϑ(s)dsϱ21B(ϱ21)Γ(ϱ2)σ0(σs)ϱ21F2,ˆϑ(s)ds|ε2Qψ+ε1Mψ,

    where

    Rˆϑ1={1Θ[α2ϖ1(2ϱ2)B(ϱ21)τ0s0F2,ˆϑ(u)duds+α2ϖ1(ϱ21)B(ϱ21)Γ(ϱ2)τ0s0(su)ϱ21F2,ˆϑ(u)duds+mi=1μi(α2(2ϱ2)B(ϱ21)ηi0F2,ˆϑ(s)ds+α2(ϱ21)B(ϱ21)Γ(ϱ2)ηi0(ηis)ϱ21F2,ˆϑ(s)ds)α2α1(2ϱ1)B(ϱ11)10F1,ˆϑ(s)dsα2α1(ϱ11)B(ϱ11)Γ(ϱ1)10(1s)ϱ11F1,ˆϑ(s)ds+π1τ0s0F1,ˆϑ(u)duds+π2Γ(ϱ1)τ0s0(su)ϱ11F1,ˆϑ(u)duds+mi=1ξi(π3ηi0F1,ˆϑ(s)ds+π4Γ(ϱ1)ηi0(ηis)ϱ11F1,ˆϑ(s)ds)π510F2,ˆϑ(s)dsπ6Γ(ϱ2)10(1s)ϱ21F2,ˆϑ(s)ds],

    and

    Rˆϑ2={1Θ[α1ϖ2(2ϱ1)B(ϱ11)τ0s0F1,ˆϑ(u)duds+α1ϖ2(ϱ11)B(ϱ11)Γ(ϱ1)τ0s0(su)ϱ11F1,ˆϑ(u)duds+mi=1ξi(α1(2ϱ1)B(ϱ11)ηi0F1,ˆϑ(s)ds+α1(ϱ11)B(ϱ11)Γ(ϱ1)ηi0(ηis)ϱ11F1,ˆϑ(s)ds)α2α1(2ϱ2)B(ϱ21)10F2,ˆϑ(s)dsα2α1(ϱ21)B(ϱ21)Γ(ϱ2)10(1s)ϱ21F2,ˆϑ(s)ds+ψ1τ0s0F2,ˆϑ(u)duds+ψ2Γ(ϱ2)τ0s0(su)ϱ21F2,ˆϑ(u)duds+mi=1μi(ψ3ηi0F2,ˆϑ(s)ds+ψ4Γ(ϱ2)ηi0(ηis)ϱ21F2,ˆϑ(s)ds)ψ510F1,ˆϑ((s)dsψ6Γ(ϱ1)10(1s)ϱ11F1,ˆϑ((s)ds].

    Proof. By Remark 4.1, we have

    ABRDϱ10+ˆϑ1(σ)=F1,ˆϑ(σ)+κ1(σ).

    Then, in view of Theorem 2.9 and Lemma 4.3, we get

    |ˆϑ1(σ)Rˆϑ12ϱ1B(ϱ11)σ0F1,ˆϑ(s)dsϱ11B(ϱ11)Γ(ϱ1)σ0(σs)ϱ11F1,ˆϑ(s)ds|1Θ[α2ϖ1(2ϱ2)B(ϱ21)τ0s0κ2(u)duds+α2ϖ1(ϱ21)B(ϱ21)Γ(ϱ2)τ0s0(su)ϱ21κ2(u)duds+mi=1μi(α2(2ϱ2)B(ϱ21)ηi0κ2(s)ds+α2(ϱ21)B(ϱ21)Γ(ϱ2)ηi0(ηis)ϱ21κ2(s)ds)α2α1(2ϱ1)B(ϱ11)10κ1(s)dsα2α1(ϱ11)B(ϱ11)Γ(ϱ1)10(1s)ϱ11κ1(s)ds+π1τ0s0κ1(u)duds+π2Γ(ϱ1)τ0s0(su)ϱ11κ1(u)duds+mi=1ξi(π3ηi0κ1(s)ds+π4Γ(ϱ1)ηi0(ηis)ϱ11κ1(s)ds)π510κ2(s)dsπ6Γ(ϱ2)10(1s)ϱ21κ2(s)ds]+2ϱ1B(ϱ11)σ0κ1(s)ds+ϱ11B(ϱ11)Γ(ϱ1)σ0(σs)ϱ11κ1(s)dsε2Qπ+ε1Mπ.

    In the same way, one can obtain

    |ˆϑ2(σ)Rˆϑ22ϱ2B(ϱ21)σ0F2(s)dsϱ21B(ϱ21)Γ(ϱ2)σ0(σs)ϱ21F2(s)ds|ε2Qψ+ε1Mψ.

    Theorem 4.4. Assume that (H2) hold. If

    Ω=max{L1(2ϱ1B(ϱ11)+(ϱ11)B(ϱ11)Γ(ϱ1+1)),L2(2ϱ2B(ϱ21)+(ϱ21)B(ϱ21)Γ(ϱ2+1))}<1.

    Then

    ABRDϱ10+ˆϑ2(σ)=F1,ˆϑ(σ),ABRDϱ20+ˆϑ2(σ)=F2,ˆϑ(σ), (4.2)

    are Ulam-Hyers stable.

    Proof. Let ε=max{ε1,ε2}>0  and (ˆϑ1,ˆϑ2)H be a function that satisfying the inequalities 4.1 and let (ϑ1,ϑ2)H be the unique solution of the following system

    {ABR0+Dϱ1ϑ1(σ)=F1,ϑ(σ),σ[0,1], ϱ(1,2],ABR0+Dϱ2ϑ2(σ)=F2,ϑ(σ)σ[0,1],ϱ(1,2],α1ϑ1(1)=α1ˆϑ1(1)=ϖ1τ0ˆϑ2(s)ds+mi=1μiˆϑ2(ηi),α2ϑ2(1)=α2ˆϑ2(1)=ϖ2τ0ˆϑ1(s)ds+mi=1ξiˆϑ1(ηi).

    Now, by Theorem 2.9, we have

    {ϑ1(σ)=Rϑ1+2ϱ1B(ϱ11)σ0F1,ϑ(s)ds+ϱ11B(ϱ11)Γ(ϱ1)σ0(σs)ϱ11F1,ϑ(s)ds,ϑ2(σ)=Rϑ2+2ϱ2B(ϱ21)σ0F2,ϑ(s)ds+ϱ21B(ϱ21)Γ(ϱ2)σ0(σs)ϱ21F2,ϑ(s)ds.

    Since α1ϑ1(1)=α1ˆϑ1(1) and α2ϑ2(1)=α2ˆϑ2(1), we can proof that Rϑ1=Rˆϑ1 and Rϑ2=Rˆϑ2. Hence, from (H2) with Lemma 4.3, and for each σ[0,1], we have  

    |ˆϑ1(σ)ϑ1(σ)||ˆϑ1(σ)Rˆϑ12ϱ1B(ϱ11)σ0F1,ˆϑ(s)dsϱ11B(ϱ11)Γ(ϱ1)σ0(σs)ϱ11F1,ˆϑ(s)ds|+2ϱ1B(ϱ11)σ0|F1,ˆϑ(s)F1,ϑ(s)|ds+ϱ11B(ϱ11)Γ(ϱ1)σ0(σs)ϱ11|F1,ˆϑ(s)F1,ϑ(s)|dsε2Qπ+ε1Mπ+L1(ˆϑ1ϑ1+ˆϑ2ϑ2)(2ϱ1B(ϱ11)+(ϱ11)B(ϱ11)Γ(ϱ1+1)). (4.3)

    Hence

    ˆϑ1ϑ1ε2Qπ+ε1Mπ+L1(ˆϑ1ϑ1+ˆϑ2ϑ2)(2ϱ1B(ϱ11)+(ϱ11)B(ϱ11)Γ(ϱ1+1)). (4.4)

    By the same technique, we get

    ˆϑ2ϑ2ε2Qψ+ε1Mψ+L2(ˆϑ1ϑ1+ˆϑ2ϑ2)(2ϱ2B(ϱ21)+(ϱ21)B(ϱ21)Γ(ϱ2+1)). (4.5)

    Thus

    (ˆϑ1,ˆϑ2)(ϑ1,ϑ2)ˆϑ1ϑ1+ˆϑ2ϑ2ε2Qπ+ε1Mπ+L1(ˆϑ1ϑ1+ˆϑ2ϑ2)(2ϱ1B(ϱ11)+(ϱ11)B(ϱ11)Γ(ϱ1+1))+ε2Qψ+ε1Mψ+L2(ˆϑ1ϑ1+ˆϑ2ϑ2)(2ϱ2B(ϱ21)+(ϱ21)B(ϱ21)Γ(ϱ2+1))((Mπ+Mψ)ε1+(Qπ+Qψ)ε2)+max{L1(2ϱ1B(ϱ11)+(ϱ11)B(ϱ11)Γ(ϱ1+1)),L2(2ϱ2B(ϱ21)+(ϱ21)B(ϱ21)Γ(ϱ2+1))}(ˆϑ1,ˆϑ2)(ϑ1,ϑ2)((Mπ+Mψ)ε1+(Qπ+Qψ)ε2)+Ω(ˆϑ1,ˆϑ2)(ϑ1,ϑ2)εK, (4.6)

    where ε=max{ε1,ε2} and

    K=Mπ+Mψ+Qπ+Qψ1Ω.

    Hence, from (4.6) and Definition 4.2, we deduce that the coupled system (4.2) is Ulam-Hyers (UH) stable.

    In this section, we will demonstrate the applicability of our main results through the following example.

    Example 5.1. Consider the following system

    {ABR0+D32ϑ1(σ)=f1(σ,ϑ1(σ),ϑ2(σ)),σ[0,1],ABR0+D54ϑ2(σ)=f2(σ,ϑ1(σ),ϑ2(σ))σ[0,1],14ϑ1(1)=170ϑ2(s)ds+12ϑ2(15)+34ϑ2(25)+ϑ2(35),12ϑ2(1)=170ϑ1(s)ds+13ϑ2(15)+23ϑ2(25)+ϑ2(35). (5.1)

    Here ϱ1=32, ϱ2=54,α1=14,α2=12,τ=17,ϖ1=ϖ2=1,m=3,μ1=12,μ2=34,μ3=ξ3=1, ξi=i3,(i=1,2),ηi=i5,(i=1,2,3) and

    f1(σ,ϑ1(σ),ϑ2(σ))=σ18(169+σ4)12(|ϑ1(σ)|1+|ϑ1(σ)|+|ϑ2(σ)|1+|ϑ2(σ)|+cosσ),
    f2(σ,ϑ1(σ),ϑ2(σ))=σ8(30+σ2)(|ϑ1(σ)|1+|ϑ1(σ)|+tan1ϑ2(σ)+11+σ2).

    Clearly, for each ϑi,viR,i=1,2, we have

    |f1(t,ϑ1,v1)f1(t,ϑ2,v2)|1234(|ϑ1ϑ2|+|v1v2|)

    and

    |f2(t,ϑ1,v1)f2(t,v2,v2)|1240(|ϑ1ϑ2|+|v1v2|),

    with L1=1234 and L2=1240. By the given data, we get Qψ5.7,Qπ1.8,Mπ1.7,Mψ0.3 and σ0.04<1. Then, all conditions in Theorem 3.2 are hold. Consequently, the coupled system (5.1) has a unique solution. On the other hand, by simple calculation, we get Λ10.02<1 and hence all hypothesis in Theorem 3.1 are satisfied . Thus, the coupled system (5.1) has at least one solution in [0,1]. For every ε=max{ε1,ε2}>0 and each (ˆϑ1,ˆϑ2)H satisfies

    {|ABR0+Dϱ11ˆϑ(σ)F1,ˆϑ(σ)|ε1|ABR0+Dϱ22ˆϑ(σ)F2,ˆϑ(σ)|ε2,

    there exists a solution (ϑ1,ϑ2)H of the coupled system (5.1) with

    (ˆϑ1,ˆϑ2)(ϑ1,ϑ2)Kε,  σJ

    where

    K=Mπ+Mψ+Qπ+Qψ1Ω9>0.

    and

    Ω=max{1234(1.6+1.6Γ(32+1)),1240(5+1.7Γ(54+1))}0.02<1.

    Therefore, all conditions in Theorem 4.4 are satisfied and hence the coupled system 4.2 is UH stable and GUH.

    In recent years, the subject of fractional operators involving nonsingular kernels is novel and has very important significance in modeling many phenomena in the real world, thus there is interest from some researchers to study some qualitative properties of FDEs. In this paper, we have discussed a new system of the nonlinear fractional operators with nonsingular Mittag-Leffler function kernels from order 1<ϱ1,ϱ22 with multipoint sub-strip boundary conditions. The results obtained in this work are new and cover some new results by choices of the parameters. We proved the existence, uniqueness, and UH, GUH results by means of the Banach fixed point theorem for initial value problems in the frame of ABR derivatives.

    The authors declare no conflict of interest.



    [1] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
    [2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon & Breach, Yverdon, 1993.
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
    [4] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 35 (2000).
    [5] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
    [6] A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, Therm. Sci., 20 (2016), 757–763.
    [7] T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 1 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5 doi: 10.1186/s13660-017-1400-5
    [8] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [9] A. Atangana, J. F. Gómez-Aguilar, Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos Soliton. Fract., 114 (2018), 516–535. https://doi.org/10.1016/j.chaos.2018.07.033 doi: 10.1016/j.chaos.2018.07.033
    [10] F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Soliton. Fract., 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006
    [11] M. A. Almalahi, S. K. Panchal, On the theory of ψ-Hilfer nonlocal Cauchy problem, J. Sib. Fed. Univ.-Math., 14 (2021), 159–175. https://doi.org/10.17516/1997-1397-2021-14-2-161-177 doi: 10.17516/1997-1397-2021-14-2-161-177
    [12] M.S. Abdo, T. Abdeljawad, K. D. Kucche, M. A. Alqudah, S. M. Ali, M. B. Jeelani, On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative, Adv. Differ. Equ., 1 (2021), 1–17. https://doi.org/10.1186/s13662-021-03229-8 doi: 10.1186/s13662-021-03229-8
    [13] M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Adv. Differ. Equ., 37 (2021). https://doi.org/10.1186/s13662-020-03196-6 doi: 10.1186/s13662-020-03196-6
    [14] M. A. Almalahi, S. K. Panchal, W. Shatanawi, M. S. Abdo, K. Shah, K. Abodayeh, Analytical study of transmission dynamics of 2019-nCoV pandemic via fractal fractional operator, Results Phys., 24 (2021), 104045. https://doi.org/10.1016/j.rinp.2021.104045 doi: 10.1016/j.rinp.2021.104045
    [15] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, Interscience, New York, 8 (1960).
    [16] D. H. Hyers, G. Isac, T. Rassias, Stability of functional equations in several variables, Spring, Boston, 1998.
    [17] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.
    [18] B. Ahmad, S. K. Ntouyas, Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Appl. Math. Comput., 266 (2015), 615–622. https://doi.org/10.1016/j.amc.2015.05.116 doi: 10.1016/j.amc.2015.05.116
    [19] B. Ahmad, S. K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Soliton. Fract., 83 (2016), 234–241. https://doi.org/10.1016/j.chaos.2015.12.014 doi: 10.1016/j.chaos.2015.12.014
    [20] M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers stability results of a coupled system of ψ -Hilfer sequential fractional differential equations, Results Appl. Math., 10 (2021), 100142. https://doi.org/10.1016/j.rinam.2021.100142 doi: 10.1016/j.rinam.2021.100142
    [21] M. A. Almalahi, S. K. Panchal, F. Jarad, Stability results of positive solutions for a system of ψ-Hilfer fractional differential equations, Chaos Soliton. Fract., 147 (2021), 110931. https://doi.org/10.1016/j.chaos.2021.110931 doi: 10.1016/j.chaos.2021.110931
    [22] A. Alsaedi, A. F. Albideewi, S. K. Ntouyas, B. Ahmad, On Caputo-Riemann-Liouville type fractional integro-differential equations with multi-point sub-strip boundary conditions, Mathematics, 8 (2020), 1899. https://doi.org/10.3390/math8111899 doi: 10.3390/math8111899
    [23] A. Alsaedi, A. F. Albideewi, S. K. Ntouyas, B. Ahmad, Existence results for a coupled system of Caputo type fractional integro-differential equations with multi-point and sub-strip boundary conditions, Adv. Differ. Equ., 19 (2021). https://doi.org/10.1186/s13662-020-03174-y doi: 10.1186/s13662-020-03174-y
    [24] B. Ahmad, A. Alsaedi, B. S. Alghamdi, Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal.-Real, 9 (2008), 1727–1740. https://doi.org/10.1016/j.nonrwa.2007.05.005 doi: 10.1016/j.nonrwa.2007.05.005
    [25] R. Ciegis, A. Bugajev, Numerical approximation of one model of the bacterial self-organization, Nonlinear Anal.-Model., 17 (2012), 253–270. https://doi.org/10.15388/NA.17.3.14054 doi: 10.15388/NA.17.3.14054
    [26] B. Ahmad, S. Asghar, T. Hayat, Diffraction of a plane wave by an elastic knife-edge adjacent to a rigid strip, Canad. Appl. Math. Quart., 9 (2001), 303–316.
    [27] E. Yusufoglu, I. Turhan, A mixed boundary value problem in orthotropic strip containing a crack, J. Franklin Inst., 349 (2012), 2750–2769. https://doi.org/10.1016/j.jfranklin.2012.09.001 doi: 10.1016/j.jfranklin.2012.09.001
    [28] K. Deimling, Nonlinear functional analysis, Springer, New York, 1985.
    [29] A. Granas, J. Dugundji, Fixed point theory, Springer Science & Business Media, 2013.
  • This article has been cited by:

    1. Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Phang Chang, Results on Implicit Fractional Pantograph Equations with Mittag-Leffler Kernel and Nonlocal Condition, 2022, 2022, 2314-4785, 1, 10.1155/2022/9693005
    2. Saleh S. Redhwan, Maoan Han, Mohammed A. Almalahi, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi, Piecewise implicit coupled system under ABC fractional differential equations with variable order, 2024, 9, 2473-6988, 15303, 10.3934/math.2024743
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1959) PDF downloads(43) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog