In this article, we investigate sufficient conditions for the existence, uniqueness and Ulam-Hyers (UH) stability of solutions to a new system of nonlinear ABR fractional derivative of order 1<ϱ≤2 subjected to multi-point sub-strip boundary conditions. We discuss the existence and uniqueness of solutions with the assistance of Leray-Schauder alternative theorem and Banach's contraction principle. In addition, by using some mathematical techniques, we examine the stability results of Ulam-Hyers (UH). Finally, we provide one example in order to show the validity of our results.
Citation: Mohammed A. Almalahi, Satish K. Panchal, Tariq A. Aljaaidi, Fahd Jarad. New results for a coupled system of ABR fractional differential equations with sub-strip boundary conditions[J]. AIMS Mathematics, 2022, 7(3): 4386-4404. doi: 10.3934/math.2022244
[1] | Bashir Ahmad, P. Karthikeyan, K. Buvaneswari . Fractional differential equations with coupled slit-strips type integral boundary conditions. AIMS Mathematics, 2019, 4(6): 1596-1609. doi: 10.3934/math.2019.6.1596 |
[2] | Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880 |
[3] | Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510 |
[4] | Madeaha Alghanmi, Shahad Alqurayqiri . Existence results for a coupled system of nonlinear fractional functional differential equations with infinite delay and nonlocal integral boundary conditions. AIMS Mathematics, 2024, 9(6): 15040-15059. doi: 10.3934/math.2024729 |
[5] | Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486 |
[6] | F. Minhós, F. Carapau, G. Rodrigues . Coupled systems with Ambrosetti-Prodi-type differential equations. AIMS Mathematics, 2023, 8(8): 19049-19066. doi: 10.3934/math.2023972 |
[7] | Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071 |
[8] | Salma Noor, Aman Ullah, Anwar Ali, Saud Fahad Aldosary . Analysis of a hybrid fractional coupled system of differential equations in n-dimensional space with linear perturbation and nonlinear boundary conditions. AIMS Mathematics, 2024, 9(6): 16234-16249. doi: 10.3934/math.2024785 |
[9] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[10] | Dumitru Baleanu, S. Hemalatha, P. Duraisamy, P. Pandiyan, Subramanian Muthaiah . Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdélyi-Kober integral conditions. AIMS Mathematics, 2021, 6(12): 13004-13023. doi: 10.3934/math.2021752 |
In this article, we investigate sufficient conditions for the existence, uniqueness and Ulam-Hyers (UH) stability of solutions to a new system of nonlinear ABR fractional derivative of order 1<ϱ≤2 subjected to multi-point sub-strip boundary conditions. We discuss the existence and uniqueness of solutions with the assistance of Leray-Schauder alternative theorem and Banach's contraction principle. In addition, by using some mathematical techniques, we examine the stability results of Ulam-Hyers (UH). Finally, we provide one example in order to show the validity of our results.
For the last three decades, fractional calculus has caught importance and popularity among researchers due to its applicability in modeling many phenomena of the real-world such as propagation in complex mediums, polymers, biological tissues, earth sediments, etc. For more details about applications of fractional calculus, we refer the reader to monographs of Podlubny [1], Samko [2], Kilbas [3], Hilfer [4], and references therein. One of the features of fractional calculus is the fact there are many types of derivatives and thus the researchers can use the most suitable fractional derivative for the model they work on. Some of these researchers realized the need for fractional operators with non-singular kernels in modeling some phenomena. Caputo and Fabrizio in [5] studied a new kind of fractional derivative with an exponential kernel. A new type and interesting fractional derivative with Mittag-Leffler kernels were developed by Atangana and Baleanu in [6]. Abdeljawad in [7] extended this fractional derivative from order between zero and one to higher arbitrary order and formulated their associated integral operators. Atangana [8,9] introduced some new types of fractional derivatives in the form of power-law and generalized Mittag-Leffler. Many researchers have realized the importance of these new fractional derivatives and applied them to study some properties of solutions for some problems in different fields of science and engineering (see [10,11,12,13,14]). The famous kinds of stability of fractional differential equations are Ulam, Ulam-Hyers, and Ulam-Hyers-Rassias stability. For more details on kinds of stability, we refer the reader to monographs of Ulam [15], Hyers [16] and Rassias [17].
Coupled systems of fractional differential equations appear in modeling many phenomena of real-world problems. Ahmad et al. [18,19] studied existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Recently, Almalahi et al. [20] studied the existence, uniqueness, and Ulam-Hyers stability results for a coupled system of generalized Hilfer sequential fractional differential equations with two-point boundary conditions by means of Leray-Schauder alternative and Banach fixed point theorem. Almalahi et al. [21] studied stability results of positive solutions for a system of generalized Hilfer fractional differential equations building upper and lower control functions and using some techniques of nonlinear functional analysis. Utilizing the Banach and Krasnoselskii fixed point theorems. Alsaedi et al. [22] studied the existence and uniqueness results for a nonlinear Caputo-Riemann-Liouville type fractional integro-differential boundary value problem with multi-point sub-strip boundary conditions in the form
{CDϱϑ(σ)+∑ki=1Ipigi(σ,ϑ(σ))=f(σ,ϑ(σ)),ϑ(0)=0,ϑ′(0)=0,ϑ′′(0)=0,.....,ϑ(m−2)(0)=0,αϑ(1)+βϑ′(1)=ϖ1∫τ0ϑ(s)ds+∑pi=1μiϑ(ηi)+ϖ2∫1τϑ(s)ds, |
where CDϱ represents the Caputo fractional derivative operator of order ϱ∈(m−1,m],m∈N,m≥2,pi>0,0<τ,η1,η2,...,ηp<1, α,β,ϖ1,ϖ2∈R, μi∈R,i=1,2,...p and f,gi:[0,1]×R→R,i=1,2,...k are continuous functions.
In [23], Alsaedi et al. discussed the existence and uniqueness of solutions for the following coupled system
{CDϱ1ϑ1(σ)+∑ki=1Ipigi(σ,ϑ1(σ),ϑ2(σ))=f1(σ,ϑ1(σ),ϑ2(σ)),CDϱ2ϑ1(σ)+∑lj=1Ivjgj(σ,ϑ1(σ),ϑ2(σ))=f1(σ,ϑ1(σ),ϑ2(σ)), |
subjected to the conditions
{ϑ1(0)=a1,ϑ2(0)=a2,α1ϑ1(1)+β1ϑ′1(1)=ϖ1∫τ0ϑ2(s)ds+∑mi=1μiϑ2(ηi),α2ϑ2(1)+β2ϑ′2(1)=ϖ2∫τ0ϑ1(s)ds+∑mi=1ξiϑ1(ηi), |
where CDϱ1,CDϱ2 represents the Caputo fractional derivative of order ϱ1,ϱ2∈(1,2].
Motivated by the novel advancements of Atangana-Baleanu and its applications and the above argumentations, the intent of this work is to investigate the existence, uniqueness, and stability results of a new coupled system under a new fractional derivative so-called ABR fractional derivative of order 1<ϱ1,ϱ2≤2 with multi-point sub-strip boundary conditions described by
{ABR0+Dϱ1ϑ1(σ)=f1(σ,ϑ1(σ),ϑ2(σ)),σ∈[0,1],ABR0+Dϱ2ϑ2(σ)=f2(σ,ϑ1(σ),ϑ2(σ))σ∈[0,1],α1ϑ1(1)=ϖ1∫τ0ϑ2(s)ds+∑mi=1μiϑ2(ηi),α2ϑ2(1)=ϖ2∫τ0ϑ1(s)ds+∑mi=1ξiϑ1(ηi), | (1.1) |
where
∙ ABRDpa+ represents the Atangana-Baleanu-Riemann fractional derivative of order p={ϱ1,ϱ2}⊂(1,2].
∙ α1,α2,ϖ1,ϖ2,μi,ξi∈R, and ηi,τ∈(0,1), i=1,2,,...,m.
∙ fj:[0,1]×R2⟶R are continuous function, j=1,2.
In this work, we consider a new type of coupled system involving new fractional operators which extended lately to higher-order by Abdeljawad [7]. We considered the system (1.1) with multipoint sub strip conditions, which means our results yield some new results related to choosing the parameters, if ϖ1=ϖ2=0, then the system (1.1) reduce to the system with coupled multi-point boundary conditions and if μi=ξi=0, then the system (1.1) reduce to the system with coupled sub-strip boundary conditions.
We investigated the existence and uniqueness of the solution as well as Ulam-Hyers and generalized Ulam-Hyers stability of the proposed coupled system by using minimal conditions.
The main contribution of this work is to find an equivalent fractional integral equation for the suggested system and to prove its existence, uniqueness, and Ulam-Hyers (UH) stability results for a new system under a new fractional derivative. The fixed point theorems of Banach and Leray-Schauder are used in our analysis. Despite the fact that we employ common methods to get our conclusions, the application of it to the suggested system is novel. Furthermore, the results acquired in this study may be extended to an n-tuple fractional system. Our results obtained include the results of Alsaedi et al. in [22,23]. With regard to the boundary condition at the terminal position σ=1 used in this work, the linear combination of the unknown function and its derivative is associated with the contribution due to sub-strip (0,τ) and finitely many nonlocal positions between them within the domain [0.1]. This boundary condition covers many interesting situations, for example, it corresponds to the two-strip aperture condition for all μi=ξi=0,i=1,2,....,m. By choosing ϖ1=ϖ2=0, this condition reduces to a multi-point nonlocal boundary condition. It's worth noting that integral boundary conditions play a critical role in the research of practical problems like blood flow problems [24] and bacterial self-regularization [25], among others. For more applications about strip conditions in engineering and real-world problems (see [26,27]). To the best of our knowledge, this is the first work dealing with the ABR fractional derivative of order ϱ1,ϱ2 ∈(1,2] with multi-point sub-strip boundary conditions. In consequence, the results of this work will be a useful contribution to the existing literature on this topic.
The paper is organized as follows: In Section 2, we present notations and some preliminary facts used throughout the paper. Section 3 discusses the existence and uniqueness results for ABR-System (1.1). The stability analysis in the frame of Ulam-Hyers has been discussed in Section 4. Section 5 provides an example to illustrate the validity of our results. Concluding remarks about our results in the last Section.
To achieve our main objectives, we present here some definitions and basic auxiliary results that are required throughout the paper. Let J=[0,1]⊂R and X=C(J,R) be the space of continuous functions ϑ:J→R equipped with the norm ‖ϑ‖=supσ∈J|ϑ(σ)|. Evidently, (X, ‖⋅‖) is a Banach space and hence the product space H:=X×X is also a Banach space with the following norm ‖(ϑ1,ϑ2)‖=‖ϑ1‖+‖ϑ2‖.
Definition 2.1. [6] Let 0<ϱ≤1 and ϑ∈H1(J). Then the left-sided ABR fractional derivative of order ϱ for a function ϑ with the lower limit zero is defined by
ABRDϱ0+ϑ(σ)=B(ϱ)1−ϱddσ∫σ0Eϱ(ϱϱ−1(σ−θ)ϱ)ϑ′(θ)dθ,σ>a, |
where B(ϱ)=ϱ2−ϱ>0 is the normalization function such that B(0)=B(1)=1 and Eϱ is the Mittag-Leffler function defined by
Eϱ(ϑ)=∞∑i=0ϑiΓ(iϱ+1),Re(ϱ)>0,ϑ∈C. |
The associated Atangana-Baleanu (AB) fractional integral is given by
ABIϱ0+ϑ(σ)=1−ϱB(ϱ)ϑ(σ)+ϱB(ϱ)Γ(ϱ)∫σ0(σ−s)ϱ−1ϑ(s)ds. |
Definition 2.2. [7] The relation between the ABR and ABC fractional differential equations is given by
ABCDϱa+ϑ(σ)=ABRDϱa+ϑ(σ)+B(ϱ)1−ϱϑ(a)Eϱ(ϱϱ−1(σ−a)ϱ). |
Lemma 2.3. [6] Let ϑ>0. Then ABIϱ0+ isbounded from X into X.
Definition 2.4. ([7] Definition 3.1) Let n<ϱ≤n+1 and ϑ(n)∈H1(0,1). Let β=ϱ−n. Then, 0<β≤1 and the left-sided ABR fractional derivative of order ϱ for a function ϑ with the lower limit zero is defined by
(ABRDϱ0+ϑ)(σ)=(ABRDβ0+ϑ(n))(σ). |
The correspondent fractional integral is given by
(ABIϱ0+ϑ)(σ)=(InAB0+Iβ0+ϑ)(σ). |
Lemma 2.5. ([7] Proposition 3.1) Let ϑ(σ) be afunction defined on [0,b] and n<ϱ≤n+1. Then, forsome n∈N0, we have
∙(ABRDϱAB0+Iϱ0+ϑ)(σ)=ϑ(σ),. |
∙(ABIϱABR0+Dϱ0+ϑ)(σ)=ϑ(σ)−n−1∑i=0ϑ(i)(0)i!σi. |
∙(ABIϱABC0+Dϱ0+ϑ)(σ)=ϑ(σ)−n∑i=0ϑ(i)(0)i!σi. |
Lemma 2.6. ([7] Theorem 4.2) Let ϱ∈(1,2]and ℏi∈X,i=1,2. Then the solution of the followingproblem
ABRDϱ0+ϑ(σ)=ℏ(σ),ϑ(a)=c, |
is given by
ϑ(σ)=c+2−ϱB(ϱ−1)∫σ0ℏ(s)ds+ϱ−1B(ϱ−1)Γ(ϱ)∫σ0(σ−s)ϱ−1ℏ(s)ds. |
Theorem 2.7. [28] Let K be closed subset from a Banach space X, and G:K→K, be a strictcontraction i.e., ‖G(x)−G(y)‖≤L‖x−y‖ for some 0<L<1 and all x,y∈K.Then G has a fixed point in K.
Lemma 2.8. [29] Let G:X→X bean operator satisfies
∙ The operator G is completely continuous,
∙ The set ξ(G)={ϑ∈X:ϑ=δG(ϑ),δ∈[0,1]} is bounded.
Then, G has at least one fixed point.
Theorem 2.9. Let ϱ1,ϱ2∈(1,2],Θ=α1α2−(ϖ1τ+∑mi=1μiηi)(ϖ2τ+∑mi=1ξiηi)≠0,α1,α2,ϖ1,ϖ2,μi,ξi∈R, and ηi,τ∈(0,1), i=1,2,,...,m and ℏ1,ℏ2∈X. The unique solution (ϑ1,ϑ2)∈H of the following problem
{ABRDϱ10+ϑ1(σ)=ℏ1(σ),σ∈[0,1],ABRDϱ20+ϑ2(σ)=ℏ2(σ)σ∈[0,1],α1ϑ1(1)−ϖ1∫τ0ϑ2(s)ds=∑mi=1μiϑ2(ηi),α2ϑ2(1)−ϖ2∫τ0ϑ1(s)ds=∑mi=1ξiϑ1(ηi), | (2.1) |
is given by
ϑ1(σ)={1Θ[α2ϖ1(2−ϱ2)B(ϱ2−1)∫τ0∫s0ℏ2(u)duds+α2ϖ1(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫τ0∫s0(s−u)ϱ2−1ℏ2(u)duds+∑mi=1μi(α2(2−ϱ2)B(ϱ2−1)∫ηi0ℏ2(s)ds+α2(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫ηi0(ηi−s)ϱ2−1ℏ2(s)ds)−α2α1(2−ϱ1)B(ϱ1−1)∫10ℏ1(s)ds−α2α1(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫10(1−s)ϱ1−1ℏ1(s)ds+π1∫τ0∫s0ℏ1(u)duds+π2Γ(ϱ1)∫τ0∫s0(s−u)ϱ1−1ℏ1(u)duds+∑mi=1ξi(π3∫ηi0ℏ1(s)ds+π4Γ(ϱ1)∫ηi0(ηi−s)ϱ1−1ℏ1(s)ds)−π5∫10ℏ2(s)ds−π6Γ(ϱ2)∫10(1−s)ϱ2−1ℏ2(s)ds]+2−ϱ1B(ϱ1−1)∫σ0ℏ1(s)ds+ϱ1−1B(ϱ1−1)Γ(ϱ1)∫σ0(σ−s)ϱ1−1ℏ1(s)ds | (2.2) |
and
ϑ2(σ)={1Θ[α1ϖ2(2−ϱ1)B(ϱ1−1)∫τ0∫s0ℏ1(u)duds+α1ϖ2(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫τ0∫s0(s−u)ϱ1−1ℏ1(u)duds+∑mi=1ξi(α1(2−ϱ1)B(ϱ1−1)∫ηi0ℏ1(s)ds+α1(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫ηi0(ηi−s)ϱ1−1ℏ1(s)ds)−α2α1(2−ϱ2)B(ϱ2−1)∫10ℏ2(s)ds−α2α1(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫10(1−s)ϱ2−1ℏ2(s)ds+ψ1∫τ0∫s0ℏ2(u)duds+ψ2Γ(ϱ2)∫τ0∫s0(s−u)ϱ2−1ℏ2(u)duds+∑mi=1μi(ψ3∫ηi0ℏ2(s)ds+ψ4Γ(ϱ2)∫ηi0(ηi−s)ϱ2−1ℏ2(s)ds)−ψ5∫10ℏ1(s)ds−ψ6Γ(ϱ1)∫10(1−s)ϱ1−1ℏ1(s)ds]+2−ϱ2B(ϱ2−1)∫σ0ℏ2(s)ds+ϱ2−1B(ϱ2−1)Γ(ϱ2)∫σ0(σ−s)ϱ2−1ℏ2(s)ds, | (2.3) |
where
{π1=(ϖ1τ+∑mi=1μiηi)ϖ2(2−ϱ1)B(ϱ1−1),π2=(ϖ1τ+∑mi=1μiηi)ϖ2(ϱ1−1)B(ϱ1−1),π3=(ϖ1τ+∑mi=1μiηi)(2−ϱ1)B(ϱ1−1),π4=(ϖ1τ+∑mi=1μiηi)(ϱ1−1)B(ϱ1−1),π5=α2(ϖ1τ+∑mi=1μiηi)(2−ϱ2)B(ϱ2−1),π6=α2(ϖ1τ+∑mi=1μiηi)(ϱ2−1)B(ϱ2−1) |
and
{ψ1=ϖ1(ϖ2τ+∑mi=1ξiηi)(2−ϱ2)B(ϱ2−1),ψ2=ϖ1(ϖ2τ+∑mi=1ξiηi)(ϱ2−1)B(ϱ2−1),ψ3=(ϖ2τ+∑mi=1ξiηi)(2−ϱ2)B(ϱ2−1),ψ4=(ϖ2τ+∑mi=1ξiηi)(ϱ2−1)B(ϱ2−1),ψ5=α1(ϖ2τ+∑mi=1ξiηi)(2−ϱ1)B(ϱ1−1),ψ6=α1(ϖ2τ+∑mi=1ξiηi)(ϱ1−1)B(ϱ1−1). |
Proof. Assume that (ϑ1,ϑ2)∈H is a solution of the following equations
{ABRDϱ10+ϑ1(σ)=ℏ1(σ),σ∈[0,1],ABRDϱ20+ϑ2(σ)=ℏ2(σ)σ∈[0,1]. |
Then, by Lemma 2.6, we get
ϑ1(σ)=c1+2−ϱ1B(ϱ1−1)∫σ0ℏ1(s)ds+ϱ1−1B(ϱ1−1)Γ(ϱ1)∫σ0(σ−s)ϱ1−1ℏ1(s)ds, | (2.4) |
ϑ2(σ)=c2+2−ϱ2B(ϱ2−1)∫σ0ℏ2(s)ds+ϱ2−1B(ϱ2−1)Γ(ϱ2)∫σ0(σ−s)ϱ2−1ℏ2(s)ds, | (2.5) |
where, c1,c2 are arbitrary constants. Applying the conditions (α1ϑ1(1)−ϖ1∫τ0ϑ2(s)ds=∑mi=1μiϑ2(ηi) and α2ϑ2(1)−ϖ2∫τ0ϑ1(s)ds=∑mi=1ξiϑ1(ηi)), we obtain
α1(c1+2−ϱ1B(ϱ1−1)∫10ℏ1(s)ds+ϱ1−1B(ϱ1−1)Γ(ϱ1)∫10(1−s)ϱ1−1ℏ1(s)ds)−ϖ1∫τ0(c2+2−ϱ2B(ϱ2−1)∫s0ℏ2(u)du+ϱ2−1B(ϱ2−1)Γ(ϱ2)∫s0(s−u)ϱ2−1ℏ2(u)du)ds=m∑i=1μi(c2+2−ϱ2B(ϱ2−1)∫ηi0ℏ2(s)ds+ϱ2−1B(ϱ2−1)Γ(ϱ2)∫ηi0(ηi−s)ϱ2−1ℏ2(s)ds) | (2.6) |
and
α2(c2+2−ϱ2B(ϱ2−1)∫10ℏ2(s)ds+ϱ2−1B(ϱ2−1)Γ(ϱ2)∫10(1−s)ϱ2−1ℏ2(s)ds)−ϖ2∫τ0(c1+2−ϱ1B(ϱ1−1)∫s0ℏ1(u)du+ϱ1−1B(ϱ1−1)Γ(ϱ1)∫s0(s−u)ϱ1−1ℏ1(u)du)ds=m∑i=1ξi(c1+2−ϱ1B(ϱ1−1)∫ηi0ℏ1(s)ds+ϱ1−1B(ϱ1−1)Γ(ϱ1)∫ηi0(ηi−s)ϱ1−1ℏ1(s)ds). | (2.7) |
Equations (2.6) and (2.7) can be written as the following system
{α1c1−Z1c2=P1,−Z2c1+α2c2=P2, | (2.8) |
where
Z1=(ϖ1τ+m∑i=1μi),Z2=(ϖ2τ+m∑i=1ξi), |
P1={ϖ1(2−ϱ2)B(ϱ2−1)∫τ0∫s0ℏ2(u)duds+ϖ1(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫τ0∫s0(s−u)ϱ2−1ℏ2(u)duds+∑mi=1μi(2−ϱ2B(ϱ2−1)∫ηi0ℏ2(s)ds+ϱ2−1B(ϱ2−1)Γ(ϱ2)∫ηi0(ηi−s)ϱ2−1ℏ2(s)ds)−α1(2−ϱ1)B(ϱ1−1)∫10ℏ1(s)ds−α1(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫10(1−s)ϱ1−1ℏ1(s)ds |
and
P2={ϖ2(2−ϱ1)B(ϱ1−1)∫τ0∫s0ℏ1(u)duds+ϖ2(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫τ0∫s0(s−u)ϱ1−1ℏ1(u)duds+∑mi=1ξi(2−ϱ1B(ϱ1−1)∫ηi0ℏ1(s)ds+ϱ1−1B(ϱ1−1)Γ(ϱ1)∫ηi0(ηi−s)ϱ1−1ℏ1(s)ds)−α2(2−ϱ2)B(ϱ2−1)∫10ℏ2(s)ds−α2(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫10(1−s)ϱ2−1ℏ2(s)ds. |
Solving system (2.8) for c1 and c2, we obtain
c1=α2P1+Z1P2α1α2−Z1Z2 and c2=Z2P1+α1P2α1α2−Z1Z2. |
Substituting the values of c1 and c2 in (2.4) and (2.5) respectively, we get (2.2) and 2.3. Conversely, apply the operators ABRDϱ10+,ABRDϱ20+ on (2.2) and (2.3) respectively and making use the Lemma 2.5 and note that ABRDϱi0+c=ABRDβi0+ddσc=0,(βi=ϱi−n),i=1,2, we obtain (2.1). Hence, (ϑ1,ϑ2) satisfies (2.1) if and only if it satisfies (2.2) and (2.3). The proof is completed.
In view of Lemma 2.9, we define an operator Υ:H→H by
Υ(ϑ1,ϑ2)=(Υ1(ϑ1,ϑ2),Υ2(ϑ1,ϑ2)), | (3.1) |
where
Υ1(ϑ1,ϑ2)={1Θ[α2ϖ1(2−ϱ2)B(ϱ2−1)∫τ0∫s0F2,ϑ(u)duds+α2ϖ1(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫τ0∫s0(s−u)ϱ2−1F2,ϑ(u)duds+∑mi=1μi(α2(2−ϱ2)B(ϱ2−1)∫ηi0F2,ϑ(s)ds+α2(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫ηi0(ηi−s)ϱ2−1F2,ϑ(s)ds)−α2α1(2−ϱ1)B(ϱ1−1)∫10F1,ϑ(s)ds−α2α1(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫10(1−s)ϱ1−1F1,ϑ(s)ds+π1∫τ0∫s0F1,ϑ(u)duds+π2Γ(ϱ1)∫τ0∫s0(s−u)ϱ1−1F1,ϑ(u)duds+∑mi=1ξi(π3∫ηi0F1,ϑ(s)ds+π4Γ(ϱ1)∫ηi0(ηi−s)ϱ1−1F1,ϑ(s)ds)−π5∫10F2,ϑ(s)ds−π6Γ(ϱ2)∫10(1−s)ϱ2−1F2,ϑ(s)ds]+2−ϱ1B(ϱ1−1)∫σ0F1,ϑ(s)ds+ϱ1−1B(ϱ1−1)Γ(ϱ1)∫σ0(σ−s)ϱ1−1F1,ϑ(s)ds |
and
Υ2(ϑ1,ϑ2)={1Θ[α1ϖ2(2−ϱ1)B(ϱ1−1)∫τ0∫s0F1,ϑ(u)duds+α1ϖ2(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫τ0∫s0(s−u)ϱ1−1F1,ϑ(u)duds+∑mi=1ξi(α1(2−ϱ1)B(ϱ1−1)∫ηi0F1,ϑ(s)ds+α1(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫ηi0(ηi−s)ϱ1−1F1,ϑ(s)ds)−α2α1(2−ϱ2)B(ϱ2−1)∫10F2,ϑ(s)ds−α2α1(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫10(1−s)ϱ2−1F2,ϑ(s)ds+ψ1∫τ0∫s0F2,ϑ(u)duds+ψ2Γ(ϱ2)∫τ0∫s0(s−u)ϱ2−1F2,ϑ(u)duds+∑mi=1μi(ψ3∫ηi0F2,ϑ(s)ds+ψ4Γ(ϱ2)∫ηi0(ηi−s)ϱ2−1F2,ϑ(s)ds)−ψ5∫10F1,ϑ(s)ds−ψ6Γ(ϱ1)∫10(1−s)ϱ1−1F1,ϑ(s)ds]+2−ϱ2B(ϱ2−1)∫σ0F2,ϑ(s)ds+ϱ2−1B(ϱ2−1)Γ(ϱ2)∫σ0(σ−s)ϱ2−1F2,ϑ(s)ds, |
such that, Fi,ϑ(s)=fi(s,ϑ1(s),ϑ2(s)),i=1,2. In the sequel, to simplify our analysis, we take the following notations
Qπ=α2ϖ1(2−ϱ2)2ΘB(ϱ2−1)+α2ϖ1(ϱ2−1)ΘB(ϱ2−1)Γ(ϱ2+2)+α2(2−ϱ2)∑mi=1μiηiΘB(ϱ2−1)+α2(ϱ2−1)∑mi=1μiηiΘB(ϱ2−1)Γ(ϱ2+2)+π5Θ+π6ΘΓ(ϱ2+1), |
Qψ=α1ϖ2(2−ϱ1)2ΘB(ϱ1−1)+α1ϖ2(ϱ1−1)ΘB(ϱ1−1)Γ(ϱ1+2)+α1(2−ϱ1)∑mi=1μiηiΘB(ϱ1−1)+α1(ϱ1−1)∑mi=1μiηiΘB(ϱ1−1)Γ(ϱ1+2)+ψ5Θ+ψ6ΘΓ(ϱ1+1), |
Mπ=π12Θ+π2ΘΓ(ϱ1+2)+α2α1(2−ϱ1)ΘB(ϱ1−1)+α2α1(ϱ1−1)ΘB(ϱ1−1)Γ(ϱ1+1)+π3∑mi=1ξiηiΘ+π4∑mi=1ξiηiΘΓ(ϱ1+2)+(2−ϱ1)B(ϱ1−1)+(ϱ1−1)B(ϱ1−1)Γ(ϱ1+1) |
and
Mψ=ψ12Θ+ψ2ΘΓ(ϱ2+2)+α2α1(2−ϱ2)ΘB(ϱ2−1)+α2α1(ϱ2−1)ΘB(ϱ2−1)Γ(ϱ2+1)+ψ3∑mi=1ξiηiΘ+ψ4∑mi=1ξiηiΘΓ(ϱ1+2)+(2−ϱ2)B(ϱ2−1)+(ϱ2−1)B(ϱ2−1)Γ(ϱ2+1). |
In the forthcoming theorems, we will prove the existence and uniqueness of solutions for the ABR-System (1.1) utilizing Leray-Schauder alternative and Banach contraction mapping principle.
Theorem 3.1. Let f1,f2:[0,1]×R×R→R be are continuous functions. In addition, we assume that:
(H1):|fi(σ,ϑ,v)|≤εi+θi|ϑ|+λi|v|,εi,θi,λi>0,i=1,2.
Then, the ABR-System (1.1) has at least one solution, provided that Λ1<1, where
Λ1=2max{(θ1+θ2),(λ1+λ2)}. |
Proof. Notice that the ABR-System (1.1) has at least one solution (ϑ1,ϑ2) if the operator Υ defined by (3.1) has a fixed point. For that, we shall divide the proof into the next steps:
Step 1: Υ is continuous. Since the functions f1 and f2 are continuous, we conclude that the operator Υ is continuous too.
Step 2: Υ is compact.
Define a closed ball BR={(ϑ1,ϑ2)∈H:‖(ϑ1,ϑ2)‖≤R} with
R≥Λ21−Λ1 where Λ2:=ε2(Qπ+Qψ)+ε1(Mπ+Mψ). | (3.2) |
First, we show that Υ is uniformly bounded on BR. For each (ϑ1,ϑ2)∈BR, we have
‖Υ1(ϑ1,ϑ2)‖≤1Θ[α2ϖ1(2−ϱ2)B(ϱ2−1)∫τ0∫s0|F2,ϑ(u)|duds+α2ϖ1(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫τ0∫s0(s−u)ϱ2−1|F2,ϑ(u)|duds+m∑i=1μi(α2(2−ϱ2)B(ϱ2−1)∫ηi0|F2,ϑ(s)|ds+α2(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫ηi0(ηi−s)ϱ2−1|F2,ϑ(s)|ds)+α2α1(2−ϱ1)B(ϱ1−1)∫10|F1,ϑ(s)|ds+α2α1(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫10(1−s)ϱ1−1|F1,ϑ(s)|ds+π1∫τ0∫s0|F1,ϑ(u)|duds+π2Γ(ϱ1)∫τ0∫s0(s−u)ϱ1−1|F1,ϑ(u)|duds+m∑i=1ξi(π3∫ηi0|F1,ϑ(s)|ds+π4Γ(ϱ1)∫ηi0(ηi−s)ϱ1−1|F1,ϑ(s)|ds)+π5∫10|F2,ϑ(s)|ds+π6Γ(ϱ2)∫10(1−s)ϱ2−1|F2,ϑ(s)|ds]+2−ϱ1B(ϱ1−1)∫σ0|F1,ϑ(s)|ds+ϱ1−1B(ϱ1−1)Γ(ϱ1)∫σ0(σ−s)ϱ1−1|F1,ϑ(s)|ds≤(ε2+θ2‖ϑ1‖+λ2‖ϑ2‖)(α2ϖ1(2−ϱ2)τ22ΘB(ϱ2−1)+α2ϖ1(ϱ2−1)τϱ2+1ΘB(ϱ2−1)Γ(ϱ2+2)+α2(2−ϱ2)m∑i=1μiηiΘB(ϱ2−1)+α2(ϱ2−1)m∑i=1μiηiΘB(ϱ2−1)Γ(ϱ2+2)+π5Θ+π6ΘΓ(ϱ2+1))+(ε1+θ1‖ϑ1‖+λ1‖ϑ2‖)(π1τ22Θ+π2τϱ1+1ΘΓ(ϱ1+2)+α2α1(2−ϱ1)ΘB(ϱ1−1)+α2α1(ϱ1−1)ΘB(ϱ1−1)Γ(ϱ1+1)+π3m∑i=1ξiηiΘ+π4m∑i=1ξiηiΘΓ(ϱ1+2)+(2−ϱ1)σB(ϱ1−1)+(ϱ1−1)σϱ1B(ϱ1−1)Γ(ϱ1+1))=(ε2+θ2‖ϑ1‖+λ2‖ϑ2‖)Qπ+(ε1+θ1‖ϑ1‖+λ1‖ϑ2‖)Mπ. |
Similarly, we can find that
‖Υ2(ϑ1,ϑ2)‖≤(ε2+θ2‖ϑ1‖+λ2‖ϑ2‖)Qψ+(ε1+θ1‖ϑ1‖+λ1‖ϑ2‖)Mψ. |
Consequently, we get
‖Υ(ϑ1,ϑ2)‖≤‖Υ1(ϑ1,ϑ2)‖+‖Υ2(ϑ1,ϑ2)‖≤ε2(Qπ+Qψ)+ε1(Mπ+Mψ)+2(θ1+θ2)‖ϑ1‖+2(λ1+λ2)‖ϑ2‖≤ε2(Qπ+Qψ)+ε1(Mπ+Mψ)+2max{(θ1+θ2),(λ1+λ2)}(‖ϑ1‖+‖ϑ2‖)=ε2(Qπ+Qψ)+ε1(Mπ+Mψ)+2max{(θ1+θ2),(λ1+λ2)}(‖(ϑ1,ϑ2)‖)=Λ2+Λ1R≤R. |
Hence Υ is uniformly bounded.
Next, we show that Υ is equicontinuous. Since BR⊂H is bounded. Then, for all (ϑ1,ϑ2)∈BR, there exist constants φ1,φ2>0 such that |F1,ϑ(σ)|≤φ1 and |F2,ϑ(σ)|≤φ2. Let σ1,σ2∈J such that σ1<σ2. Then, we have
‖Υ1(ϑ1(σ2),ϑ2(σ2))−Υ1(ϑ1(σ1),ϑ2(σ1))‖=|2−ϱ1B(ϱ1−1)∫σ20F1,ϑ(s)ds−2−ϱ1B(ϱ1−1)∫σ10F1,ϑ(s)ds+ϱ1−1B(ϱ1−1)Γ(ϱ1)∫σ20(σ2−s)ϱ1−1F1,ϑ(s)ds−ϱ1−1B(ϱ1−1)Γ(ϱ1)∫σ10(σ1−s)ϱ1−1F1,ϑ(s)ds|≤(2−ϱ1)φ1B(ϱ1−1)(σ2−σ2)+(ϱ1−1)φ1B(ϱ1−1)Γ(ϱ1)∫σ10((σ2−s)ϱ1−1−(σ1−s)ϱ1−1)ds+(ϱ1−1)φ1B(ϱ1−1)Γ(ϱ1)∫σ2σ1(σ2−s)ϱ1−1ds≤(2−ϱ1)φ1B(ϱ1−1)(σ2−σ2)+(ϱ1−1)φ1B(ϱ1−1)Γ(ϱ1+1)[−(σ2−σ1)ϱ1+σϱ12−σϱ11]. |
Take σ2→σ1, we get
‖Υ1(ϑ1(σ2),ϑ2(σ2))−Υ1(ϑ1(σ1),ϑ2(σ1))‖→0asσ2→σ1. |
In the same technique, we get
‖Υ2(ϑ1(σ2),ϑ2(σ2))−Υ2(ϑ1(σ1),ϑ2(σ1))‖→0asσ2→σ1. |
It follows that
‖Υ(ϑ1(σ2),ϑ2(σ2))−Υ(ϑ1(σ1),ϑ2(σ1))‖→0asσ2→σ1. |
Hence Υ is equicontinuous. Due to the Arzelá-Ascoli theorem, we conclude that the operator Υ is compact in H. Therefore, from the above steps, we deduce that Υ is completely continuous.
Step 3: In the last step, we show tht the set ξ(Υ)={(ϑ1,ϑ2)∈H:(ϑ1,ϑ2)=βΥ(ϑ1,ϑ2),β∈(0,1)} is bounded.
Let (ϑ1,ϑ2)∈ξ(Υ). Then (ϑ1,ϑ2)=βΥ(ϑ1,ϑ2). Now, for σ∈J, we have ϑ1(σ)=βΥ1(ϑ1,ϑ2) and ϑ2(σ)=βΥ2(ϑ1,ϑ2). According to (H1), we obtain
‖ϑ1‖=supσ∈[0,1]|βΥ1(ϑ1,ϑ2)(σ)|≤‖Υ1(ϑ1,ϑ2)‖≤ε2Qπ+ε1Mπ+(θ1+θ2)‖ϑ1‖+(λ1+λ2)‖ϑ2‖. |
By the same technique, we get
‖ϑ2‖≤ε2Qψ+ε1Mψ+(θ1+θ2)‖ϑ1‖+(λ1+λ2)‖ϑ2‖. |
Then, we have
‖(ϑ1,ϑ2)‖=‖ϑ1‖+‖ϑ2‖≤ε2(Qπ+Qψ)+ε1(Mπ+Mψ)+2(θ1+θ2)‖ϑ1‖+2(λ1+λ2)‖ϑ2‖=ε2(Qπ+Qψ)+ε1(Mπ+Mψ)+2max{(θ1+θ2),(λ1+λ2)}(‖(ϑ1,ϑ2)‖)=Λ2+Λ1‖(ϑ1,ϑ2)‖. |
Since Λ1<1, therefore
‖(ϑ1,ϑ2)‖≤Λ21−Λ1≤R. |
Hence, the set ξ(Υ) is bounded. Due to the above steps with Theorem 2.8, we deduce that Υ has at least one fixed point. Consequently, the ABR-System (1.1) has at least one solution.
Theorem 3.2. Let f1,f2:[0,1]×R×R→R be are continuous functions. In addition, we assume that:
(H2):|fi(σ,ϑ1,v1)−fi(σ,ϑ2,v2)|≤Li(|ϑ1−ϑ2|+|v1−v2|),Li>0,i=1,2.
Then, the system (2.1) has a unique solution, provided that σ<1,where
σ=L2(Qπ+Qψ)+L1(Mπ+Mψ). |
Proof. Let us consider a closed ball set BR defined in Theorem 3.1. In order to apply Theorem 2.7, we will divide the proof into the following steps:
Step (1): We show that Υ(BR)⊂BR. By the second step in Theorem 3.1, we have Υ(BR)⊂BR.
Step (1): We need to prove that Υ is a contraction map. Let (ϑ1,ϑ2),(x1,x2)∈H and σ∈J. Then, we obtain
‖Υ1(ϑ1,ϑ2)−Υ1(x1,x2)‖≤supσ∈[0,1]1|Θ|[α2ϖ1(2−ϱ2)B(ϱ2−1)∫τ0∫s0|F2,ϑ(u)−F2,x(u)|duds+α2ϖ1(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫τ0∫s0(s−u)ϱ2−1|F2,ϑ(u)−F2,x(u)|duds+α2(2−ϱ2)B(ϱ2−1)m∑i=1μi∫ηi0|F2,ϑ(s)−F2,x(s)|ds+α2(ϱ2−1)B(ϱ2−1)Γ(ϱ2)m∑i=1μi∫ηi0(ηi−s)ϱ2−1|F2,ϑ(s)−F2,x(s)|ds+α2α1(2−ϱ1)B(ϱ1−1)∫10|F1,ϑ(s)−F1,x(s)|ds+α2α1(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫10(1−s)ϱ1−1|F1,ϑ(s)−F1,x(s)|ds+π1∫τ0∫s0|F1,ϑ(u)−F1,x(u)|duds+π2Γ(ϱ1)∫τ0∫s0(s−u)ϱ1−1|F1,ϑ(u)−F1,x(u)|duds+|π3|m∑i=1ξi∫ηi0|F1,ϑ(s)−F1,x(s)|ds+π4Γ(ϱ1)m∑i=1ξi∫ηi0(ηi−s)ϱ1−1|F1,ϑ(s)−F1,x(s)|ds+π5∫10|F2,ϑ(s)−F2,x(s)|ds+π6Γ(ϱ2)∫10(1−s)ϱ2−1|F2,ϑ(s)−F2,x(s)|ds]+2−ϱ1B(ϱ1−1)∫σ0|F1,ϑ(s)−F1,x(s)|ds+ϱ1−1B(ϱ1−1)Γ(ϱ1)∫σ0(σ−s)ϱ1−1|F1,ϑ(s)−F1,x(s)|ds≤(L2Qπ+L1Mπ)(‖ϑ1−x1‖+‖ϑ2−x2‖), |
and consequently, we obtain
‖Υ1(ϑ1,ϑ2)−Υ1(x1,x2)‖≤(L2Qπ+L1Mπ)(‖ϑ1−x1‖+‖ϑ2−x2‖). | (3.3) |
By the same way, one can obtain
‖Υ1(ϑ1,ϑ2)−Υ1(x1,x2)‖≤(L2Qψ+L1Mψ)(‖ϑ1−x1‖+‖ϑ2−x2‖). | (3.4) |
It follows from (3.3) and (3.4) that
‖Υ(ϑ1,ϑ2)−Υ(x1,x2)‖=‖Υ1(ϑ1,ϑ2)−Υ1(x1,x2)‖+‖Υ1(ϑ1,ϑ2)−Υ1(x1,x2)‖≤L2(Qπ+Qψ)+L1(Mπ+Mψ)(‖ϑ1−x1‖+‖ϑ2−x2‖)≤σ(‖ϑ1−x1‖+‖ϑ2−x2‖) |
Due to σ<1, we conclude that the operator Υ is a contraction. Hence, by Theorem 2.7, the ABR-System (1.1) has a unique solution.
In this section, we shall discuss the Ulam-Hyers (UH) stability of the ABR-System (1.1).
Remark 4.1. [20] A function (ˆϑ1,ˆϑ2)∈H satisfies the following inequalities
{|ABRDϱ10+ˆϑ1(σ)−F1,ˆϑ(σ)|≤ε1,|ABRDϱ20+ˆϑ2(σ)−F2,ˆϑ(σ)|≤ε2, | (4.1) |
if and only if there exists a functions κ1,κ2∈D such that
(i) {|κ1(σ)|≤ε1,|κ2(σ)|≤ε2.
(ii) {ABRDϱ10+ˆϑ1(σ)=F1,ˆϑ(σ)+κ1(σ),ABRDϱ20+ˆϑ2(σ)=F2,ˆϑ(σ)+κ2(σ)..
Definition 4.2. [20] The ABR-System (1.1) is UH stable if there exists M>0 such that, for each ε=max{ε1,ε2}>0 and each solution (ˆϑ1,ˆϑ2)∈H of the inequalities (4.1), there exists a solution (ϑ1,ϑ2)∈H of the ABR-System (1.1) with
‖(ˆϑ1,ˆϑ2)−(ϑ1,ϑ2)‖≤Mε, σ∈J |
Lemma 4.3. Let ϱ1,ϱ2∈(1,2). If afunction (ˆϑ1,ˆϑ2)∈H satisfies the inequalities (4.1), then (ˆϑ1,ˆϑ2) satisfies thefollowing integral inequalities
{|ˆϑ1(σ)−Rˆϑ1−2−ϱ1B(ϱ1−1)∫σ0F1,ˆϑ(s)ds−ϱ1−1B(ϱ1−1)Γ(ϱ1)∫σ0(σ−s)ϱ1−1F1,ˆϑ(s)ds|≤ε2Qπ+ε1Mπ,|ˆϑ2(σ)−Rˆϑ2−2−ϱ2B(ϱ2−1)∫σ0F2,ˆϑ(s)ds−ϱ2−1B(ϱ2−1)Γ(ϱ2)∫σ0(σ−s)ϱ2−1F2,ˆϑ(s)ds|≤ε2Qψ+ε1Mψ, |
where
Rˆϑ1={1Θ[α2ϖ1(2−ϱ2)B(ϱ2−1)∫τ0∫s0F2,ˆϑ(u)duds+α2ϖ1(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫τ0∫s0(s−u)ϱ2−1F2,ˆϑ(u)duds+∑mi=1μi(α2(2−ϱ2)B(ϱ2−1)∫ηi0F2,ˆϑ(s)ds+α2(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫ηi0(ηi−s)ϱ2−1F2,ˆϑ(s)ds)−α2α1(2−ϱ1)B(ϱ1−1)∫10F1,ˆϑ(s)ds−α2α1(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫10(1−s)ϱ1−1F1,ˆϑ(s)ds+π1∫τ0∫s0F1,ˆϑ(u)duds+π2Γ(ϱ1)∫τ0∫s0(s−u)ϱ1−1F1,ˆϑ(u)duds+∑mi=1ξi(π3∫ηi0F1,ˆϑ(s)ds+π4Γ(ϱ1)∫ηi0(ηi−s)ϱ1−1F1,ˆϑ(s)ds)−π5∫10F2,ˆϑ(s)ds−π6Γ(ϱ2)∫10(1−s)ϱ2−1F2,ˆϑ(s)ds], |
and
Rˆϑ2={1Θ[α1ϖ2(2−ϱ1)B(ϱ1−1)∫τ0∫s0F1,ˆϑ(u)duds+α1ϖ2(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫τ0∫s0(s−u)ϱ1−1F1,ˆϑ(u)duds+∑mi=1ξi(α1(2−ϱ1)B(ϱ1−1)∫ηi0F1,ˆϑ(s)ds+α1(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫ηi0(ηi−s)ϱ1−1F1,ˆϑ(s)ds)−α2α1(2−ϱ2)B(ϱ2−1)∫10F2,ˆϑ(s)ds−α2α1(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫10(1−s)ϱ2−1F2,ˆϑ(s)ds+ψ1∫τ0∫s0F2,ˆϑ(u)duds+ψ2Γ(ϱ2)∫τ0∫s0(s−u)ϱ2−1F2,ˆϑ(u)duds+∑mi=1μi(ψ3∫ηi0F2,ˆϑ(s)ds+ψ4Γ(ϱ2)∫ηi0(ηi−s)ϱ2−1F2,ˆϑ(s)ds)−ψ5∫10F1,ˆϑ((s)ds−ψ6Γ(ϱ1)∫10(1−s)ϱ1−1F1,ˆϑ((s)ds]. |
Proof. By Remark 4.1, we have
ABRDϱ10+ˆϑ1(σ)=F1,ˆϑ(σ)+κ1(σ). |
Then, in view of Theorem 2.9 and Lemma 4.3, we get
|ˆϑ1(σ)−Rˆϑ1−2−ϱ1B(ϱ1−1)∫σ0F1,ˆϑ(s)ds−ϱ1−1B(ϱ1−1)Γ(ϱ1)∫σ0(σ−s)ϱ1−1F1,ˆϑ(s)ds|≤1Θ[α2ϖ1(2−ϱ2)B(ϱ2−1)∫τ0∫s0κ2(u)duds+α2ϖ1(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫τ0∫s0(s−u)ϱ2−1κ2(u)duds+m∑i=1μi(α2(2−ϱ2)B(ϱ2−1)∫ηi0κ2(s)ds+α2(ϱ2−1)B(ϱ2−1)Γ(ϱ2)∫ηi0(ηi−s)ϱ2−1κ2(s)ds)−α2α1(2−ϱ1)B(ϱ1−1)∫10κ1(s)ds−α2α1(ϱ1−1)B(ϱ1−1)Γ(ϱ1)∫10(1−s)ϱ1−1κ1(s)ds+π1∫τ0∫s0κ1(u)duds+π2Γ(ϱ1)∫τ0∫s0(s−u)ϱ1−1κ1(u)duds+m∑i=1ξi(π3∫ηi0κ1(s)ds+π4Γ(ϱ1)∫ηi0(ηi−s)ϱ1−1κ1(s)ds)−π5∫10κ2(s)ds−π6Γ(ϱ2)∫10(1−s)ϱ2−1κ2(s)ds]+2−ϱ1B(ϱ1−1)∫σ0κ1(s)ds+ϱ1−1B(ϱ1−1)Γ(ϱ1)∫σ0(σ−s)ϱ1−1κ1(s)ds≤ε2Qπ+ε1Mπ. |
In the same way, one can obtain
|ˆϑ2(σ)−Rˆϑ2−2−ϱ2B(ϱ2−1)∫σ0F2(s)ds−ϱ2−1B(ϱ2−1)Γ(ϱ2)∫σ0(σ−s)ϱ2−1F2(s)ds|≤ε2Qψ+ε1Mψ. |
Theorem 4.4. Assume that (H2) hold. If
Ω=max{L1(2−ϱ1B(ϱ1−1)+(ϱ1−1)B(ϱ1−1)Γ(ϱ1+1)),L2(2−ϱ2B(ϱ2−1)+(ϱ2−1)B(ϱ2−1)Γ(ϱ2+1))}<1. |
Then
ABRDϱ10+ˆϑ2(σ)=F1,ˆϑ(σ),ABRDϱ20+ˆϑ2(σ)=F2,ˆϑ(σ), | (4.2) |
are Ulam-Hyers stable.
Proof. Let ε=max{ε1,ε2}>0 and (ˆϑ1,ˆϑ2)∈H be a function that satisfying the inequalities 4.1 and let (ϑ1,ϑ2)∈H be the unique solution of the following system
{ABR0+Dϱ1ϑ1(σ)=F1,ϑ(σ),σ∈[0,1], ϱ∈(1,2],ABR0+Dϱ2ϑ2(σ)=F2,ϑ(σ)σ∈[0,1],ϱ∈(1,2],α1ϑ1(1)=α1ˆϑ1(1)=ϖ1∫τ0ˆϑ2(s)ds+∑mi=1μiˆϑ2(ηi),α2ϑ2(1)=α2ˆϑ2(1)=ϖ2∫τ0ˆϑ1(s)ds+∑mi=1ξiˆϑ1(ηi). |
Now, by Theorem 2.9, we have
{ϑ1(σ)=Rϑ1+2−ϱ1B(ϱ1−1)∫σ0F1,ϑ(s)ds+ϱ1−1B(ϱ1−1)Γ(ϱ1)∫σ0(σ−s)ϱ1−1F1,ϑ(s)ds,ϑ2(σ)=Rϑ2+2−ϱ2B(ϱ2−1)∫σ0F2,ϑ(s)ds+ϱ2−1B(ϱ2−1)Γ(ϱ2)∫σ0(σ−s)ϱ2−1F2,ϑ(s)ds. |
Since α1ϑ1(1)=α1ˆϑ1(1) and α2ϑ2(1)=α2ˆϑ2(1), we can proof that Rϑ1=Rˆϑ1 and Rϑ2=Rˆϑ2. Hence, from (H2) with Lemma 4.3, and for each σ∈[0,1], we have
|ˆϑ1(σ)−ϑ1(σ)|≤|ˆϑ1(σ)−Rˆϑ1−2−ϱ1B(ϱ1−1)∫σ0F1,ˆϑ(s)ds−ϱ1−1B(ϱ1−1)Γ(ϱ1)∫σ0(σ−s)ϱ1−1F1,ˆϑ(s)ds|+2−ϱ1B(ϱ1−1)∫σ0|F1,ˆϑ(s)−F1,ϑ(s)|ds+ϱ1−1B(ϱ1−1)Γ(ϱ1)∫σ0(σ−s)ϱ1−1|F1,ˆϑ(s)−F1,ϑ(s)|ds≤ε2Qπ+ε1Mπ+L1(‖ˆϑ1−ϑ1‖+‖ˆϑ2−ϑ2‖)(2−ϱ1B(ϱ1−1)+(ϱ1−1)B(ϱ1−1)Γ(ϱ1+1)). | (4.3) |
Hence
‖ˆϑ1−ϑ1‖≤ε2Qπ+ε1Mπ+L1(‖ˆϑ1−ϑ1‖+‖ˆϑ2−ϑ2‖)(2−ϱ1B(ϱ1−1)+(ϱ1−1)B(ϱ1−1)Γ(ϱ1+1)). | (4.4) |
By the same technique, we get
‖ˆϑ2−ϑ2‖≤ε2Qψ+ε1Mψ+L2(‖ˆϑ1−ϑ1‖+‖ˆϑ2−ϑ2‖)(2−ϱ2B(ϱ2−1)+(ϱ2−1)B(ϱ2−1)Γ(ϱ2+1)). | (4.5) |
Thus
‖(ˆϑ1,ˆϑ2)−(ϑ1,ϑ2)‖≤‖ˆϑ1−ϑ1‖+‖ˆϑ2−ϑ2‖≤ε2Qπ+ε1Mπ+L1(‖ˆϑ1−ϑ1‖+‖ˆϑ2−ϑ2‖)(2−ϱ1B(ϱ1−1)+(ϱ1−1)B(ϱ1−1)Γ(ϱ1+1))+ε2Qψ+ε1Mψ+L2(‖ˆϑ1−ϑ1‖+‖ˆϑ2−ϑ2‖)(2−ϱ2B(ϱ2−1)+(ϱ2−1)B(ϱ2−1)Γ(ϱ2+1))≤((Mπ+Mψ)ε1+(Qπ+Qψ)ε2)+max{L1(2−ϱ1B(ϱ1−1)+(ϱ1−1)B(ϱ1−1)Γ(ϱ1+1)),L2(2−ϱ2B(ϱ2−1)+(ϱ2−1)B(ϱ2−1)Γ(ϱ2+1))}‖(ˆϑ1,ˆϑ2)−(ϑ1,ϑ2)‖≤((Mπ+Mψ)ε1+(Qπ+Qψ)ε2)+Ω‖(ˆϑ1,ˆϑ2)−(ϑ1,ϑ2)‖≤εK, | (4.6) |
where ε=max{ε1,ε2} and
K=Mπ+Mψ+Qπ+Qψ1−Ω. |
Hence, from (4.6) and Definition 4.2, we deduce that the coupled system (4.2) is Ulam-Hyers (UH) stable.
In this section, we will demonstrate the applicability of our main results through the following example.
Example 5.1. Consider the following system
{ABR0+D32ϑ1(σ)=f1(σ,ϑ1(σ),ϑ2(σ)),σ∈[0,1],ABR0+D54ϑ2(σ)=f2(σ,ϑ1(σ),ϑ2(σ))σ∈[0,1],14ϑ1(1)=∫170ϑ2(s)ds+12ϑ2(15)+34ϑ2(25)+ϑ2(35),12ϑ2(1)=∫170ϑ1(s)ds+13ϑ2(15)+23ϑ2(25)+ϑ2(35). | (5.1) |
Here ϱ1=32, ϱ2=54,α1=14,α2=12,τ=17,ϖ1=ϖ2=1,m=3,μ1=12,μ2=34,μ3=ξ3=1, ξi=i3,(i=1,2),ηi=i5,(i=1,2,3) and
f1(σ,ϑ1(σ),ϑ2(σ))=σ18(169+σ4)12(|ϑ1(σ)|1+|ϑ1(σ)|+|ϑ2(σ)|1+|ϑ2(σ)|+cosσ), |
f2(σ,ϑ1(σ),ϑ2(σ))=σ8(30+σ2)(|ϑ1(σ)|1+|ϑ1(σ)|+tan−1ϑ2(σ)+11+σ2). |
Clearly, for each ϑi,vi∈R,i=1,2, we have
|f1(t,ϑ1,v1)−f1(t,ϑ2,v2)|≤1234(|ϑ1−ϑ2|+|v1−v2|) |
and
|f2(t,ϑ1,v1)−f2(t,v2,v2)|≤1240(|ϑ1−ϑ2|+|v1−v2|), |
with L1=1234 and L2=1240. By the given data, we get Qψ≃5.7,Qπ≃1.8,Mπ≃1.7,Mψ≃0.3 and σ≃0.04<1. Then, all conditions in Theorem 3.2 are hold. Consequently, the coupled system (5.1) has a unique solution. On the other hand, by simple calculation, we get Λ1≃0.02<1 and hence all hypothesis in Theorem 3.1 are satisfied . Thus, the coupled system (5.1) has at least one solution in [0,1]. For every ε=max{ε1,ε2}>0 and each (ˆϑ1,ˆϑ2)∈H satisfies
{|ABR0+Dϱ11ˆϑ(σ)−F1,ˆϑ(σ)|≤ε1|ABR0+Dϱ22ˆϑ(σ)−F2,ˆϑ(σ)|≤ε2, |
there exists a solution (ϑ1,ϑ2)∈H of the coupled system (5.1) with
‖(ˆϑ1,ˆϑ2)−(ϑ1,ϑ2)‖≤Kε, σ∈J |
where
K=Mπ+Mψ+Qπ+Qψ1−Ω≃9>0. |
and
Ω=max{1234(1.6+1.6Γ(32+1)),1240(5+1.7Γ(54+1))}≃0.02<1. |
Therefore, all conditions in Theorem 4.4 are satisfied and hence the coupled system 4.2 is UH stable and GUH.
In recent years, the subject of fractional operators involving nonsingular kernels is novel and has very important significance in modeling many phenomena in the real world, thus there is interest from some researchers to study some qualitative properties of FDEs. In this paper, we have discussed a new system of the nonlinear fractional operators with nonsingular Mittag-Leffler function kernels from order 1<ϱ1,ϱ2≤2 with multipoint sub-strip boundary conditions. The results obtained in this work are new and cover some new results by choices of the parameters. We proved the existence, uniqueness, and UH, GUH results by means of the Banach fixed point theorem for initial value problems in the frame of ABR derivatives.
The authors declare no conflict of interest.
[1] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |
[2] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon & Breach, Yverdon, 1993. |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006. |
[4] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 35 (2000). |
[5] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. |
[6] | A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, Therm. Sci., 20 (2016), 757–763. |
[7] |
T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 1 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5 doi: 10.1186/s13660-017-1400-5
![]() |
[8] |
A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
![]() |
[9] |
A. Atangana, J. F. Gómez-Aguilar, Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos Soliton. Fract., 114 (2018), 516–535. https://doi.org/10.1016/j.chaos.2018.07.033 doi: 10.1016/j.chaos.2018.07.033
![]() |
[10] |
F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Soliton. Fract., 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006
![]() |
[11] |
M. A. Almalahi, S. K. Panchal, On the theory of ψ-Hilfer nonlocal Cauchy problem, J. Sib. Fed. Univ.-Math., 14 (2021), 159–175. https://doi.org/10.17516/1997-1397-2021-14-2-161-177 doi: 10.17516/1997-1397-2021-14-2-161-177
![]() |
[12] |
M.S. Abdo, T. Abdeljawad, K. D. Kucche, M. A. Alqudah, S. M. Ali, M. B. Jeelani, On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative, Adv. Differ. Equ., 1 (2021), 1–17. https://doi.org/10.1186/s13662-021-03229-8 doi: 10.1186/s13662-021-03229-8
![]() |
[13] |
M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Adv. Differ. Equ., 37 (2021). https://doi.org/10.1186/s13662-020-03196-6 doi: 10.1186/s13662-020-03196-6
![]() |
[14] |
M. A. Almalahi, S. K. Panchal, W. Shatanawi, M. S. Abdo, K. Shah, K. Abodayeh, Analytical study of transmission dynamics of 2019-nCoV pandemic via fractal fractional operator, Results Phys., 24 (2021), 104045. https://doi.org/10.1016/j.rinp.2021.104045 doi: 10.1016/j.rinp.2021.104045
![]() |
[15] | S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, Interscience, New York, 8 (1960). |
[16] | D. H. Hyers, G. Isac, T. Rassias, Stability of functional equations in several variables, Spring, Boston, 1998. |
[17] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. |
[18] |
B. Ahmad, S. K. Ntouyas, Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Appl. Math. Comput., 266 (2015), 615–622. https://doi.org/10.1016/j.amc.2015.05.116 doi: 10.1016/j.amc.2015.05.116
![]() |
[19] |
B. Ahmad, S. K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Soliton. Fract., 83 (2016), 234–241. https://doi.org/10.1016/j.chaos.2015.12.014 doi: 10.1016/j.chaos.2015.12.014
![]() |
[20] |
M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers stability results of a coupled system of ψ -Hilfer sequential fractional differential equations, Results Appl. Math., 10 (2021), 100142. https://doi.org/10.1016/j.rinam.2021.100142 doi: 10.1016/j.rinam.2021.100142
![]() |
[21] |
M. A. Almalahi, S. K. Panchal, F. Jarad, Stability results of positive solutions for a system of ψ-Hilfer fractional differential equations, Chaos Soliton. Fract., 147 (2021), 110931. https://doi.org/10.1016/j.chaos.2021.110931 doi: 10.1016/j.chaos.2021.110931
![]() |
[22] |
A. Alsaedi, A. F. Albideewi, S. K. Ntouyas, B. Ahmad, On Caputo-Riemann-Liouville type fractional integro-differential equations with multi-point sub-strip boundary conditions, Mathematics, 8 (2020), 1899. https://doi.org/10.3390/math8111899 doi: 10.3390/math8111899
![]() |
[23] |
A. Alsaedi, A. F. Albideewi, S. K. Ntouyas, B. Ahmad, Existence results for a coupled system of Caputo type fractional integro-differential equations with multi-point and sub-strip boundary conditions, Adv. Differ. Equ., 19 (2021). https://doi.org/10.1186/s13662-020-03174-y doi: 10.1186/s13662-020-03174-y
![]() |
[24] |
B. Ahmad, A. Alsaedi, B. S. Alghamdi, Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal.-Real, 9 (2008), 1727–1740. https://doi.org/10.1016/j.nonrwa.2007.05.005 doi: 10.1016/j.nonrwa.2007.05.005
![]() |
[25] |
R. Ciegis, A. Bugajev, Numerical approximation of one model of the bacterial self-organization, Nonlinear Anal.-Model., 17 (2012), 253–270. https://doi.org/10.15388/NA.17.3.14054 doi: 10.15388/NA.17.3.14054
![]() |
[26] | B. Ahmad, S. Asghar, T. Hayat, Diffraction of a plane wave by an elastic knife-edge adjacent to a rigid strip, Canad. Appl. Math. Quart., 9 (2001), 303–316. |
[27] |
E. Yusufoglu, I. Turhan, A mixed boundary value problem in orthotropic strip containing a crack, J. Franklin Inst., 349 (2012), 2750–2769. https://doi.org/10.1016/j.jfranklin.2012.09.001 doi: 10.1016/j.jfranklin.2012.09.001
![]() |
[28] | K. Deimling, Nonlinear functional analysis, Springer, New York, 1985. |
[29] | A. Granas, J. Dugundji, Fixed point theory, Springer Science & Business Media, 2013. |
1. | Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Phang Chang, Results on Implicit Fractional Pantograph Equations with Mittag-Leffler Kernel and Nonlocal Condition, 2022, 2022, 2314-4785, 1, 10.1155/2022/9693005 | |
2. | Saleh S. Redhwan, Maoan Han, Mohammed A. Almalahi, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi, Piecewise implicit coupled system under ABC fractional differential equations with variable order, 2024, 9, 2473-6988, 15303, 10.3934/math.2024743 |