The main concern of this manuscript is to examine some sufficient conditions under which the fractional order fuzzy delay differential system with the non-instantaneous impulsive condition has a unique solution. We also study the existence of a global solution for the considered system. Fuzzy set theory, Banach fixed point theorem and Non-linear functional analysis are the major tools to demonstrate our results. In last, an example is given to illustrate these analytical results.
Citation: Anil Kumar, Muslim Malik, Mohammad Sajid, Dumitru Baleanu. Existence of local and global solutions to fractional order fuzzy delay differential equation with non-instantaneous impulses[J]. AIMS Mathematics, 2022, 7(2): 2348-2369. doi: 10.3934/math.2022133
[1] | Muneerah AL Nuwairan, Ahmed Gamal Ibrahim . The weighted generalized Atangana-Baleanu fractional derivative in banach spaces- definition and applications. AIMS Mathematics, 2024, 9(12): 36293-36335. doi: 10.3934/math.20241722 |
[2] | Muneerah Al Nuwairan, Ahmed Gamal Ibrahim . Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces. AIMS Mathematics, 2023, 8(5): 11752-11780. doi: 10.3934/math.2023595 |
[3] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[4] | Velusamy Kavitha, Mani Mallika Arjunan, Dumitru Baleanu . Non-instantaneous impulsive fractional-order delay differential systems with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(5): 9353-9372. doi: 10.3934/math.2022519 |
[5] | A.G. Ibrahim, A.A. Elmandouh . Existence and stability of solutions of $ \psi $-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Mathematics, 2021, 6(10): 10802-10832. doi: 10.3934/math.2021628 |
[6] | Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876 |
[7] | Yiyun Li, Jingli Xie, Luping Mao . Existence of solutions for the boundary value problem of non-instantaneous impulsive fractional differential equations with $ p $-Laplacian operator. AIMS Mathematics, 2022, 7(9): 17592-17602. doi: 10.3934/math.2022968 |
[8] | Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316 |
[9] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[10] | Saïd Abbas, Mouffak Benchohra, Juan J. Nieto . Caputo-Fabrizio fractional differential equations with instantaneous impulses. AIMS Mathematics, 2021, 6(3): 2932-2946. doi: 10.3934/math.2021177 |
The main concern of this manuscript is to examine some sufficient conditions under which the fractional order fuzzy delay differential system with the non-instantaneous impulsive condition has a unique solution. We also study the existence of a global solution for the considered system. Fuzzy set theory, Banach fixed point theorem and Non-linear functional analysis are the major tools to demonstrate our results. In last, an example is given to illustrate these analytical results.
The dynamics of many evolutionary processes are characterized by the fact that at a specific moment of time they experience a sudden change in their state, such as harvesting, natural disasters and shocks, etc. These processes are subject to short-term perturbations, whose time period is minimal in analogy with the whole evolution. In dynamical systems associated with such sudden changes, we assume these changes in the form of impulses. Therefore, impulsive differential equations have been developed to model these types of situations. In literature, there are two types of impulses, one is instantaneous and another one is non-instantaneous impulses. For more detail, one can see [1-4].
The theory of fractional calculus deals with the integral and derivative of any arbitrary (real or complex) order. It was first proposed in the works by mathematicians Leibniz, Abel, L'Hopital, Riemann, Liouville [5,6]. Because of the nonlocality and inherent properties of numerous complex systems, fractional calculus is important to model many physical applications in dissimilar branches of science and engineering. Memory and hereditary are additionally significant properties of various materials and processes in biomechanics, electrical circuits, electrochemistry, biology, electromagnetic processes, control and porous media, which are widely recognized to be well predicted by using fractional differential operators [7-9]. In the existing literature, there are numerous definitions for fractional operators, for example, Riemann-Liouville, Grunwald-Letnikov, Hadamard, Caputo, Riesz-Caputo and so on.
More recently, in 2015, Caputo and Fabrizio introduced a new fractional derivative known as Caputo-Fabrizio fractional derivative which is given by
CFDςa+P(ξ)=M(ς)1−ς∫ξaexp[−ς1−ς(ξ−ϑ)]P′(ϑ)dϑ, |
where ς∈R is the order of the derivative[10,11]. A year after, Atangana and Baleanu proposed another definition of nonlocal derivatives with non-singular kernel relied on the Mittag-Leffler function
ABCDςa+P(ξ)=B(ς)1−ς∫ξaEς[−ς1−ς(ξ−ϑ)ς]P′(ϑ)dϑ, |
where P∈CF(I)∩LF(I) is the fuzzy function and B(ς)=(1−ς)+ςΓ(ς) is known as a normalization function which satisfies B(0)=B(1)=1 and 0<ς<1. This definition upheld the Caputo-Fabrizio's one relied on the exponential function. It expand the profundity of the connection between the Mittag-Leffler function and fractional calculus which leads to the significant applications such as thermal physics, population dynamics, control problems and so on [12-15].
On the other hand, in many real applications there is some uncertainty that occurs in the system due to that the behaviour of the system is affected. Therefore, to overcome this type of issue, Zadeh [16] in 1965, presented the theory of fuzzy set by using the membership function. The theory of fuzzy set is a well-built tool for modelling the uncertainty, ambiguity and vague information such as particle system, medicine, quantum optics, civil engineering, computational biology, bioinformatics and hydraulic process [17-20] etc. Moreover, the nonlocal effects, as well as uncertainty behaviours, represent interesting phenomena and hence nowadays many researchers working on the fuzzy fractional operator which combine fractional calculus with the fuzzy set theory. In the last few decays, many authors established some results on the existence, uniqueness and stability of the solution for fuzzy differential equations of an integer as well as fractional order [21-28]. In particular, S. Seikkala [21], established the existence and uniqueness of the solution for a fuzzy initial value problem. In [25], authors investigated the existence and uniqueness of solution for the fractional fuzzy differential equation. In [26], authors examined the uniqueness of the solution for a nonlinear impulsive fuzzy integro-differential equation. In [27] authors examined the existence and uniqueness of a mild solution to a nonlinear fuzzy differential equation with time delay. Moreover, there are only a few papers that established the existence and uniqueness results for ABC fuzzy fractional differential equation [29,30]. For instance, in [30] authors considered the ABC fractional fuzzy differential equation and establish the existence and uniqueness of the solution. As per the author's knowledge, there is not a single paper that established the existence of local and global solutions for the ABC fractional fuzzy delay differential system with impulsive effects.
Therefore, motivated by the above facts, in this paper, we will study the existence of local and global solution for fractional order fuzzy delay differential equation with non-instantaneous impulsive condition of the form
ABC 0DςξP(ξ)=H(ξ,P(ξ),P(ξ−δ)),ξ∈(kj,ξj+1], j=0,1,⋯,n,P(ξ)=hj(ξ,P(ξ−j)), ξ∈(ξj,kj],j=1,2,⋯,n,P(ξ)=Ψ(ξ),ξ∈[−δ,0], | (1.1) |
where P is a state fuzzy function and ABC 0Dςξ is the ABC derivative of order ς∈(0,1). The points kj and ξj satisfies the sequence 0=k0=ξ0<ξ1<k1<ξ2<⋯<ξn<kn<ξn+1=T<∞. H is the nonlinear function which is defined from (kj,ξj+1]×Kn×Kn into Kn, where Kn denotes the set of all upper semi continuous convex normal fuzzy number with bounded ι-level intervals and j=0,1,⋯,n (which will be specified in Definition 2.9). The functions hj(ξ,P(ξ−j)) represent non-instantaneous impulses during the interval (ξj,kj], j=1,2,⋯,n. P(ξ−j), P(ξ+j) represent the left and right limit of the state fuzzy function P at ξj. For δ>0, Ψ:[−δ,0]→Kn is a continuous function.
The structure of the manuscript is as follows: In Section 2, we have given the fundamental definitions and some important lemmas. In Section 3, we establish the local existence and uniqueness results for the solution. Section 4 is devoted to establishing the global solution for the considered system and in the last Section 5, an example is given to validate the obtained analytical results.
In this section, we briefly describe some notations, fundamental definitions and important lemmas which are useful to prove the main results. CF(I=[0,T]) denote the set of all continuous fuzzy valued functions on I and LF(I) denote the set of all Lebesgue integrable fuzzy valued functions on I. Also we define PC(J;Kn) as: PC(J;Kn)={P:J→Kn:P∈CF([−δ,0); Kn) ∪ CF((ξj,ξj+1]; Kn), j=0,1,⋯,n and there exists P(ξ−j) and P(ξ+j),j=1,2,⋯,n, with P(ξ−j)=P(ξj)} for the space of piecewise continuous functions, where J=[−δ,0)∪[0,T].
Next, we define the definition of ABC derivative and integrals.
Definition 2.1. [31] The Atangana-Baleanu fractional integral of order ς∈(0,1), is given by
ABaIςP(ξ)=1−ςB(ς)P(ξ)+ςB(ς)Γ(ς)∫ξa(ξ−ϑ)(ς−1)P(ϑ)dϑ,P≥a, |
where P∈CF(I)∩LF(I) is the fuzzy function and B(ς)=(1−ς)+ςΓ(ς) is known as the normalization function which satisfies B(0)=B(1)=1.
Definition 2.2. [31] The Atangana-Baleanu fractional fuzzy derivative in Caputo sense is defined by
ABCDςa+P(ξ)=B(ς)1−ς∫ξaEς[−ς1−ς(ξ−ϑ)ς]P′(ϑ)dϑ, |
where P∈CF(I)∩LF(I) is the fuzzy function and Eς is the Mittag-Leffler function.
Definition 2.3. For ABC derivative, we have the following important properties of Laplace transformation
1) L(ABCDςa+P(ξ))=B(ς)1−ςsς−1sς+ς1−ς(sP(s)−P(0)),
2) L(ξς)=ςsς+1,
3) L(Hn(ξ))=snL(H(ξ))−sn−1H(0)⋯−H(n−1)(0),
4) L(u(ξ)∗P(ξ))=L(u(ξ))L(P(ξ)).
Now, we define some important definitions and lemmas which are often used.
Definition 2.4. [32] Let ϰ and α be two nonempty bounded subsets of Rn then we define
dH(ϰ,α)=max{supˆϰ∈ϰinfˆα∈α||ˆϰ−ˆα||,supˆα∈αinfˆϰ∈ϰ||ˆϰ−ˆα||}, |
where ||.|| denotes the usual Euclidean norm in Rn. Clearly, dH(ϰ,α)=dH(α,ϰ), i.e., it is symmetric on ϰ and α.
Consequently, for any nonemptey subsets ϰ,α and Θ of Rn, we have
(1) dH(ϰ,α)≥0 with dH(ϰ,α)=0 iff ϰ=α,
(2) dH(ϰ,α)=dH(α,ϰ),
(3) dH(ϰ,α)≤dH(ϰ,Θ)+dH(Θ,α).
We denote Kn(Rn) for the family of all nonempty subset of Rn which are convex and compact. The scalar multiplication and addition in Kn(Rn) are defined as
ϰ+α={ˆϰ+ˆα:ˆϰ∈ϰ and ˆα∈α},ϱϰ={ϱˆϰ:ˆϰ∈ϰ} |
for all ϱ≥0 and ϰ,α∈Kn(Rn).
Definition 2.5. [32] We define
dH([z]ι,[y]ι)=max{d([z]ι,[y]ι),d([y]ι,[z]ι):ι∈(0,1]}, z,y,∈Kn. |
Clearly, (Kn(Rn),dH) forms a complete metric space.
Definition 2.6. [32] The supremium metric d∞ on Kn is defined by
d∞(z,y)=sup{dH([z]ι,[y]ι):ι∈(0,1], ∀ z,y∈Kn}. |
Clearly, we can see that d∞ is a metric in Kn and (Kn,d∞) forms a complete metric space.
Suppose that J=[−δ,T]⊂R be a compact interval and PC(J;Kn) denotes tha space of all fuzzy functions which are piece-wise continuous from J to Kn. We define the metric H1 on PC(J;Kn) by
H1(z,y)=sup{d∞(z(ξ),y(ξ)) : ξ∈J, ∀ z,y∈PC(J;Kn)}. |
Clearly, (PC(J;Kn),H1) is a complete metric space.
Definition 2.7. [33] A membership function ΩD:Ξ→[0,1] of fuzzy set D satisfy the following:
1) If ΩD(ρ)=1, then ρ is completely belongs to D,
2) If 0<ΩD(ρ)<1, then ρ is partially belongs to D,
3) If ΩD(ρ)=0, then ρ∉D.
Definition 2.8. [33] A fuzzy set D is said to be fuzzy number if it satisfy the following properties:
1) D is normal, i.e., ∃ ρ0∈R with ΩD(ρ0)=1.
2) D is fuzzy convex, i.e., ΩD(ξρ+(1−ξ)ˆρ)≥min{ΩD(ρ),ΩD(ˆρ)}, ∀ ξ∈[0,1],ρ,ˆρ∈Rn.
3) D is upper semi continuous on Rn, i.e., ∀ ϵ>0, ∃ τ>0 such that ΩD(ρ)−ΩD(ρ0)<ϵ,|ρ−ρ0|<τ.
4) D is compactly supported, i.e., cl{ρ∈Rn;ΩD(ρ)>0} is compact.
Definition 2.9. [34] The ι - level set of fuzzy set D is defined by
[D]ι={ρ|ρ∈Ξ,ΩD(ρ)≥ι},ι∈(0,1], |
and for ι=0, we have
[D]0=cl{ρ|ρ∈Ξ,ΩD(ρ)≥0}. |
Definition 2.10. [34] A fuzzy number g∈R is called positive if for two arbitrary fuzzy number g1,g2, it holds 0<g1<g2 for the support ψg=[g1,g2] of g, i.e., ψg is in the positive real line. Similarly, g is called negative if g1≤g2<0 and zero if g1≤0≤g2.
Lemma 2.1. [35] If g,h∈Kn, then for ι∈(0,1],
[g+h]ι=[gιa+hιa,gιb+hιb].[g×h]ι=[min{hιihιj},max{hιihιj}],i,j=a,b.[g−h]ι=[gιa−hιb,gιb−hιa]. |
Definition 2.11. [35] We define the fuzzy integral as follows
[∫ba[P(ξ)dξ]]ι=[∫baPιq(ξ)dξ,∫baPιr(ξ)dξ],∀ a,b∈I, |
provided that the right side Lebesgue integrals in the above equation are exists. Also, the fuzzy integral is a fuzzy number.
Lemma 2.2. [30] If y(ξ)∈CF(I)∩LF(I), 0<ς<1, then the unique solution of following problem
ABC 0Dςξy(ξ)=u(ξ), |
is given by
y(ξ)=1−ςB(ς)u(ξ)+ςB(ς)Γ(ς)∫ξ0u(τ)(ξ−τ)ς−1dτ. |
Lemma 2.3. A function P∈PC(J;Kn) is the solution of the considered system (1.1) if H(0,P(0),P(−δ))=0 holds and solution is given by
P(ξ)={Ψ(ξ),ξ∈[−δ,0),Ψ(0)+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ))+ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ, ∀ξ∈[0,ξ1],hj(ξ,P(ξ−j)),ξ∈(ξj,kj],j=1,2,⋯,n,hj(kj,P(ξ−j))+ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ)),∀ξ∈(kj,ξj+1],j=1,2,⋯,n. | (2.1) |
Proof. From Lemma 2.2, for any ξ∈[0,ξ1], we have
P(ξ)=Ψ(0)+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ))+ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ. |
Now, for any ξ∈(ξ1,k1],
P(ξ)=h1(k1,P(ξ−1)). |
Also, for any ξ∈(k1,ξ2],
P(ξ)=P(ξ−)+ςB(ς)Γ(ς)∫ξk1(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ)),=h1(k1,P(ξ−1))+ςB(ς)Γ(ς)∫ξk1(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ)). |
Now, for any ξ∈(ξ2,k2],
P(ξ)=h2(k2,P(ξ−2)). |
Also, for any ξ∈(k2,ξ3],
P(ξ)=P(ξ−2)+ςB(ς)Γ(ς)∫ξk2(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ)),=h2(k2,P(ξ−2))+ςB(ς)Γ(ς)∫ξk2(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ)). |
By using the similar process, we will get for ξ∈(kj,ξj+1],
P(ξ)=hj(kj,P(ξ−j))+ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ)), |
which has the form (2.1). Hence, the result follows. For more detail on solution, please see [36].
In this section, we state and prove the existence and uniqueness of local solution to the system (1.1). For this purpose, the following assumptions are required:
(B1) The function H:(kj,ξj+1]×Kn×Kn→Kn, j=0,1,⋯,n, is continuous and there exists positive constant MH1 and MH2 such that
dH([H(ξ,η1,η2)]ι,[H(ξ,γ1,γ2)]ι)≤MH1dH([η1]ι,[γ1]ι)+MH2dH([η2]ι,[γ2]ι), ∀ η1,γ1,η2,γ2∈Kn. |
(B2) The functions hj:(ξj,kj]×Kn→Kn, j=1,2,⋯,n, are continuous and there exists a positive constants Mhj<1 such that
dH([hj(ξ,η1)]ι,[hj(ξ,γ1)]ι)≤MhjdH([η1]ι,[γ1)]ι), ∀ η1,γ1∈Kn,ξ∈(ξj,kj]. |
For the convenience, we use the following notations throughout the manuscript L=max1≤j≤n{L1,L2j}, where L1=(1−ςB(ς)(MH1+MH2)+ςB(ς)Γ(ς)(MH1+MH2)Tς) and L2j=(Mhj+1−ςB(ς)(MH1+MH2)+ςB(ς)Γ(ς)(MH1+MH2)Tς), j=1,2,⋯,n.
Theorem 3.1. If the assumptions (B1) and (B2) are satisfied then the problem (1.1) has a unique local solution on J.
Proof. For each η∈PC(J;Kn), we define an operator Λ:PC(J;Kn)→PC(J;Kn) such that
(Λη)(ξ)={Ψ(ξ),ξ∈[−δ,0),Ψ(0)+1−ςB(ς)H(ξ,η(ξ),η(ξ−δ))+ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,η(ϑ),η(ϑ−δ))dϑ,∀ξ∈[0,ξ1],hj(ξ,η(ξ−j)), ξ∈(ξj,kj],j=1,2,⋯,n,hj(kj,η(ξ−j))+1−ςB(ς)H(ξ,η(ξ),η(ξ−δ))+ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,η(ϑ),η(ϑ−δ))dϑ,∀ξ∈(kj,ξj+1],j=1,2,⋯,n. |
Here, we need to show that the operator Λ has a fixed point, which is the solution of our considered system (1.1). The proof of this theorem is divided into the following cases:
Case 1: For ξ∈[−δ,0), η,γ∈PC(J;Kn),
(Λη)(ξ)=Ψ(ξ),(Λγ)(ξ)=Ψ(ξ). |
Hence,
H1((Λη),(Λγ))=0. |
Case 2: For ξ∈[0,ξ1], η,γ∈PC(J;Kn),
(Λη)(ξ)=Ψ(0)+1−ςB(ς)H(ξ,η(ξ),η(ξ−δ))+ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,η(ϑ),η(ϑ−δ))dϑ,(Λγ)(ξ)=Ψ(0)+1−ςB(ς)H(ξ,γ(ξ),γ(ξ−δ))+ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,γ(ϑ),γ(ϑ−δ))dϑ. |
Therefore,
dH([Λη(ξ)]ι,[Λγ(ξ)]ι)=dH([Ψ(0)+1−ςB(ς)H(ξ,η(ξ),η(ξ−δ))+ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,η(ϑ),η(ϑ−δ))dϑ]ι,[Ψ(0)+1−ςB(ς)H(ξ,γ(ξ),γ(ξ−δ))+ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,γ(ϑ),γ(ϑ−δ))dϑ]ι)=dH([Ψ(0)]ι+[1−ςB(ς)H(ξ,η(ξ),η(ξ−δ))]ι+[ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,η(ϑ),η(ϑ−δ))dϑ]ι,[Ψ(0)]ι+[1−ςB(ς)H(ξ,γ(ξ),γ(ξ−δ))]ι+[ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,γ(ϑ),γ(ϑ−δ))dϑ]ι)=dH([1−ςB(ς)H(ξ,η(ξ),η(ξ−δ))]ι+[ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,η(ϑ),η(ϑ−δ))dϑ]ι,[1−ςB(ς)H(ξ,γ(ξ),γ(ξ−δ))]ι+[ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,γ(ϑ),γ(ϑ−δ))dϑ]ι)≤dH([1−ςB(ς)H(ξ,η(ξ),η(ξ−δ))]ι,[1−ςB(ς)H(ξ,γ(ξ),γ(ξ−δ))]ι)+dH([ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,η(ϑ),η(ϑ−δ))dϑ]ι, [ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,γ(ϑ),γ(ϑ−δ))dϑ]ι)≤1−ςB(ς)MH1dH([η(ξ)]ι,[γ(ξ)]ι)+1−ςB(ς)MH2dH([η(ξ−δ)]ι,[γ(ξ−δ)]ι)+ςB(ς)Γ(ς)∫ξ0|(ξ−ϑ)ς−1|(MH1dH([η(ϑ)]ι,[γ(ϑ)]ι)+MH2dH([η(ϑ−δ)]ι,[γ(ϑ−δ)]ι))dϑ. |
Therefore,
d∞[Λη(ξ),Λγ(ξ)]=supι∈(0,1]dH([Λη(ξ)]ι,[Λγ(ξ)]ι)=supι∈(0,1](1−ςB(ς)MH1dH([η(ξ)]ι,[γ(ξ)]ι)+1−ςB(ς)MH2dH([η(ξ−δ)]ι,[γ(ξ−δ)]ι)+ςB(ς)Γ(ς)∫ξ0|(ξ−ϑ)ς−1|(MH1dH([η(ϑ)]ι,[γ(ϑ)]ι)+MH2dH([η(ϑ−δ)]ι,[γ(ϑ−δ)]ι))dϑ)≤1−ςB(ς)MH1supι∈(0,1]dH([η(ξ)]ι,[γ(ξ)]ι)+1−ςB(ς)MH2supι∈(0,1]dH([η(ξ−δ)]ι,[γ(ξ−δ)]ι)+ςB(ς)Γ(ς)∫ξ0|(ξ−ϑ)ς−1|(MH1supι∈(0,1]dH([η(ϑ)]ι,[γ(ϑ)]ι)+MH2supι∈(0,1]dH([η(ϑ−δ)]ι,[γ(ϑ−δ)]ι))dϑ≤1−ςB(ς)MH1d∞(η(ξ),γ(ξ))+1−ςB(ς)MH2d∞(η(ξ−δ),γ(ξ−δ))+ςB(ς)Γ(ς)∫ξ0|(ξ−ϑ)ς−1|(MH1d∞(η(ϑ),γ(ϑ))+MH2d∞(η(ϑ−δ),γ(ϑ−δ)))dϑ. |
Thus,
H1((Λη),(Λγ))=supξ∈[0,ξ1]d∞[Λη(ξ),Λγ(ξ)]=supξ∈[0,ξ1](1−ςB(ς)MH1d∞(η(ξ),γ(ξ))+1−ςB(ς)MH2d∞(η(ξ−δ),γ(ξ−δ))+ςB(ς)Γ(ς)∫ξ0|(ξ−ϑ)ς−1|(MH1d∞(η(ϑ),γ(ϑ))+MH2d∞(η(ϑ−δ),γ(ϑ−δ)))dϑ)≤1−ςB(ς)MH1supξ∈[0,ξ1]d∞(η(ξ),γ(ξ))+1−ςB(ς)MH2supξ∈[0,ξ1]d∞(η(ξ−δ),γ(ξ−δ))+ςB(ς)Γ(ς)∫ξ0|(ξ−ϑ)ς−1|(MH1supξ∈[0,ξ1]d∞(η(ϑ),γ(ϑ))+ MH2supξ∈[0,ξ1]d∞(η(ϑ−δ),γ(ϑ−δ)))dϑ≤1−ςB(ς)MH1H1(η,γ)+1−ςB(ς)MH2H1(η,γ)+ςB(ς)Γ(ς)(MH1+MH2)H1(η,γ)∫ξ0|(ξ−ϑ)ς−1|dϑ≤L1H1(η,γ). |
Case 3: For ξ∈(ξj,kj], j=1,2,⋯,n and η,γ∈PC(J;Kn),
(Λη)(ξ)=hj(ξ,η(ξ−j)),(Λγ)(ξ)=hj(ξ,γ(ξ−j)). |
Therefore,
dH([Λη(ξ)]ι,[Λγ(ξ)]ι)=dH([hj(ξ,η(ξ−j))]ι,[hj(ξ,γ(ξ−j)]ι)≤MhjdH([η(ξ−j)]ι,[γ(ξ−j)]ι). |
Thus,
d∞[Λη(ξ),Λγ(ξ)]=supι∈(0,1]dH([Λη(ξ)]ι,[Λγ(ξ)]ι)≤Mhjd∞(η(ξ−j),γ(ξ−j)). |
Hence,
H1((Λη),(Λγ))=supξ∈[ξj,kj]d∞[Λη(ξ),Λγ(ξ)]H1((Λη),(Λγ))≤MhjH1(η,γ). |
Case 4: For ξ∈(kj,ξj+1], j=1,2,⋯,n and η,γ∈PC(J;Kn),
(Λη)(ξ)=hj(kj,η(ξ−j))+1−ςB(ς)H(ξ,η(ξ),η(ξ−δ))+ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,η(ϑ),η(ϑ−δ))dϑ,(Λγ)(ξ)=hj(kj,γ(ξ−j))+1−ςB(ς)H(ξ,γ(ξ),γ(ξ−δ))+ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,γ(ϑ),γ(ϑ−δ))dϑ. |
Therefore,
dH([Λη(ξ)]ι,[Λγ(ξ)]ι) =dH([hj(kj,η(ξ−j))+1−ςB(ς)H(ξ,η(ξ),η(ξ−δ))+ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,η(ϑ),η(ϑ−δ))dϑ]ι,[hj(kj,γ(ξ−j))+1−ςB(ς)H(ξ,γ(ξ),γ(ξ−δ))+ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,γ(ϑ),γ(ϑ−δ))dϑ]ι) =dH([hj(kj,η(ξ−j))]ι+[1−ςB(ς)H(ξ,η(ξ),η(ξ−δ))]ι+[ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,η(ϑ),η(ϑ−δ))dϑ]ι, [hj(kj,γ(ξ−j))]ι+[1−ςB(ς)H(ξ,γ(ξ),γ(ξ−δ))]ι+[ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,γ(ϑ),γ(ϑ−δ))dϑ]ι) ≤dH([hj(kj,η(ξ−j))]ι,[hj(kj,γ(ξ−j))]ι)+ dH([1−ςB(ς)H(ξ,η(ξ),η(ξ−δ))]ι,[1−ςB(ς)H(ξ,γ(ξ),γ(ξ−δ))]ι)+ dH([ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,η(ϑ),η(ϑ−δ))dϑ]ι,[ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,γ(ϑ),γ(ϑ−δ))dϑ]ι) ≤dH([hj(kj,η(ξ−j))]ι,[hj(kj,γ(ξ−j))]ι)+1−ςB(ς)dH([H(ξ,η(ξ),η(ξ−δ))]ι,[H(ξ,γ(ξ),γ(ξ−δ))]ι)+ςB(ς)Γ(ς)∫ξkj|(ξ−ϑ)ς−1|dH([H(ϑ,η(ϑ),η(ϑ−δ))]ι,[H(ϑ,γ(ϑ),γ(ϑ−δ))]ι)dϑ ≤MhjdH([η(ξ−j)]ι,[γ(ξ−j)]ι)+1−ςB(ς)MH1dH([η(ξ)]ι,[γ(ξ)]ι)+1−ςB(ς)MH2dH([η(ξ−δ)]ι,[γ(ξ−δ)]ι)+ςB(ς)Γ(ς)∫ξkj|(ξ−ϑ)ς−1|(MH1dH([η(ϑ)]ι,[γ(ϑ)]ι)+MH2dH([η(ϑ−δ)]ι,[γ(ϑ−δ)]ι))dϑ. |
Therefore,
d∞[Λη(ξ),Λγ(ξ)]=supι∈(0,1]dH([Λη(ξ)]ι,[Λγ(ξ)]ι)≤Mhjsupι∈(0,1]dH([η(ξ−j)]ι,[γ(ξ−j)]ι)+1−ςB(ς)MH1supι∈(0,1]dH([η(ξ)]ι,[γ(ξ)]ι)+1−ςB(ς)MH2supι∈(0,1]dH([η(ξ−δ)]ι,[γ(ξ−δ)]ι)+ςB(ς)Γ(ς)∫ξkj|(ξ−ϑ)ς−1|(MH1supι∈(0,1]dH([η(ϑ)]ι,[γ(ϑ)]ι)+MH2supι∈(0,1]dH([η(ϑ−δ)]ι,[γ(ϑ−δ)]ι))dϑ≤Mhjd∞(η(ξ−j),γ(ξ−j))+1−ςB(ς)MH1d∞(η(ξ),γ(ξ))+1−ςB(ς)MH2d∞(η(ξ−δ),γ(ξ−δ))+ςB(ς)Γ(ς)∫ξkj|(ξ−ϑ)ς−1|(MH1d∞(η(ϑ),γ(ϑ))+MH2d∞(η(ϑ−δ),γ(ϑ−δ)))dϑ. |
Hence,
H1((Λη),(Λγ))=supξ∈[kj,ξj+1]d∞[Λη(ξ),Λγ(ξ)]=supξ∈[kj,ξj+1](Mhjd∞(η(ξ−j),γ(ξ−j))+1−ςB(ς)MH1d∞(η(ξ),γ(ξ))+1−ςB(ς)MH2d∞(η(ξ−δ),γ(ξ−δ))+ςB(ς)Γ(ς)∫ξkj|(ξ−ϑ)ς−1|(MH1d∞(η(ϑ),γ(ϑ))+MH2d∞(η(ϑ−δ),γ(ϑ−δ)))dϑ)=Mhjsupξ∈[kj,ξj+1]d∞(η(ξ−j),γ(ξ−j))+1−ςB(ς)MH1supξ∈[kj,ξj+1]d∞(η(ξ),γ(ξ))+1−ςB(ς)MH2supξ∈[kj,ξj+1]d∞(η(ξ−δ),γ(ξ−δ))+ςB(ς)Γ(ς)∫ξkj|(ξ−ϑ)ς−1|(MH1supξ∈[kj,ξj+1]d∞(η(ϑ),γ(ϑ))+MH2supξ∈[kj,ξj+1]d∞(η(ϑ−δ),γ(ϑ−δ)))dϑ≤MhjH1(η,γ)+1−ςB(ς)MH1H1(η,γ)+1−ςB(ς)MH2H1(η,γ)+ςB(ς)Γ(ς)(MH1+MH2)H1(η,γ)∫ξkj|(ξ−ϑ)ς−1|dϑ≤MhjH1(η,γ)+1−ςB(ς)(MH1+MH2)H1(η,γ)+ςB(ς)Γ(ς)(MH1+MH2)H1(η,γ)Tς≤(Mhj+1−ςB(ς)(MH1+MH2)+ςB(ς)Γ(ς)(MH1+MH2)Tς)H1(η,γ)≤L2jH1(η,γ). |
From the above four cases, we conclude that
H1((Λη),(Λγ))=supξ∈Jd∞[Λη(ξ),Λγ(ξ)]≤LH1(η,γ). | (3.1) |
Thus, for sufficiently small T, Λ is a strict contraction mapping and hence by Banach fixed point theorem Λ has a unique fixed point which is the solution of system (1.1). The Theorem 3.1 is existence of local solution because our mapping Λ:PC(J:Kn)→PC(J:Kn) is not strict contraction for all values of T. In Eq (3.1), we can see that a constant L<1 if T is sufficiently small. Thus, we can say that our solution exists locally.
To show the existence of global solution, we need the Gronwall's inequality:
Lemma 4.1. [37] (Gronwall's inequality) Let F(ξ,k)≥0 be a continuous function on 0≤k<ξ≤T. If, there are positive constant a,b,ς such that
F(ξ,k)≤a+b∫ξk(ξ−κ)ς−1F(κ,k)dκ, for 0≤k<ξ≤T, |
then there is a constant C such that F(ξ,k)≤C for 0≤k<ξ≤T.
For the convenience, we set the following notations
C1=max1≤j≤n{a1,c1j,a2j}, C2=max1≤j≤n{b1,b2j},
C3=max−δ≤ξ≤T{C1exp(C2∫T−δ|(ξ−ϑ)ς−1|dϑ)},
a1=(1L3A1+1L31−ςB(ς)K(T)+1L3ςB(ς)Γ(ς)K(T)Tς), L3=(1−1−ςB(ς)2K(T)), A1=d∞(Ψ(0),0),
c1j=11−Mhj, a2j=(1L4j1−ςB(ς)K(T)+1L4jςB(ς)Γ(ς)K(T)(T)ς), b1=(1L3ςB(ς)Γ(ς)2K(T)),
L4j=(1−Mhj−1−ςB(ς)2K(T)), b2j=(1L4jςB(ς)Γ(ς)2K(T)), j=1,2,⋯,n.
Theorem 4.1. Let the function H:(kj,ξj+1]×Kn×Kn→Kn satisfies the assumptions (B1) and (B2) and there exists a real valued function K(ξ) which is continuous and non decreasing such that
dH([H(ξ,η1,η2)]ι,[0]ι)≤K(ξ)(1+dH([η1]ι,[0]ι)+dH([η2]ι,[0]ι)), ∀ η1, η2∈Kn. |
Then, the Eq (1.1) has a unique solution P which exists for all ξ∈[−δ,T].
Proof. By Theorem 3.1, we can continue the solution of system (1.1) as long as ‖P‖ stays bounded. Therefore, we need to show that if P exists on [−δ,T), then it is bounded as ξ↑T. Also, the solution of system (1.1) is given by
P(ξ)={Ψ(ξ),ξ∈[−δ,0),Ψ(0)+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ))+ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ,∀ξ∈[0,ξ1],hj(ξ,P(ξ−j)), ξ∈(ξj,kj],j=1,2,⋯,n,hj(kj,P(ξ−j))+ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ)),∀ξ∈(kj,ξj+1],j=1,2,⋯,n. |
The proof of this theorem is divided into following four cases:
Case 1: For ξ∈[−δ,0), we have P(ξ)=Ψ(ξ).
In this case, we get
H1(P,0)≤0. |
Case 2: For ξ∈[0,ξ1],
P(ξ)=Ψ(0)+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ))+ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ. |
Now, we have
dH([P(ξ)]ι,[0]ι)=dH([Ψ(0)+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ))+ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ]ι,[0]ι)=dH([Ψ(0)]ι+[1−ςB(ς)H(ξ,P(ξ),P(ξ−δ))]ι+[ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ]ι,[0]ι)=dH([Ψ(0)]ι,[0]ι)+dH([1−ςB(ς)H(ξ,P(ξ),P(ξ−δ))]ι,[0]ι)+dH([ςB(ς)Γ(ς)∫ξ0(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ]ι,[0]ι)≤dH([Ψ(0)]ι,[0]ι)+1−ςB(ς)dH([H(ξ,P(ξ),P(ξ−δ))]ι,[0]ι)+ςB(ς)Γ(ς)∫ξ0|(ξ−ϑ)ς−1|dH([H(ϑ,P(ϑ),P(ϑ−δ))]ι,[0]ι)dϑ≤dH([Ψ(0)]ι,[0]ι)+1−ςB(ς)K(T)(1+dH([P(ξ)]ι,[0]ι)+dH([P(ξ−δ)]ι,[0]ι))+ςB(ς)Γ(ς)∫ξ0|(ξ−ϑ)ς−1|K(T)(1+dH([P(ϑ)]ι,[0]ι)+dH([P(ϑ−δ)]ι,[0]ι))dϑ. |
Therefore,
d∞[P(ξ),0]=supι∈(0,1]dH([P(ξ)]ι,[0]ι)≤A1+1−ςB(ς)K(T)(1+d∞(P(ξ),0)+d∞(P(ξ−δ),0))+ςB(ς)Γ(ς)∫ξ0|(ξ−ϑ)ς−1|K(T)(1+d∞(P(ϑ),0)+d∞(P(ϑ−δ),0))dϑ. |
Thus,
H1(P,0)=supξ∈[0,ξ1]d∞(P(ξ),0)≤A1+1−ςB(ς)K(T)(1+2H1(P,0))+ςB(ς)Γ(ς)∫ξ0|(ξ−ϑ)ς−1|K(T)(1+2H1(P,0))dϑ≤A1+1−ςB(ς)K(T)+1−ςB(ς)2K(ξ)H1(P,0)+ςB(ς)Γ(ς)K(T)∫ξ0|(ξ−ϑ)ς−1|dϑ+ςB(ς)Γ(ς)2K(T)∫ξ0|(ξ−ϑ)ς−1|H1(P,0)dϑ(1−1−ςB(ς)2K(ξ))H1(P,0)≤A1+1−ςB(ς)K(T)+ςB(ς)Γ(ς)K(T)Tς+ςB(ς)Γ(ς)2K(T)∫ξ0|(ξ−ϑ)ς−1|H1(P,0)dϑH1(P,0)≤1L3A1+1L31−ςB(ς)K(T)+1L3ςB(ς)Γ(ς)K(T)Tς+1L3ςB(ς)Γ(ς)2K(T)∫ξ0|(ξ−ϑ)ς−1|H1(P,0)dϑ≤a1+b1∫ξ0|(ξ−ϑ)ς−1|H1(P,0)dϑ. |
Case 3: Similarly, for ξ∈(ξj,kj], j=1,2,⋯,n and P(ξ)=hj(ξ,P(ξ−j)),
dH([P(ξ)]ι,[0]ι)=dH([hj(ξ,P(ξ−j))]ι,[0]ι)≤MhjdH([P(ξ−j)]ι,[0]ι). |
Therefore,
d∞[P(ξ),0]=supι∈(0,1]dH([P(ξ)]ι,[0]ι)≤Mhjd∞(P(ξ−j),0). |
Thus,
H1(P,0)=sup[ξj,kj]d∞[P(ξ),0]H1(P,0)≤MhjH1(P,0)H1(P,0)≤11−Mhj,H1(P,0)≤c1j. |
Case 4: For ξ∈(kj,ξj+1], j=1,2,⋯,n, we have
P(ξ)=hj(kj,P(ξ−j))+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ))+ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ. |
Now, we have
dH([P(ξ)]ι,[0]ι)=dH([hj(kj,P(ξ−j))+1−ςB(ς)H(ξ,P(ξ),P(ξ−δ))+ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ]ι,[0]ι)=dH([hj(kj,P(ξ−j))]ι+[1−ςB(ς)H(ξ,P(ξ),P(ξ−δ))]ι +[ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ]ι,[0]ι)≤dH([hj(kj,P(ξ−j))]ι,[0]ι)+dH([1−ςB(ς)H(ξ,P(ξ),P(ξ−δ))]ι,[0]ι)+ dH([ςB(ς)Γ(ς)∫ξkj(ξ−ϑ)ς−1H(ϑ,P(ϑ),P(ϑ−δ))dϑ]ι,[0]ι)≤dH([hj(kj,P(ξ−j))]ι,[0]ι)+1−ςB(ς)dH([H(ξ,P(ξ),P(ξ−δ))]ι,[0]ι)+ςB(ς)Γ(ς)∫ξkj|(ξ−ϑ)ς−1|dH([H(ϑ,P(ϑ),P(ϑ−δ))]ι,[0]ι)dϑ≤MhjdH([P(ξ−j)]ι,[0]ι)+1−ςB(ς)K(T)(1+dH([P(ξ)]ι,[0]ι)+dH([P(ξ−δ)]ι,[0]ι))+ςB(ς)Γ(ς)∫ξkj|(ξ−ϑ)ς−1|K(T)(1+dH([P(ϑ)]ι,[0]ι)+dH([P(ϑ−δ)]ι,[0]ι))dϑ. |
Therefore,
d∞[P(ξ),0]=supι∈(0,1]dH([P(ξ)]ι,[0]ι)≤Mhjd∞(P(ξ−j),0)+1−ςB(ς)K(T)(1+d∞(P(ξ),0)+d∞(P(ξ−δ),0))+ςB(ς)Γ(ς)∫ξkj|(ξ−ϑ)ς−1|K(T)(1+d∞(P(ϑ),0)+d∞(P(ϑ−δ),0))dϑ. |
Thus,
H1(P,0)=supξ∈[kj,ξj+1]d∞[P(ξ),0]≤MhjH1(P,0)+1−ςB(ς)K(T)(1+2H1(P,0))+ςB(ς)Γ(ς)∫ξkj|(ξ−ϑ)ς−1|K(T)(1+2H1(P,0))dϑ≤MhjH1(P,0)+1−ςB(ς)K(T)+1−ςB(ς)2K(ξ)H1(P,0))+ςB(ς)Γ(ς)K(T)∫ξkj|(ξ−ϑ)ς−1|dϑ+ςB(ς)Γ(ς)2K(T)∫ξkj|(ξ−ϑ)ς−1|H1(P,0))dϑL4jH1(P,0)≤1−ςB(ς)K(T)+ςB(ς)Γ(ς)K(T)(T)ς+ςB(ς)Γ(ς)2K(T)∫ξkj|(ξ−ϑ)ς−1|H1(P,0))dϑH1(P,0)≤1L4j1−ςB(ς)K(T)+1L4jςB(ς)Γ(ς)K(T)(T)ς+1L4jςB(ς)Γ(ς)2K(T)∫ξkj|(ξ−ϑ)ς−1|H1(P,0))dϑ≤a2j+b2j∫ξkj|(ξ−ϑ)ς−1|H1(P,0)dϑ. |
From the above four cases, we conclude that, for ξ∈[−δ,T]
H1(P,0)≤C1+C2∫T−δ|(ξ−ϑ)ς−1|H1(P,0)dϑ. |
So that,
H1(P,0)≤C1exp{C2∫T−δ|(ξ−ϑ)ς−1|dϑ}≤C3. |
Thus, H1(P,0)=‖P‖≤C3. Hence, from Lemma 4.1, P is bounded. Therefore, we can extend our solution to the whole interval [−δ,T]. Thus, our solution is global. For more details, please see[37]).
Remark 5. By using the above argument, we can prove that the system (1.1) has atleast one solution under the following weak assumptions
(A1) Function H:(kj,ξj+1]×Kn×Kn→Kn, j=0,1,⋯,n, is continuous and there exists a positive constant MH>0 such that
|H(ξ,η1,η2)|≤MH(1+|η1|+|η2|),∀ ξ∈(kj,ξj+1], η1, η2∈Kn. |
(A2) Functions hj:(ξj,kj]×Kn→Kn, j=1,2,⋯,n are continuous and there exists a positive constants Mj>0 such that
|hj(ξ,η1)|≤Mj(1+|η1|), ∀ ξ∈(ξj,kj], η1∈Kn. |
We consider the following retarded fractional differential system with non-instantaneous impulsive condition
ABC 0D12ξP(ξ)=ˉ2ξP2(ξ)+ˉ2ξ2P2(ξ−12),ξ∈(0,1]∪(1.5,2],P(ξ)=sin(jξ)ejξP(ξ−j), ξ∈(1,1.5],j=1,P(ξ)=Ψ(ξ)=ξ+1, ξ∈[−12,0]. | (6.1) |
Here, we have ς=12, ξ∈[−12,2], 0=k0<ξ1=1<k1=1.5<ξ2=2=T, H(ξ,P(ξ),P(ξ−δ))=ˉ2ξP2(ξ)+ˉ2ξ2P2(ξ−12) and impulsive function hj(ξ,P(ξ−j))=sin(jξ)ejξP(ξ−j), j=1.
The ι-level of fuzzy number ˉ2 is [2]ι=[ι+1,3−ι], ∀ ι∈[0,1]. Then, the ι-level set of H(ξ,P(ξ),P(ξ−δ)) is
[H(ξ,P(ξ),P(ξ−δ))]ι=[ˉ2ξP2(ξ)+ˉ2P2(ξ−12)]ι=ξ[(ι+1)(Pιq(ξ))2,(3−ι)(Pιr(ξ))2]+ξ2[(ι+1)(Pιq(ξ−12))2,(3−ι)(Pιr(ξ−12))2]. |
Now, we have
dH([H(ξ,η(ξ),η(ξ−δ))]ι,[H(ξ,γ(ξ),γ(ξ−δ))]ι)=dH{((ι+1)ξ(ηιq(ξ))2,(3−ι)ξ(ηιr(ξ))2+ξ2(ι+1)(ηιq(ξ−12))2,ξ2(3−ι)(ηιr(ξ−12))2),((ι+1)ξ(γιq(ξ))2,(3−ι)ξ(γιr(ξ))2+ξ2(ι+1)(γιq)(ξ−12))2,ξ2(3−ι)(γιr(ξ−12))2)}=dH(ξ[(ι+1)(ηιq(ξ))2,(3−ι)(ηιr(ξ))2],ξ[(ι+1)(γιq(ξ))2,(3−ι)(γιr(ξ))2])+dH([ξ2(ι+1)(ηιq(ξ−12))2,ξ2(3−ι)(ηιr(ξ−12))2],[ξ2(ι+1)(γιq(ξ−12))2,ξ2(3−ι)(γιr(ξ−12))2])≤max{|(ι+1)ξ(ηιq(ξ))2−(ι+1)ξ(γιq(ξ))2|,|(3−ι)ξ(ηιr(ξ))2−(3−ι)ξ(γιr(ξ))2|}+max{|(ι+1)ξ2(ηιq(ξ−12))2−ξ2(ι+1)(γιq(ξ−12))2|,|(3−ι)ξ2(ηιr(ξ−12))2−ξ2(3−ι)(γιr(ξ−12))2|}≤max{(ι+1)ξ|(ηιq(ξ))2−(γιq(ξ))2|,(3−ι)ξ|(ηιr(ξ))2−(γιr(ξ))2|}+max{(ι+1)ξ2|(ηιq(ξ−12))2−(γιq(ξ−12))2|,(3−ι)ξ2|(ηιr(ξ−12))2−(γιr(ξ−12))2|}≤T(3−ι)max{|ηιq(ξ)−γιq(ξ)||ηιq(ξ)+γιq(ξ)|,|ηιr(ξ)−γιr(ξ)||ηιr(ξ)+γιr(ξ)|}+T2(3−ι)max{|ηιq(ξ−12)−γιq(ξ−12)||ηιq(ξ−12)+γιq(ξ−12)|,|ηιr(ξ−12)−γιr(ξ−12)||ηιr(ξ−12)+γιr(ξ−12)|}≤(3−ι)Tmax−12≤ξ≤2{|ηιq(ξ)+γιq(ξ)|} dH([η(ξ)]ι,[γ(ξ)]ι)+T2(3−ι)max−12≤ξ≤2{|ηιr(ξ−12)+γιr(ξ−12)|}dH([η(ξ−12)]ι,[γ(ξ−12)]ι)≤c1 dH([η(ξ)]ι,[γ(ξ)]ι)+c2dH([η(ξ−12)]ι,[γ(ξ−12)]ι), |
where c1=(3−ι)Tmax−12≤ξ≤2{|ηιq(ξ)+γιq(ξ)|}, c2=(3−ι)T2max−12≤ξ≤2{|ηιr(ξ−12)+γιr(ξ−12)|} satisfies the condition (B1).
Now, the ι-level set of fuzzy number ˉ1 is [ˉ1]ι=[ι,2−ι], ∀ ι∈[0,1] and ι-level set of impulsive function hj(ξ,P(ξ−j)) is
[hj(ξ,P(ξ−j))]ι=[sin(jξ)ejξP(ξ−j)]ι=sin(jξ)ejξ[(ι,2−ι)[P(ξ−j)]ι]=sin(jξ)ejξ[ιPιq(ξ−j),(2−ι)Pιr(ξ−j)]. |
Therefore,
dH([hj(ξ,η(ξ−j))]ι,[hj(ξ,γ(ξ−j))]ι)=dH(sin(jξ)ejξ[ιηιq(ξ−j),(2−ι)ηιr(ξ−j)],sin(jξ)ejξ[ιγιq(ξ−j),(2−ι)γιr(ξ−j)])=dH(sin(jξ)ejξ[ιηιq(ξ−j),(2−ι)ηιr(ξ−j)],sin(jξ)ejξ[ιγιq(ξ−j),(2−ι)γιr(ξ−j)])≤max{ιsin(jξ)ejξ|ηιq(ξ−j)−γιq(ξ−j)|,(2−ι)sin(jξ)ejξ|ηιr(ξ−j)−γιr(ξ−j)|}≤(2−ι)sin(jT)ejTmax{|ηιq(ξ−j)−γιq(ξ−j)|,|ηιr(ξ−j)−γιr(ξ−j)|}≤(2−ι)sin(jT)ejTdH([η(ξ−j)]ι,[γ(ξ−j)]ι)≤c3dH([η(ξ−j)]ι,[γ(ξ−j)]ι), |
where c3=(2−ι)sin(jT)ejT, j=1, satisfies the condition (B2).
Thus, all the conditions of Theorem 3.1 are fulfilled. Hence, system (5.1) has a unique fuzzy solution.
In this work, we have considered the fractional order fuzzy delay differential system with non-instantaneous impulses. The main aim of this work is to establish the existence of local and global solutions to the considered system. In Section 3, we have studied the existence of a local solution and in Section 4, we have extended the local solution of Section 3 to a global solution. Fuzzy set theory, Banach fixed point theorem and non-linear function analysis are the major tools to establish these results. In Section 5, an example is given to validate obtained outcomes.
The researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project. We are also thankful to the associate editor and anonymous reviewers for their constructive comments and suggestions which help us to improve the manuscript.
The authors declare no conflict of interest.
[1] | M. Benchohra, J. Henderson, S. Ntouyas, Impulsive differential equations and inclusions, New York: Hindawi Pub. Corp., 2006. doi: 10.1155/9789775945501. |
[2] | V. Lakshmikantham, P. S. Simeonov, Theory of impulsive differential equations, World scientific, 1989. doi: 10.1142/0906. |
[3] | M. Li, C. Kou, Existence results for second-order impulsive neutral functional differential equations with nonlocal conditions, Discrete Dyn. Nat. Soc., 2009 (2009), 641368. doi: 10.1155/2009/641368. |
[4] | V. Kumar, M. Malik, Controllability results of fractional integro-differential equation with non-instantaneous impulses on time scales, IMA J. Math. Control Inf., 38 (2021), 211–231. doi: 10.1093/imamci/dnaa008. |
[5] | K. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974. |
[6] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, New York: Academic Press, 1998. |
[7] | K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. doi: 10.1006/jmaa.2000.7194. |
[8] | D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609–625. doi: 10.1006/jmaa.1996.0456. |
[9] | M. Muslim, Existence and approximation of solutions to fractional differential equations, Math. Comput. Model., 49 (2009), 1164–1172. doi: 10.1016/j.mcm.2008.07.013. |
[10] | D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci., 59 (2018), 444–462. doi: 10.1016/j.cnsns.2017.12.003. |
[11] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. doi: 10.12785/pfda/010201. |
[12] | B. Ghanbari, A. Atangana, A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing, Physica A, 542 (2020), 123516. doi: 10.1016/j.physa.2019.123516. |
[13] | M. R. Ammi, D. F. Torres, Optimal control of a nonlocal thermistor problem with ABC fractional time derivatives, Comput. Math. Appl., 78 (2019), 1507–1516. doi: 10.1016/j.camwa.2019.03.043. |
[14] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 2006. |
[15] | S. Salahshour, A. Ahmadian, F. Ismail, D. Baleanu, A fractional derivative with non-singular kernel for interval-valued functions under uncertainty, Optik, 130 (2017), 273–286. doi: 10.1016/j.ijleo.2016.10.044. |
[16] | L. A. Zadeh, Fuzzy sets, fuzzy logic, and fuzzy systems: Selected Papers by Lotfi A Zadeh, World Scientific, 1996. doi: 10.1142/2895. |
[17] | O. Kaleva, Fuzzy differential equations, Fuzzy Set. Syst., 24 (1987), 301–317. doi: 10.1016/0165-0114(87)90029-7. |
[18] | P. Balasubramaniam, S. Muralisankar, Existence and uniqueness of fuzzy solution for semilinear fuzzy integrodifferential equations with nonlocal conditions, Comput. Math. Appl., 47 (2004), 1115–1122. doi: 10.1016/S0898-1221(04)90091-0. |
[19] | Y. C. Kwun, M. J. Kim, B. Y. Lee, J. H. Park, Existence of solutions for the semilinear fuzzy integrodifferential equations using by successive iteration, J. Korean Inst. Intell. Syst., 18 (2008), 543–548. doi: 10.5391/JKIIS.2008.18.4.543. |
[20] | A. Kumar, M. Malik, K. S. Nisar, Existence and total controllability results of fuzzy delay differential equation with non-instantaneous impulses, Alex. Eng. J., 60 (2021), 6001–6012. doi: 10.1016/j.aej.2021.04.017. |
[21] | S. Seikkala, On the fuzzy initial value problem, Fuzzy Set. Syst., 24 (1987), 319–330. doi: 10.1016/0165-0114(87)90030-3. |
[22] | M. Belmekki, J. Nieto, R. Rodriguez-Lopez, Existence of periodic solution for a nonlinear fractional differential equation, Bound. Value Probl., 2009 (2009), 324561. doi: 10.1155/2009/324561. |
[23] | G. M. Mophou, Existence and uniqueness of mild solutions to impulsive fractional differential equations, Nonlinear Anal. Theor., 72 (2010), 1604–1615. doi: 10.1016/j.na.2009.08.046. |
[24] | T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Comput., 16 (2012), 297–302. doi: 10.1007/s00500-011-0743-y. |
[25] | S. Arshad, On existence and uniqueness of solution of fuzzy fractional differential equations, Iran. J. Fuzzy Syst., 10 (2013), 137–151. doi: 10.22111/IJFS.2013.1336. |
[26] | B. Radhakrishnana, A. Mohanrajb, Existence of solutions for nonlinear fuzzy impulsive integrodifferential equations, Malaya Journal of Matematik, Special Issue (2013), 1–10. |
[27] | W. Witayakiattilerd, Nonlinear fuzzy differential equation with time delay and optimal control problem, Abstr. Appl. Anal., 2015 (2015), 659072. doi: 10.1155/2015/659072. |
[28] | R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. Torres, Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3–29. doi: 10.1016/j.cam.2017.09.039. |
[29] | R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal. Theor., 72 (2010), 2859–2862. doi: 10.1016/j.na.2009.11.029. |
[30] | T. Allahviranloo, B. Ghanbari, On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach, Chaos Soliton. Fract., 130 (2020), 109397. doi: 10.1016/j.chaos.2019.109397. |
[31] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. |
[32] | B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Set. Syst., 151 (2005), 581–599. doi: 10.1016/j.fss.2004.08.001. |
[33] | M. Mizumoto, K. Tanaka, Some properties of fuzzy sets of type 2, Information and Control, 31 (1976), 312–340. doi: 10.1016/S0019-9958(76)80011-3. |
[34] | P. Diamond, P. E. Kloeden, Metric spaces of fuzzy sets: theory and applications, World scientific, 1994. doi: 10.1142/2326. |
[35] | A. Harir, S. Melliani, L. S. Chadli, Existence and uniqueness of a fuzzy solution for some fuzzy neutral partial differential equation with nonlocal condition, IJMTT, 65 (2019), 102–108. doi: 10.14445/22315373/IJMTT-V65I2P517. |
[36] | H. Khan, A. Khan, F. Jarad, A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Soliton. Fract., 131 (2020), 109477. doi: 10.1016/j.chaos.2019.109477. |
[37] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York, NY: Springer, 2012. |
1. | Mudassir Shams, Nasreen Kausar, Praveen Agarwal, Shaher Momani, Mohd Asif Shah, Highly efficient numerical scheme for solving fuzzy system of linear and non-linear equations with application in differential equations, 2022, 30, 2769-0911, 777, 10.1080/27690911.2022.2147165 | |
2. | Djalal Boucenna, Amar Chidouh, Delfim F. M. Torres, Existence Results for a Multipoint Fractional Boundary Value Problem in the Fractional Derivative Banach Space, 2022, 11, 2075-1680, 295, 10.3390/axioms11060295 | |
3. | Mawia Osman, Yonghui Xia, Omer Abdalrhman Omer, Ahmed Hamoud, On the Fuzzy Solution of Linear-Nonlinear Partial Differential Equations, 2022, 10, 2227-7390, 2295, 10.3390/math10132295 | |
4. | Santosh Ruhil, Muslim Malik, Inverse problem for the Atangana–Baleanu fractional differential equation, 2023, 0, 0928-0219, 10.1515/jiip-2022-0025 | |
5. | Manjitha Mani Shalini, Nazek Alessa, Banupriya Kandasamy, Karuppusamy Loganathan, Maheswari Rangasamy, On ν-Level Interval of Fuzzy Set for Fractional Order Neutral Impulsive Stochastic Differential System, 2023, 11, 2227-7390, 1990, 10.3390/math11091990 | |
6. | Manjitha Mani Shalini, Banupriya Kandasamy, Maheswari Rangasamy, Prasantha Bharathi Dhandapani, Anwar Zeb, Ilyas Khan, Abdoalrahman S.A. Omer, Feasibility of variable delay fuzzy fractional stochastic differential system with non-instantaneous impulses, 2025, 33, 2769-0911, 10.1080/27690911.2025.2458612 |