Processing math: 100%
Research article

Study of the Atangana-Baleanu-Caputo type fractional system with a generalized Mittag-Leffler kernel

  • Correction on: AIMS Mathematics 7: 20543-20544
  • Received: 08 September 2021 Accepted: 19 October 2021 Published: 05 November 2021
  • MSC : 34A08, 34A12, 34B15, 47H10

  • We devote our interest in this work to investigate the sufficient conditions for the existence, uniqueness, and Ulam-Hyers stability of solutions for a new fractional system in the frame of Atangana-Baleanu-Caputo fractional operator with multi-parameters Mittag-Leffler kernels investigated lately by Abdeljawad (Chaos: An Interdisciplinary J. Nonlinear Sci. Vol. 29, no. 2, (2019): 023102). Moreover, the continuous dependence of solution and δ-approximate solutions are analyzed to such a system. Our approach is based on Banach's and Schaefer's fixed point theorems and some mathematical techniques. In order to illustrate the validity of our results, an example is given.

    Citation: Mdi Begum Jeelani, Abeer S. Alnahdi, Mohammed A. Almalahi, Mohammed S. Abdo, Hanan A. Wahash, M. A. Abdelkawy. Study of the Atangana-Baleanu-Caputo type fractional system with a generalized Mittag-Leffler kernel[J]. AIMS Mathematics, 2022, 7(2): 2001-2018. doi: 10.3934/math.2022115

    Related Papers:

    [1] Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052
    [2] Sabri T. M. Thabet, Reem M. Alraimy, Imed Kedim, Aiman Mukheimer, Thabet Abdeljawad . Exploring the solutions of a financial bubble model via a new fractional derivative. AIMS Mathematics, 2025, 10(4): 8587-8614. doi: 10.3934/math.2025394
    [3] Bahar Acay, Ramazan Ozarslan, Erdal Bas . Fractional physical models based on falling body problem. AIMS Mathematics, 2020, 5(3): 2608-2628. doi: 10.3934/math.2020170
    [4] Ahu Ercan . Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels. AIMS Mathematics, 2022, 7(7): 13325-13343. doi: 10.3934/math.2022736
    [5] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [6] Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216
    [7] Anumanthappa Ganesh, Swaminathan Deepa, Dumitru Baleanu, Shyam Sundar Santra, Osama Moaaz, Vediyappan Govindan, Rifaqat Ali . Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform. AIMS Mathematics, 2022, 7(2): 1791-1810. doi: 10.3934/math.2022103
    [8] Gauhar Rahman, Iyad Suwan, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Muhammad Samraiz, Asad Ali . A basic study of a fractional integral operator with extended Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(11): 12757-12770. doi: 10.3934/math.2021736
    [9] Muhammad Sajid Iqbal, Nauman Ahmed, Ali Akgül, Ali Raza, Muhammad Shahzad, Zafar Iqbal, Muhammad Rafiq, Fahd Jarad . Analysis of the fractional diarrhea model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(7): 13000-13018. doi: 10.3934/math.2022720
    [10] Mohamed Houas, Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence and stability results of pantograph equation with three sequential fractional derivatives. AIMS Mathematics, 2023, 8(3): 5216-5232. doi: 10.3934/math.2023262
  • We devote our interest in this work to investigate the sufficient conditions for the existence, uniqueness, and Ulam-Hyers stability of solutions for a new fractional system in the frame of Atangana-Baleanu-Caputo fractional operator with multi-parameters Mittag-Leffler kernels investigated lately by Abdeljawad (Chaos: An Interdisciplinary J. Nonlinear Sci. Vol. 29, no. 2, (2019): 023102). Moreover, the continuous dependence of solution and δ-approximate solutions are analyzed to such a system. Our approach is based on Banach's and Schaefer's fixed point theorems and some mathematical techniques. In order to illustrate the validity of our results, an example is given.



    Fractional differential equations have a profound physical background and rich theoretical connotations and have been particularly eye-catching in recent years. Several-order differential equations refer to equations that contain fractional derivatives or fractional integrals. Fractional order derivatives and integrals have a wide range of applications in many disciplines such as physics, biology, chemistry, etc., such as power with chaotic dynamic behavior systems, dynamics of quasi-chaotic systems, and complex materials or porous media, random walks with memory, etc. For more information see [1-3]. The approximate controllability of the fractional system can be found in [4-10]. Recently, some researchers have realized the importance of finding new fractional derivatives (FDs) with different singular or nonsingular kernels to meet the need to modeling more real-world problems in different fields of science and engineering. For instance, Caputo and Fabrizio [11] studied a new kind of FDs in the exponential kernel. Atangana and Baleanu (AB) [12] investigated a new type and interesting FD with Mittag-Leffler kernels. Abdeljawad in [13] extended this type for higher arbitrary order and formulated their associated integral operators. But the corresponding integral operators of AB derivative do not have a semigroup property, which makes dealing with them theoretically or mathematically somewhat complicated. Very recently, Abdeljawad in [14,15], introduced a fractional derivative with nonsingular kernel in Atangana-Baleanu-Caputo (ABC) settings with multi-parametered Mittag-Leffler (ML) function and study their semigroup properties, its discrete version in [16]. This diversity of FDs has made the topic of fractional calculus attractive and allows researchers to choose the appropriate operator to obtain better results. For some theoretical works on ABC type FDEs, we refer the reader to the series papers [17-20]. On the other hand side, the study of systems involving FDEs is also important as such systems occur in various problems of applied nature. For some theoretical works on systems of FDEs, we refer to series of papers [21-23].

    The topic of stability of systems is one of the most important qualitative characteristics of a solution, for more details about the stability of systems see [24-27].

    Abdeljawad et al. [28] studied qualitative analyses of some logistic models in the settings of ABC fractional operators with multi-parameter ML kernels, described as follows:

    {ABCθ0Dp,q,vz(θ)=mz(θ)(1z(θ)),θ>θ0,z(θ0)=z0R,

    and

    {ABCθ0Dp,q,vz(θ)=mz(θ)(1z(θ)l)(z(θ)n),θ>θ0,z(θ0)=z0R,

    where ABCθ0Dp,q,v is the generalized left ABC FD of order p(0,1],q,v>0 and m,n,l>0.

    Motivated by the recent advancements of ABC operator, its applications, and by the above works, the aim of the current work is to investigate the existence, uniqueness, stability, and continuous dependence results, and discuss the δ-approximate solutions for a new model in the frame of generalized ABC fractional operators with multi-parameters ML kernels described as follows:

    {ABC0Dp,q,vz1(θ)=F1(θ,z1(θ),....,zn(θ)),ABC0Dp,q,vz2(θ)=F2(θ,z1(θ),....,zn(θ)),ABC0Dp,q,vzn(θ)=Fn(θ,z1(θ),....,zn(θ)),zk(0)=z0kR,k=1,2,......,n, (1.1)

    where ABC0Dp,q,v is the generalized ABC FD of order p(0,1], q,v>0. FkC([0,T],R+) and satisfies some conditions described later in our analysis. Many researchers in different fields of science and engineering used ABC FD with one parameter ML kernel, but their corresponding AB integral operators do not have a semigroup property, which makes dealing with them theoretically or mathematically somewhat complicated. Nevertheless, in this work, we use a new operator containing interesting kernels, we believe that the qualitative properties of solutions for FDEs should be studied via this operator. This work aims to investigate some properties of solutions for the proposed model via a nonsingular FD in ABC settings with multi-parameter ML kernel introduced lately by [14,15]. Due to the fractional derivative used in this work have semigroup property and recently proposed, the results obtained in this work are new and open the door for the researchers to study more real-world problems in different fields.

    Notice that, the considered system is investigated under the generalized ML law. In the case of the ABC fractional operator, the requirement of the vanishing condition of the right hand side of the dynamic system to fulfill the initial data needs recuperation on the modeled population. However, the nature of the generalized ML kernel will enable the emancipation of any restrictions on the initial data.

    The structure of our paper is as follows. In Section 2, we present notations, auxiliary lemmas and some basic definitions that are needed for our analysis. In Section 3, we discuss the existence and uniqueness results for the model (1.1). Ulam-Hyers stability results for the model (1.1) are discussed in Section 4. In Section 5, we study the continuous dependence of solution and δ-approximate solutions for the model (1.1). In Section 6, we provide an example to illustrate the validity of our results. The last section is devoted to concluding remarks about our results.

    In order to achieve our main purposes, we present here some definitions and basic auxiliary results that are required throughout our paper. Let J=[0,T]R+ and X={z(θ):z(θ)C(J,R+)} be a space with the norm z=sup{|z(θ)|:θJ}. Clearly, (X,) is a Banach space. For our analysis, we need defined the product space G:=X×X×X×.......Xntime. Undoubtedly that G is also a Banach space with the following norm

    (z1,z2,.........,zn)=nk=1zk.

    For 0p<1,q,v>0, we defined the space

    Cp,q,v(J,R+)={z(θ)X:ABC0Dp,q,vz(θ)X}.

    Definition 2.1. [3] Let λR and p,β,v,zC with Re(p)>0, the generalized ML functions Evp,β(λ,z) are defined by

    Evp,β(λ,z)=k=0zkp+β1(v)kΓ(αk+β)k!. (2.1)

    In the case of β=v=1, Eq (2.1) reduced to

    E¯p(λ,z)=E1p,1(λ,z)=k=0λkzkpΓ(pk+1),

    where (v)k=v(v+1).......(v+k1). Since (1)k=k!, then E1p,β(λ,z)=Ep,β(λ,z).

    Definition 2.2. [14,15] Let p(0,1), Re(q)>0,vR and λ=p1p. The generalized left ABC-FD and ABR-FD of a function z are defined by

    ABC0Dp,q,vz(θ)=B(p)1pθ0Evp,q(λ,θs)z(s)ds,θ0,

    and

    ABR0Dp,q,vz(θ)=B(p)1pddθθ0Evp,q(λ,θs)z(s)ds,θ0,

    repspectively, where B(p)>0 is a normalizing function with B(0)=B(1)=1 and Evp,q(λ,θs) is generalized ML functions.

    Definition 2.3. [15] Let p(0,1],q,v>0 and z(θ) be a function defined on [0,T]. Then, the left generalized AB fractional integral AB0Ip,q,vz(θ) is given by

    AB0Ip,q,vz(θ)=vi=0(vi)piB(p)(1p)i1Ipiq+10z(s)ds.

    If z(θ) is continuous function at 0 and ABR0Dp,q,vz(θ) exists, then, we have from [14] that

    AB0Ip,q,v ABR0Dp,q,vz(θ)=z(θ),

    and

    ABR0Dp,q,v AB0Ip,q,v z(θ)=z(θ).

    Lemma 2.4. [14,15] For p(0,1),q>0, vC and λ=p1p, we have

    AB0Ip,q,vABC0Dp,q,vz(θ)=z(θ)z(0).

    Lemma 2.5. [14,15] For any p(0,1),q>0, vR, and λ=p1p, we have

    ABC0Dp,q,vz(θ)=ABR0Dp,q,vz(θ)B(p)1pz(0)Evp,q(λ,θ).

    Theorem 2.6. [29] Let X be a Banach space. The operator Φ:GG is Lipschitzian if there exists a constant 0<L<1 such that i.e., Φ(z)Φ(z)Lzz for all z,zG. Then Φ is a contraction.

    Theorem 2.7. [29] Let Φ:GG be an operator satisfies

    (1) Φ is completely continuous operator.

    (2) The set ξ(Φ)={zΦ:z=δΦ(z),δ[0,1]} is bounded.

    Then Φ has a fixed point in G.

    Lemma 2.8. [15] For p(0,1),q>0, vR, λ=p1p and let h(θ) be a continuous functions such that h(0)=0 for q=1. Then, the following problem

    {ABC0Dp,q,vz(θ)=h(θ),z(0)=z0R, (2.2)

    is equivalent to the following fractional integral

    z(θ)=z0+vi=0(vi)piB(p)(1p)i1Ipiq+10h(θ). (2.3)

    Definition 2.9. If (z1,z2,......,zn)G, then (z1,z2,......,zn) is said to be a solution of (1.1), if

    (1) zk(0)=z0kR for k=1,2,......,n.

    (2) (z1,z2,......,zn) satisfied the following integral equation

    zk(θ)=z0k+vi=0(vi)piB(p)(1p)i1Ipiq+10Fk(θ,z1(θ),z2(θ),...,zn(θ)).

    We devoted this section to derive the equivalent fractional integral equations for the model (1.1). First of all, by using fixed point technique and mathematical techniques, we prove the existence and uniqueness of solution for model (1.1).

    In view of Lemma 2.8, the equivalent fractional integral of model (1.1) is given as follows

    {z1(θ)=z01+AB0Ip,q,vF1(θ,z1(θ),z2(θ),....,zn(θ)),z2(θ)=z02+AB0Ip,q,vF2(θ,z1(θ),z2(θ),....,zn(θ)),zn(θ)=z0n+AB0Ip,q,vFn(θ,z1(θ),z2(θ),.....,zn(θ)). (3.1)

    Let us consider the continuous operator Φ:GG defined by

    Φ(z1,z2,....,zn)(θ)=(Φ1(z1,z2,....,zn)(θ),...,Φn(z1,z2,..,zn)(θ)), (3.2)

    where

    {Φ1(z1,z2,....,zn)(θ)=z01+AB0Ip,q,vF1(θ,z1(θ),z2(θ),.....,zn(θ)),Φ2(z1,z2,....,zn)(θ)=z02+AB0Ip,q,vF2(θ,z1(θ),z2(θ),.....,zn(θ)),..Φn(z1,z2,....,zn)(θ)=z0n+AB0Ip,q,vFn(θ,z1(θ),z2(θ),.....,zn(θ)).

    Notice that the model (1.1) has a solution (z1,z2,...,zn) if Φ has a fixed point. To achieve our results, the following hypothesis must be hold.

    (H1): Let Fk: J×GR,(k=1,2,.....,n) be a continuous functions and there exist constants numbers λk,ε1k,ε2k,...,εnk>0, such that

    Fk(θ,z1,z2,...,zn)λk+ε1kz1+ε2kz2+...+εnkzn, (3.3)

    for all (θ,z1,z2,...,zn)J×G.

    (H2): The kernels Fk(θ,z1(θ),z2(θ),......,zn(θ)) satisfies the following Lipschitz condition

    Fk(θ,z1,z2,....,zn)Fk(θ,z1,z2,....,zn)Lknj=1zjzj, (3.4)

    such that 0Lk<1,(z1,z2,....,zn),(z1,z2,.....,zn)G.

    To simplify our analysis, we set

    Λ1=max{nk=1ε1k,nk=1ε2k,...,nk=1εnk}B(p)vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q),

    and

    Δ1=nk=1[|z0k|+LkrB(p)vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q)]. (3.5)

    Theorem 3.1. Assume that (H1) holds. If Λ1<1, then the operator Φ is completely continuous.

    Proof. First, in view of the continuity of the functions Fk, we notice that the operator Φ is continuous. Define a closed ball

    Br={(z1,z2,...,zn)G:(z1,z2,...,zn)r},

    with rΛ21Λ1, where

    Λ2=nk=1[|z0k|+λkB(p)vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q)].

    Now, for (z1,z2,...,zn)Br,θJ, then, by (3.1) and k=1,2,......,n, we have

    Φk(z1,z2,...,zn)|z0k|+AB0Ip,q,v|Fk(θ,z1(θ),z2(θ),.....,zn(θ))||z0k|+λk+ε1kz1+ε2kz2+......+εnkznB(p)×vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q). (3.6)

    Thus

    Φ(z1,z2,......,zn)=nk=1Φk(z1,z2,.......,zn)nk=1[|z0k|+λk+ε1kz1+ε2kz2+.....+εnkznB(p)×vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q)]nk=1|z0k|+λkB(p)vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q)+max{nk=1ε1k,nk=1ε2k,...,nk=1εnk}(z1,z2,...,zn)B(p)×vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q)Λ2+Λ1rr.

    Hence, Φ(Br) is uniformly bounded. Next, for the equicontinuity of the operator Φ, for any θ1,θ2J,θ1<θ2 and (z1,z2,.....,zn)Br, for k=1,2,...,n, we have

    Φk(z1,z2,...,zn)(θ2)Φk(z1,z2,....,zn)(θ1)maxθJ|AB0Ip,q,vFk(θ2,z1(θ2),...,zn(θ2))AB0Ip,q,vFk(θ1,z1(θ1),...,zn(θ1))|λk+ε1kz1+ε2kz2+...+εnkznB(p)×vi=0(vi)pi(θ2piq+1θ1piq+1)(1p)i1Γ(pi+2q)0 as θ2θ1.

    Hence

    Φ(z1,z2,....,zn)(θ2)Φ(z1,z2,....,zn)(θ1)0 as θ2θ1.

    Thus, Φ is equicontinuous. According to the above analysis together with Arzela'-Ascoli Theorem, we deduce that Φ is relatively compact and so completely continuous.

    Theorem 3.2. Let Fk be a functions satisfies (H1) such that Fk(0,z1(0),z2(0),...,zn(0)))=0 in the case q=1. If Λ1<1, then the model (1.1) has at least one solution (z1,z2,....,zn)H:=Cp,q,v(J,R+)×.......×Cp,q,v(J,R+)ntime.

    Proof. From Theorem (3.1), we have Φ is completely continuous. Now, by means of Schaefer's fixed point approaches, we need only prove that the set

    ξ(Φ)={(z1,z2,....,zn)G:(z1,z2,....,zn)=δΦ(z1,z2,....,zn),δ[0,1]},

    is bounded. Let (z1,z2,....,zn)ξ(Φ). Then, zk=δΦk(z1,z2,..,zn),k=1,2,...,n. For θJ, by (3.1), we get

    zk=δΦk(z1,z2,....,zn)Φk(z1,z2,...,zn)|z0k|+λk+ε1kz1+ε2kz2+.....+εnkznB(p)×vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q).

    Thus

    (z1,z2,....,zn)nk=1|z0k|+nk=1λk+ε1kz1+ε2kz2+.....+εnkznB(p)×vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q)]Λ2+Λ1rr.

    Hence ξ(Φ) is bounded. So, by Theorem (2.7), we deduce that Φ has one fixed point in X. Consequently, the model (1.1) has at least one solution (z1,z2,....,zn)G. In addition, by the definition of Φ and (z1,z2,....,zn) possesses the form zk(θ)=z0k+AB0Ip,q,vFk(θ,z1(θ),z2(θ),.....,zn(θ)),

    we get

    limmΦmz0kzk=0. (3.7)

    By Lemmas 2.4 and 2.5, the identity ABR0Dp,q,v AB0Ip,q,v zk(θ)=zk(θ), and taking into account that Fk(0,z1(0),z2(0),.....,zn(0)))=0 for q=1. So, we can shown that (z1,z2,....,zn)(θ) satisfies the model (1.1) if and only if it satisfies (3.1). Finally, we have the estimate

    ABC0Dp,q,vΦmz0kABC0Dp,q,vzkLΦmz0kzk.

    From (3.7), we conclude that

    limmABC0Dp,q,vΦmz0kABC0Dp,q,vzk=0.

    That is ABC0Dp,q,vzkCp,q,v(J,R+) and hence

    (z1,z2,....,zn)H:=Cp,q,v(J,R+)×.......×Cp,q,v(J,R+)ntime.

    Theorem 3.3. Let Fk be continuous functions satisfies (H2). Then, the model (1.1) has a unique solution in the space H:=Cp,q,v(J,R+)×.......×Cp,q,v(J,R+)ntime, provided that Δ1<1. Moreover, the case q=1 requires that Fk(0,z1(0),z2(0),.....,zn(0)))=0.

    Proof. Define a closed ball set Ar={(z1,z2,....,zn)G:(z1,z2,....,zn)r} with rΔ21Δ1, where

    Δ2=nk=1KkB(p)vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q),

    and Kk=maxθJ|Fk(θ,0,0,.....,0)|. In order to prove Φ(Ar)Ar, let (z1,z2,....,zn)Ar. Then, for θJ, by (3.4), we have

    Φk(z1,z2,....,zn)|z0k|+AB0Ip,q,v(|F1(θ,z1(θ),..,zn(θ))F1(θ,0,0,...,0)|+|F1(θ,0,0,...,0)|)|z0k|+AB0Ip,q,vLknj=1zj+AB0Ip,q,vKk|z0k|+Lknj=1zjB(p)vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q)+KkB(p)vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q).

    Thus

    Φ(z1,z2,..,zn)=nk=1Φk(z1,z2,....,zn)nk=1[|z0k|+LkrB(p)vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q)]+nk=1KkB(p)vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q)Δ1r+Δ2r.

    Hence Φ(Ar)Ar. For any (z1,z2,....,zn),(z1,z2,.....,zn)Ar and θJ, we have

    Φk(z1,z2,....,zn)Φk(z1,z2,.....,zn)[LkB(p)vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q)]nj=1zjzj.

    Thus

    Φ(z1,z2,....,zn)Φ(z1,z2,.....,zn)Δ1nj=1zjzj.

    Due to Δ1<1, we conclude that Φ a contraction on C(J,R+). Therefore, due to Banach fixed point Theorem, the model (1.1) has a unique fixed point (z1,z2,....,zn)G. By the same way in Theorem 3.2, one can prove that (z1,z2,....,zn)H. In case q=1, the condition Fk(0,z1(0),...,zn(0))=0 is needed in order to guarantee that solution given by (2.3) will satisfy zk(0)=z0k,k=1,2,.....,n. However, in case q1, one may note that zk(0)=z0k without any restrictions.

    Definition 4.1. [30] The model (1.1) is UH stable if there exists a real number N=max{N1,N2,......,Nn}>0 such that for each ϵ=max{ϵ1,ϵ2,.....,ϵn}>0 there exists a solution (˜z1,˜z2,.....,˜zn)G of the inequality

    |ABC0Dp,q,v˜zk(θ)Fk(θ,˜z1(θ),˜z2(θ),.....˜zn(θ))|ϵk, (4.1)

    corresponding to a solution (z1,z2,....,zn)G of model (1.1) such that

    (˜z1,˜z2,.....,˜zn)(z1,z2,....,zn)Nϵ,θJ.

    Remark 4.2. A function (˜z1,˜z2,.....,˜zn)G satisfies the inequality (4.1) if and only if there exist a small perturbation (z1,z2,...,zn)G such that for k=1,2,....,n, we have

    (i){|zk(θ)|ϵk, θJ.

    (ii) ABC0Dp,q,v˜zk(θ)=Fk(θ,˜z1(θ),..,˜zn(θ))+zk(θ),θJ.

    Lemma 4.3. Let 0p<1,q,v>0. If a function (˜z1,˜z2,.....,˜zn)G satisfies the inequality (4.1), then (˜z1,˜z2,.....,˜zn) satisfies the following integral inequalities

    |˜zk(θ)˜z0kAB0Ip,q,vFk(θ,˜z1(θ),....˜zn(θ))|ϵkK,

    where

    K=1B(p)vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q).

    Proof. Indeed by Remark 4.2, we have the following model

     ABC0Dp,q,v˜zk(θ)=Fk(θ,˜z1(θ),...,˜zn(θ))+zk(θ),θJ.

    Then, the solution of the above model is given as

    ˜zk(θ)=˜z0k+AB0Ip,q,v[Fk(θ,˜z1(θ),˜z2(θ),.....,˜zn(θ))+zk(θ)].

    It follows that

    |˜zk(θ)˜z0kAB0Ip,q,vFk(θ,˜z1(θ),....,˜zn(θ))|AB0Ip,q,v|zk(θ)|.

    Hence

    |˜zk(θ)˜z0kAB0Ip,q,vFk(θ,˜z1(θ),....,˜zn(θ))|ϵ1K.

    Theorem 4.4. Assume that the preconditions of Theorem 3.3 are satisfied. Then the model (1.1) is UH stable in C(J,R+).

    Proof. Let ϵ=max{ϵ1,ϵ2,.....,ϵn}>0 and

    Ωk=LkB(p)vi=0(vi)piTpiq+1(1p)i1Γ(pi+2q). (4.2)

    Let (˜z1,˜z2,.....,˜zn)G be a functions satisfying the inequalities

    |ABC0Dp,q,v˜zk(θ)Fk(θ,˜z1(θ),˜z2(θ),.....,˜zn(θ))|ϵk,

    and let (z1,z2,....,zn)G be the unique solution of the following model

    {ABC0Dp,q,vzk(θ)=Fk(θ,z1(θ),....,zn(θ)),zk(0)=˜zk(0),k=1,2,.....,n.

    Now, in the light of Lemma 2.8, we have

    zk(θ)=z0k+AB0Ip,q,vFk(θ,z1(θ),z2(θ),.....,zn(θ)),

    Since zk(0)=˜zk(0), (k=1,2,.....,n), we get

    zk(θ)=˜z0k+AB0Ip,q,vFk(θ,z1(θ),z2(θ),...,zn(θ)),

    Hence, from (3.4) and Lemma 4.3, then for each θJ, we have

    ˜zkzkKϵk+Ωknj=1˜zjzj,

    which implies

    (˜z1,˜z2,.....,˜zn)(z1,z2,....,zn)nk=1Kϵk+nk=1Ωk(˜z1,˜z2,.....,˜zn)(z1,z2,....,zn).

    For ϵ=max{ϵ1,ϵ2,.....,ϵn} and

    N=nK1nk=1Ωk,

    we get

    (˜z1,˜z2,.....,˜zn)(z1,z2,....,zn)Nϵ.

    Hence the model (1.1) is U-H stable.

    In this section, we shall discuss the results of continuous dependence of solutions of the proposed model (1.1) on initial conditions.

    Definition 5.1. [29] A function (z1,z2,....,zn)G satisfying the following fractional differential inequality

    ABC0Dp,q,vzk(θ)Fk(θ,z1(θ),z2(θ),....,zn(θ))δ,θJ, (5.1)

    and

    zk(0)=z0k,

    is called δ-approximate solutions of model (1.1).

    Theorem 5.2. For p(0,1),q>0, vR and λ=p1p. Let Fk:J×GR be a continuous function and satisfies Lipschitz condition 3.4, let (z1,z2,....,zn) and (z1,z2,.....,zn) be a δ-approximation solutions of the model (1.1). If △≠0 and

    (m11m12..m1nm21m22..m2n......mn1mn2..mnn)1=1(l11l12..l1nl21l22..l2n......ln1ln2..lnn),

    where lijR,i,j=1,2,....n and

    mij={1Ωi;i=jΩi;ij,

    where

    Ωk=LkB(p)Θq1q=1(T),k=1,2,...,n,

    then

    (z1,z2,..,zn)(z1,z2,...,zn)1nk=1nr=1lkr(AB0Ip,q,v|δ1+δ2|+|zr0zr0|),

    Proof. Let (z1,z2,....,zn),(z1,z2,.....,zn)G be an δ-approximation solutions of the model (1.1). Then, we have

    {ABC0Dp,q,vzk(θ)Fk(θ,z1(θ),z2(θ),.....,zn(θ))δ1,θJ,ABC0Dp,q,vzk(θ)Fk(θ,z1(θ),z2(θ),.....,zn(θ))δ2,θJ, (5.2)

    and

    {zk(0)=zk0zk(0)=zk0,k=1,2,.....,n.

    Applying AB0Ip,q,v on both sides of the above inequalities, and using Lemma 2.8, we get

    {|zk(θ)zk0AB0Ip,q,vFk(θ,z1(θ),z2(θ),...,zn(θ))| AB0Ip,q,vδ1,|zk(θ)zk0AB0Ip,q,vFk(θ,z1(θ),z2(θ),...,zn(θ))| AB0Ip,q,vδ2.

    Using the fact |z||y||zy||z|+|y|, we get

    AB0Ip,q,v|δ1+δ2||zk(θ)zk0+AB0Ip,q,vFk(θ,z1(θ),z2(θ),....,zn(θ))|+|zk(θ)zk0+AB0Ip,q,vFk(θ,z1(θ),z2(θ),....,zn(θ))||[zk(θ)zk0+AB0Ip,q,vFk(θ,z1(θ),z2(θ),....,zn(θ))][zk(θ)zk0+AB0Ip,q,vFk(θ,z1(θ),z2(θ),....,zn(θ))]||(zk(θ)zk(θ))(zk0zk0)+AB0Ip,q,v[Fk(θ,z1(θ),z2(θ),....,zn(θ))Fk(θ,z1(θ),z2(θ),....,zn(θ))]||(zk(θ)zk(θ))||(zk0zk0)|+|AB0Ip,q,v[Fk(θ,z1(θ),z2(θ),....,zn(θ))Fk(θ,z1(θ),z2(θ),....,zn(θ))]|.

    Then, we have

    zkzk=supθJ|zk(θ)zk(θ)| AB0Ip,q,v|δ1+δ2|+|zk0zk0|+AB0Ip,q,v|Fk(θ,z1(θ),z2(θ),...zn(θ))Fk(θ,z1(θ),z2(θ),...zn(θ))| AB0Ip,q,v|δ1+δ1|+|zk0zk0|+Ωknj=1zjzj.

    Consequently, we have the following inequalities

    (1Ω1)z1z1Ω1nj=2zjzj AB0Ip,q,v|δ1+δ1|+|z10z10|,(1Ω2)z2z2Ω2nj=1j2zjzj AB0Ip,q,v|δ1+δ2|+|z20z20|,(1Ω3)z3z3Ω3nj=1j3zjzj AB0Ip,q,v|δ1+δ2|+|z30z30|,(1Ωn)znznΩnn1j=1zjzj AB0Ip,q,v|δ1+δ2|+|zn0zn0|. (5.3)

    Inequalities (5.3) can be writting as matrices as followes

    (m11m12..m1nm21m22..m2n......mn1mn2..mnn)(z1z1z2z2..znzn)(AB0Ip,q,v|δ1+δ2|+|z10z10|AB0Ip,q,v|δ1+δ2|+|z20z20|..AB0Ip,q,v|δ1+δ2|+|zn0zn0|).

    By simple computations, the above inequality becomes

    (z1z1z2z2..znzn)1Δ(l11l12..l1nl21l22..l2n......ln1ln2..lnn)×(AB0Ip,q,v|δ1+δ2|+|z10z10|AB0Ip,q,v|δ1+δ2|+|z20z20|..AB0Ip,q,v|δ1+δ2|+|zn0zn0|).

    Since Δ0. This leads to

    z1z1nr=1l1r(AB0Ip,q,v|δ1+δ2|+|zr0zr0|)z2z2nr=1l2r(AB0Ip,q,v|δ1+δ2|+|zr0zr0|)znznnr=1lnr(AB0Ip,q,v|δ1+δ2|+|zr0zr0|).

    From the fact

    (z1,z2,....,zn)(z1,z2,.....,zn)=nk=1zkzk.

    It follows that

    (z1,z2,....,zn)(z1,z2,.....,zn)nk=1nr=1lkr(AB0Ip,q,v|δ1+δ2|+|zr0zr0|)1nk=1nr=1lkr(AB0Ip,q,v|δ1+δ2|+|zr0zr0|). (5.4)

    Remark 5.3. If δ1=δ2=0 in the inequality (5.4), then (z1,z2,....,zn),(z1,z2,.....,zn) are solutions of the model (1.1) and the inequality (5.4) reduces to

    (z1,z2,....,zn)(z1,z2,.....,zn)1nk=1nr=1lkr(|zr0zr0|),

    which provides the continuous dependence of the model (1.1). Also if zr0=zr0 for all r=1,2,...,n, then

    (z1,z2,....,zn)(z1,z2,.....,zn)=0,

    which provides the uniqueness of a solution of model (1.1).

    Consider the following model

    {ABC0D12,12,1z1(θ)=F1(θ,z1(θ),z2(θ),...,zn(θ)),ABC0D12,12,1z2(θ)=F2(θ,z1(θ),z2(θ),....,zn(θ)),ABC0D12,12,1zn(θ)=Fn(θ,z1(θ),z2(θ),....,zn(θ))zk(0)=z0kR,k=1,2,...,n.

    Here p=12,q=12, v=1, a=0, θ=1,

    Fk(θ,z1(θ),z2(θ),...,zn(θ))=θ(1+nj=1|zj(θ)|)3θ[1+nj=1|zj(θ)|],θ[0,1],(z1,z2,....,zn)G.

    Clearly, Fk(θ,z1(θ),z2(θ),...,zn(θ)) are continuous, Fk(0,z1(0),z2(0),.....,zn(0))=0 and

    |Fk(θ,z1(θ),z2(θ),....,zn(θ))Fk(θ,z1(θ),z2(θ),....,zn(θ))|13nj=1|zjzj|,

    for all (z1,z2,....,zn),(z1,z2,....,zn)G. Also

    |Fk(θ,z1(θ),z2(θ),...,zn(θ))|13(1+nj=1|zj(θ)|).

    Here Lk=λk=εjk=13 for all k=1,2,...,n and j=1,2,...,n. Now, by simple calculation, we get

    Λ1{0.35, for q1,0.45, for q=1.

    Thus all conditions of Theorem 3.3 are satisfied. Hence, model (1.1) has a unique solution on (0,1]. Finally, for ϵ=max{ϵ1,ϵ2,.....,ϵn}, we find that

    |ABC0Dp,q,v˜zk(θ)Fk(θ,˜z1(θ),˜z2(θ),....˜zn(θ))|ϵk.

    is satisfied. Hence the model (1.1) is U-H stable with

    (˜z1,˜z2,....,˜zn)(z1,z2,...,zn)Nϵ,

    where

    N=nK1nk=1Ωk>0.

    ABC fractional operators with multi-parameters ML kernels on certain time scales and the integral equations expressed by them are some of the keys in developing fractional calculus. In this work, we have obtained some existence, uniqueness, UH stability results for the fractional system (1.1) in the frame of generalized FD in AB settings containing a multi-parameter ML kernel. As well, the data dependence analysis and δ-approximate solutions of the proposed system are discussed. Our approach is based on some fixed point theorems and mathematical techniques. As an application, one example has been provided in order to illustrate the validity of our results. We realized that, if q1, then the condition Fk(0,z1(0),......,zn(0))=0,(k=1,2,...,n) not necessary to guarantee a unique solution. The considered system has been investigated under the generalized ML law. Observed that in the case of the classical ABC fractional operator, the requirement of the vanishing status condition of the right-hand side of the dynamic system to full the initial data needs recuperation on the modeled population. However, the nature of the generalized ML kernel managed to get rid of any restrictions on the initial data. Due to the fractional operators used in this work have semigroup property and recently proposed, the results obtained here are new and open the door for the researchers to study more real-world problems in different fields. Besides, the results obtained in this work are very significant in developing the theory of fractional analytical dynamics of different biological models.

    So in the future, the same analysis can be extended to the system of delay equations under the generalized fractional operator.

    The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding this work through Research Group no. RG-21-09-07.

    The authors declare that they have no competing interests.



    [1] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Yverdon: Gordon & Breach, 1993.
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [4] K. Kavitha, V. Vijayakumar, A. Shukla, K. S. Nisar, R. Udhayakumar, Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type, Chaos Soliton. Fract., 151 (2021), 111264. doi: 10.1016/j.chaos.2021.111264. doi: 10.1016/j.chaos.2021.111264
    [5] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order 1<r<2, Math. Comput. Simulat., 190 (2021), 1003–1026. doi: 10.1016/j.matcom.2021.06.026. doi: 10.1016/j.matcom.2021.06.026
    [6] C. Dineshkumar, R. Udhayakumar, New results concerning to approximate controllability of Hilfer fractional neutral stochastic delay integro-differential systems, Numer. Meth. Part. Diff. Equ., 37 (2021), 1072–1090. doi: 10.1002/num.22567. doi: 10.1002/num.22567
    [7] K. Kavitha, V. Vijayakumar, R. Udhayakumar, N. Sakthivel, K. S. Nisar, A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay, Math. Method. Appl. Sci., 44 (2021), 4428–4447. doi: 10.1002/mma.7040. doi: 10.1002/mma.7040
    [8] A. Shukla, N. Sukavanam, D. N. Pandey, Complete controllability of semi-linear stochastic system with delay, Rend. Circ. Mat. Palermo, 64 (2015), 209–220. doi: 10.1007/s12215-015-0191-0. doi: 10.1007/s12215-015-0191-0
    [9] A. Shukla, N. Sukavanam, D. N. Pandey, Approximate controllability of semilinear fractional control systems of order α(1,2] with infinite delay, Mediterr. J. Math., 13 (2016), 2539–2550. doi: 10.1007/s00009-015-0638-8. doi: 10.1007/s00009-015-0638-8
    [10] A. Shukla, U. Arora, N. Sukavanam, Approximate controllability of retarded semilinear stochastic system with non local conditions, J. Appl. Math. Comput., 49 (2015), 513–527. doi: 10.1007/s12190-014-0851-9. doi: 10.1007/s12190-014-0851-9
    [11] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. doi: 10.12785/pfda/010201. doi: 10.12785/pfda/010201
    [12] A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. doi: 10.2298/TSCI160111018A
    [13] T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 130. doi: 10.1186/s13660-017-1400-5. doi: 10.1186/s13660-017-1400-5
    [14] T. Abdeljawad, D. Baleanu, On fractional derivatives with generalized Mittag-Leffler kernels, Adv. Differ. Equ., 2018 (2018), 468. doi: 10.1186/s13662-018-1914-2. doi: 10.1186/s13662-018-1914-2
    [15] T. Abdeljawad, Fractional operators with generalized Mittag-Leffler kernels and their differintegrals, Chaos, 29 (2019), 023102. doi: 10.1063/1.5085726. doi: 10.1063/1.5085726
    [16] T. Abdeljawad, Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos Soliton. Fract., 126 (2019), 315–324. doi: 10.1016/j.chaos.2019.06.012. doi: 10.1016/j.chaos.2019.06.012
    [17] A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. doi: 10.1016/j.chaos.2017.04.027. doi: 10.1016/j.chaos.2017.04.027
    [18] M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Adv. Differ. Equ., 2021 (2021), 1–21. doi: 10.1186/s13662-020-03196-6. doi: 10.1186/s13662-020-03196-6
    [19] M. S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), e05109. doi: 10.1016/j.heliyon.2020.e05109. doi: 10.1016/j.heliyon.2020.e05109
    [20] M. A. Almalahi, S. K. Panchal, W. Shatanawi, M. S. Abdo, K. Shah, K. Abodayeh, Analytical study of transmission dynamics of 2019-nCoV pandemic via fractal fractional operator, Results Phys., 19 (2021), 104045. doi: 10.1016/j.rinp.2021.104045. doi: 10.1016/j.rinp.2021.104045
    [21] A. Khan, J. F. Gómez-Aguilar, T. S. Khan, H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Soliton. Fract., 122 (2019), 119–128. doi: 10.1016/j.chaos.2019.03.022. doi: 10.1016/j.chaos.2019.03.022
    [22] M. A. Almalahi, S. K. Panchal, F. Jarad, Stability results of positive solutions for a system of ψ-Hilfer fractional differential equations, Chaos Soliton. Fract., 147 (2021), 110931. doi: 10.1016/j.chaos.2021.110931. doi: 10.1016/j.chaos.2021.110931
    [23] M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam–Hyers stability results of a coupled system of ψ-Hilfer sequential fractional differential equations, Results in Applied Mathematics, 10 (2021), 100142.doi: 10.1016/j.rinam.2021.100142. doi: 10.1016/j.rinam.2021.100142
    [24] A. Khan, K. Shah, Y. Li, T. S. Khan, Ulam type stability for a coupled system of boundary value problems of nonlinear fractional differential equations, J. Funct. Space., 2017 (2017), 3046013. doi: 10.1155/2017/3046013. doi: 10.1155/2017/3046013
    [25] H. Khan, W. Chen, A. Khan, T. S. Khan, Q. M. Al-Madlal, Hyers–Ulam stability and existence criteria for coupled fractional differential equations involving p-Laplacian operator, Adv. Differ. Equ., 2018 (2018), 455. doi: 10.1186/s13662-018-1899-x. doi: 10.1186/s13662-018-1899-x
    [26] A. Khan, T. S. Khan, M. I. Syam, Hasib Khan analytical solutions of time-fractional wave equation by double Laplace transform method, Eur. Phys. J. Plus, 134 (2019), 163. doi: 10.1140/epjp/i2019-12499-y. doi: 10.1140/epjp/i2019-12499-y
    [27] A. Khan, Y. Li, K. Shah, T. S. Khan, On coupled P-Laplacian fractional differential equations with nonlinear boundary conditions, Complexity, 2017 (2017), 8197610. doi: 10.1155/2017/8197610. doi: 10.1155/2017/8197610
    [28] T. Abdeljawad, M. A. Hajji, Q. M. Al-Mdallal, F. Jarad, Analysis of some generalized ABC-fractional logistic models, Alex. Eng. J., 59 (2020), 2141–2148. doi: 10.1016/j.aej.2020.01.030. doi: 10.1016/j.aej.2020.01.030
    [29] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014.
    [30] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107.
  • This article has been cited by:

    1. Mohammed Almalahi, Amani Ibrahim, Alanoud Almutairi, Omar Bazighifan, Tariq Aljaaidi, Jan Awrejcewicz, A Qualitative Study on Second-Order Nonlinear Fractional Differential Evolution Equations with Generalized ABC Operator, 2022, 14, 2073-8994, 207, 10.3390/sym14020207
    2. Mdi Begum Jeelani, Abeer S. Alnahdi, Mohammed A. Almalahi, Mohammed S. Abdo, Hanan A. Wahash, M. A. Abdelkawy, Correction: Study of the Atangana-Baleanu-Caputo type fractional system with a generalized Mittag-Leffler kernel, 2022, 7, 2473-6988, 20543, 10.3934/math.20221125
    3. Abeer Al Elaiw, Farva Hafeez, Mdi Begum Jeelani, Muath Awadalla, Kinda Abuasbeh, Existence and uniqueness results for mixed derivative involving fractional operators, 2023, 8, 2473-6988, 7377, 10.3934/math.2023371
    4. PANUMART SAWANGTONG, K. LOGESWARI, C. RAVICHANDRAN, KOTTAKKARAN SOOPPY NISAR, V. VIJAYARAJ, FRACTIONAL ORDER GEMINIVIRUS IMPRESSION IN CAPSICUM ANNUUM MODEL WITH MITTAG-LEFFLER KERNAL, 2023, 31, 0218-348X, 10.1142/S0218348X23400492
    5. Mohammed Aldandani, Syed T. R. Rizvi, Abdulmohsen Alruwaili, Aly R. Seadawy, Discussion on optical solitons, sensitivity and qualitative analysis to a fractional model of ion sound and Langmuir waves with Atangana Baleanu derivatives, 2024, 22, 2391-5471, 10.1515/phys-2024-0080
    6. Emad Fadhal, Abdul Hamid Ganie, N. S. Alharthi, Adnan khan, Dowlath Fathima, Abd Elmotaleb A. M. A. Elamin, On the analysis and deeper properties of the fractional complex physical models pertaining to nonsingular kernels, 2024, 14, 2045-2322, 10.1038/s41598-024-69500-6
    7. Abdul Hamid Ganie, Fatemah Mofarreh, N. S. Alharthi, Adnan Khan, Novel computations of the time-fractional chemical Schnakenberg mathematical model via non-singular kernel operators, 2025, 2025, 1687-2770, 10.1186/s13661-024-01979-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2754) PDF downloads(152) Cited by(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog