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1. Introduction

Fractional differential equations have a profound physical background and rich theoretical
connotations and have been particularly eye-catching in recent years. Several-order differential
equations refer to equations that contain fractional derivatives or fractional integrals. Fractional
order derivatives and integrals have a wide range of applications in many disciplines such as physics,
biology, chemistry, etc., such as power with chaotic dynamic behavior systems, dynamics of quasi-
chaotic systems, and complex materials or porous media, random walks with memory, etc. For more
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information see [1-3]. The approximate controllability of the fractional system can be found in [4-10].
Recently, some researchers have realized the importance of finding new fractional derivatives (FDs)
with different singular or nonsingular kernels to meet the need to modeling more real-world problems
in different fields of science and engineering. For instance, Caputo and Fabrizio [11] studied a new
kind of FDs in the exponential kernel. Atangana and Baleanu (AB) [12] investigated a new type and
interesting FD with Mittag-Leffler kernels. Abdeljawad in [13] extended this type for higher arbitrary
order and formulated their associated integral operators. But the corresponding integral operators
of AB derivative do not have a semigroup property, which makes dealing with them theoretically
or mathematically somewhat complicated. Very recently, Abdeljawad in [14, 15], introduced a
fractional derivative with nonsingular kernel in Atangana-Baleanu-Caputo (ABC) settings with multi-
parametered Mittag-Leffler (ML) function and study their semigroup properties, its discrete version
in [16]. This diversity of FDs has made the topic of fractional calculus attractive and allows researchers
to choose the appropriate operator to obtain better results. For some theoretical works on ABC type
FDEs, we refer the reader to the series papers [17-20]. On the other hand side, the study of systems
involving FDEs is also important as such systems occur in various problems of applied nature. For
some theoretical works on systems of FDEs, we refer to series of papers [21-23].

The topic of stability of systems is one of the most important qualitative characteristics of a solution,
for more details about the stability of systems see [24-27].

Abdeljawad et al. [28] studied qualitative analyses of some logistic models in the settings of ABC
fractional operators with multi-parameter ML kernels, described as follows:

DP9 Z(0) = mz(6) (1 - 2(6)), 6 > 6y,
260) = 2° € R,

and
42CDP2(0) = me(6) (1~ %7) (2(6) = n) .6 > 6,
2(6) = 2" € R,

where QOBCDP”” is the generalized left ABC FD of order p € (0,1],g,v > 0 and m,n,[ > 0.

Motivated by the recent advancements of ABC operator, its applications, and by the above works,
the aim of the current work is to investigate the existence, uniqueness, stability, and continuous
dependence results, and discuss the oJ-approximate solutions for a new model in the frame of
generalized ABC fractional operators with multi-parameters ML kernels described as follows:

JBEDPZ1 () = F1 (0,21(0), ..., 24(6))
QBCD”’q’”Zz(Q) =52 (0,21(0), ...., 2,(0)),

(1.1)

ABCDPAVZ,(60) = T (6, 21(0), ..o 2a(9)),
w0 =L eRk=1,2,.....m,

where f5¢DP4" is the generalized ABC FD of order p € (0,11, ¢,v > 0. ¥ € C([0,T],R")
and satisfies some conditions described later in our analysis. Many researchers in different fields of
science and engineering used ABC FD with one parameter ML kernel, but their corresponding AB
integral operators do not have a semigroup property, which makes dealing with them theoretically or
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mathematically somewhat complicated. Nevertheless, in this work, we use a new operator containing
interesting kernels, we believe that the qualitative properties of solutions for FDEs should be studied
via this operator. This work aims to investigate some properties of solutions for the proposed model
via a nonsingular FD in ABC settings with multi-parameter ML kernel introduced lately by [14, 15].
Due to the fractional derivative used in this work have semigroup property and recently proposed, the
results obtained in this work are new and open the door for the researchers to study more real-world
problems in different fields.

Notice that, the considered system is investigated under the generalized ML law. In the case of
the ABC fractional operator, the requirement of the vanishing condition of the right hand side of the
dynamic system to fulfill the initial data needs recuperation on the modeled population. However, the
nature of the generalized ML kernel will enable the emancipation of any restrictions on the initial data.

The structure of our paper is as follows. In Section 2, we present notations, auxiliary lemmas and
some basic definitions that are needed for our analysis. In Section 3, we discuss the existence and
uniqueness results for the model (1.1). Ulam-Hyers stability results for the model (1.1) are discussed
in Section 4. In Section 5, we study the continuous dependence of solution and ¢-approximate solutions
for the model (1.1). In Section 6, we provide an example to illustrate the validity of our results. The
last section is devoted to concluding remarks about our results.

2. Preliminary results

In order to achieve our main purposes, we present here some definitions and basic auxiliary results
that are required throughout our paper. Let J =[0,7] € R* and X = {z(0) : z(8) e C(J,R")} be a
space with the norm ||z|]| = sup{|z(0)| : 6 € J}. Clearly, (X, ||||) is a Banach space. For our analysis, we
need defined the product space G := X X X X XX....... X . Undoubtedly that G is also a Banach space

. . n—time
with the following norm

For0 < p < 1,q,v > 0, we defined the space
CPe (. R*) = {2(0) € X 5 D"2(6) € X}.

Definition 2.1. /3] Let A € Rand p,B,v,z € Cwith Re (p) > 0, the generalized ML functions E;ﬁ(/l, 2)
are defined by
o Al (M

b4
E’ ,(1,2) = - 2.1
R kz(; [(ak + p)kI @1
In the case of B=v =1, Eq (2.1) reduced to

kp

- Z
Ex(L)2E) (L) =y A,
4 kZ:;A T(pk+1)

where V), =v(v +1)...... (v+k—1). Since (1), = k!, then E;,ﬁ(/l, 2) = E,p(4,2).
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Definition 2.2. [14,15] Let p € (0,1),Re(q) > 0,ve Rand A = —%. The generalized left ABC-FD
and ABR-FD of a function z are defined by

B
SBCDp,q,vz(g) — ﬂ E’ (1,0 - 5)7 (s)ds,0 >0,
l-pJy ™

and

B(p) d
ABRDp,q,V 0 —
0 49 1-pdb

repspectively, where B(p) > 0 is a normalizing function with B(0) = B(1) = 1 and E[V),q(/l,Q —5)is
generalized ML functions.

Definition 2.3. [15] Let p € (0,1],q,v > 0 and z(0) be a function defined on [0,T]. Then, the left
generalized AB fractional integral {\°179Vz(0) is given by

9
f E;gq(/l, 60— 5)z(s5)ds, 8 >0,
0

AB v : v pi pl g+1
17%77(0) = ( . )— z(s)ds.
0 i
Z; i) B(p)y(1-p "
If z(0) is continuous function at 0 and ‘SBRDP’q’Vz(Q) exists, then, we have from [14] that
§1 e 4D (6) = 2(6),
and
ABRDp,q,v ABIp,q,V Z(e) — Z(Q)

Lemma 24. [14,15] For pe€ (0,1),q>0,veCand 1 = - wehave
o 1P GECDP 7(6) = 2(6) — 2(0).
Lemma 2.5. [14,15] Forany p € (0,1),q>0,veR, and 1 = —%, we have

ABCquv 2(0) = _ABR DP47(6) — (P)

(O)EV /(4 0).
Theorem 2.6. [29] Let X be a Banach space. The operator ® : G — G is Lipschitzian if there exists a
constant 0 < L < 1 such that i.e., ||®O(z) — O(Z")|| < Ll||lz — || for all z,7* € G. Then ® is a contraction.

Theorem 2.7. [29] Let ® : G — G be an operator satisfies
(1) ® is completely continuous operator.
(2) The set E(@) = {ze€ D : z=0D(z),0 € [0, 1]} is bounded.
Then ® has a fixed point in G.

Lemma 2.8. [I5] Forpe (0,1),g>0,veR, A= —% and let h(0) be a continuous functions such
that h(0) = 0 for q = 1. Then, the following problem

45CDP42(6) = h(6)
0 £
{ 20) =" R, 2.2)
is equivalent to the following fractional integral
- % pi i—g+1
20) =2+ ( : )— o). (2.3)
Z;‘ i) B -p°
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Definition 2.9. If (z1, 22, ...... ,Z) € G, then (21,22, ...... ,Zn) 18 said to be a solution of (1.1), if
(1) z(0) =2} € R fork = 1,2, ......,n.
(2) (21,225 eneee , Zn) satisfied the following integral equation

mm=£+§xj)agé%ggﬁwﬂﬁwawuumm@w»
i=0

3. Existence and uniqueness of solutions

We devoted this section to derive the equivalent fractional integral equations for the model (1.1).
First of all, by using fixed point technique and mathematical techniques, we prove the existence and
uniqueness of solution for model (1.1).

In view of Lemma 2.8, the equivalent fractional integral of model (1.1) is given as follows

<1 (9) = Z(]) +‘83 Ip,q,le (0’ 21 (0)7 Z2(0)’ ceeey Zn(e)) s
2(0) = 25 +§ B 1P F5 (0, 21(0), 22(0), ..., 24(6))

(3.1)
2u(0) = 25 +{ B 1PV F (0, 21(0), 22(0), ... 24(6)) .
Let us consider the continuous operator ® : G — G defined by
D (21,22, -0 20) (0) = (D1 (21, 22, -0 20) (0) ooes Py (21, 22, -, 20) (0)), (3.2)

where
D1 (21,225 e 20) (0) = 20 +GEIPYF (0, 21(0), 22(0), ..., 24(6))

D3 (21,225 0005 20) (0) = 25 +(7 19 F3 (6, 21(0), 22(6), - 2(6))

Notice that the model (1.1) has a solution (z, 25, ..., 2,) if @ has a fixed point. To achieve our results,
the following hypothesis must be hold.

(H) :LetF, . I xG —> R, (k=1,2,.....,.n) be a continuous functions and there exist constants
numbers A, &, &1, ..., &{ > 0, such that

1 2
1F (0, 21,22, s 2l < A + Nzl + & llzall + ..o + g llzall (3.3)

for all (6,z1,22,...,2,) € I X G.
(H3) : The kernels F(0, z1(0), 22(0), ...... , Z,(0)) satisfies the following Lipschitz condition

n
<L)l -3

J=1

| F(6. 21, 221 v 20) = Fi(0. 2} 251 s 2) : (3.4)

such that 0 < Ly < 1,(z1, 22, ey 20)5 (2], 255 o000 2,) € G
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To simplify our analysis, we set

and

max {ZZ:l 8]1(, ZZZI 8%, ceey ZZZI 82}

v ( )
i=0 i (1

Ay

piTpi—q+1
-p) ' T(pi+2-9)

)

v

Lkr
B(p) =

piTpi—q+1
pIT(pi+2-9)|

(3.5)

a- 3|l

Theorem 3.1. Assume that (Hy) holds. If A\ < 1, then the operator ® is completely continuous.

Proof. First, in view of the continuity of the functions 7, we notice that the operator @ is continuous.

Define a closed ball

lA’

Br = {(Zla L2y eees Zn) € g . ”(Zla L2y eees Zn)” < r} )

piTpi—q+l
P Tpi+2-9)|

Z[|Zk| B(p) ( )(1

Now, for (z1, 22, ..-,24) € B,,0 € I, then, by (3.3)and k = 1,2, ......, n, we have
1Dy (21, 22, +oes 70|
< o] HP 1Y Fi (6, 21(0), 22(0), ... 2(O)))
< | k| A+ gl llzill + &f llzall + ... + & ||zl
B(p)
4 v piTpi—q+1
X Z( . ) e . (3.6)
=\t ) A=-p) T(pi+2-q)
Thus
1D @1, 22, e 2 = ) 10k (21, 22, e 20
k=1
u A+ ezl + ezl + ... + €%z,
< Z [|Z2| + k k ” 1” k ” 2” k ” ”
- B(p)
v iTpi—q+1
S ——
=\ ! (l—p) L(pi+2-q)
n 0| piTpi—q+l
= Z Ll + B( )Z i-1 ; _
= p -p)  T(pi+2-¢q)
AIMS Mathematics Volume 7, Issue 2, 2001-2018.



2007

max {4 &f Tiey &2, oo Sy £ 11 220 e 20

B(p)

y v piTpi—q+1
8 Z( i )(1 ) T(it2-9)
i=0 q

< A+ Ar<r.

+

Hence, ® (8,) is uniformly bounded. Next, for the equicontinuity of the operator @, for any 6,, 6, €
9,61 <6,and (21,22, .....,2,) € B, fork = 1,2, ...,n, we have

Dk (21, 22, -0y 20) (62) = P (21, 225 .05 20) (O]

< fgle%x |331p’q’vﬂ(92, 21(62), e 20(62)) =0 TP Fr(61, 21(6)),s s Zn(91))|
B A+ g llzill + & llzall + ... + &} 1zl y Zv:( ’ ) P (Gzpi—qﬂ _ Hlpi—qﬂ)
B B(p) i\ i J(1-p) ' T(pi+2-q)

— 0as 6, — 0.

Hence
D (21,225 -ves Z0) (02) — D (21, 225 o5 20) (B1)]| = 0 as 6, — 6;.

Thus, ® is equicontinuous. According to the above analysis together with Arzela’-Ascoli Theorem,
we deduce that @ is relatively compact and so completely continuous. O

Theorem 3.2. Let 7} be a functions satisfies (Hy) such that F(0,z,(0), 2,(0), ..., 2,(0))) = 0 in the
case g = 1. If Ay < 1, then the model (1.1) has at least one solution (21,22,.....2,) € H :=
Cr(J,RY) X ....... X CPY (T ,RY).

n—time

Proof. From Theorem (3.1), we have ® is completely continuous. Now, by means of Schaefer’s fixed
point approaches, we need only prove that the set

‘f((D) = {(ZI,ZZ, ceeey Zn) € g : (Zl’ L2y eeens Zn) = 5® (Z13Z29 ceeey Zn) ’5 € [09 1]} 5

is bounded. Let (zy, 22, ...., 2,) € &(®@). Then, z; = 60Oy (21,22, .-,24) , k = 1,2, ...,n. For 8 € I, by (3.3),
we get

lzell = 110D (21,225 oves )|
< D (215 22, s 2
< |Z2|+/1k+8,1<||21||+8,2|22||+ ----- + & Izl
(p)
(3]
=0 P L(pi+2-¢q)

Thus

n

o/ A+ e il + E Nlall + o + ) Izl
% B(p)
k=1 k=1

(1, 22, s Il <
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y v piTpi—q+1
D [
pary (1-p)" T(pi+2-q)
< M+ Ar<r

Hence &(®) is bounded. So, by Theorem (2.7), we deduce that @ has one fixed point in X.
Consequently, the model (1.1) has at least one solution (z;, 22, ..., Z,) € G- In addition, by the definition
of ® and (21, 22, -..., z,) possesses the form z(6) = z{ +5% 174" F1(6, 21(6), 22(0), -..... 2,()), we get

lim || ") — z|| = 0. (3.7)
By Lemmas 2.4 and 2.5, the identity §{**DP4" {8174 7(6) = z(6), and taking into account that

F1(0, z1(0), 22(0), ....., 2,(0))) = 0 for g = 1. So, we can shown that (zy, 25, ...., 2,) (8) satisfies the model
(1.1) if and only if it satisfies (3.1). Finally, we have the estimate

||ABCquv(Dm 0 ABC quvz || < L”(Dm _ Zk”
From (3.7), we conclude that

lim ||ABCquv(Dm 0 ABC quvz ” _

m—00

That is {5“DP4"z, € CP4 (J,R") and hence

(21,225 ey Zn) € H := CPP (T, RT) X ... X CP" (F,R").

O

Theorem 3.3. Let ¥, be continuous functions satisfies (H,). Then, the model (1.1) has a unique
solution in the space H = CP*"(J,R") X ....... X CPTV (g ,R"), provided that Ay < 1. Moreover,

the case q = 1 requires that (0, z,(0), Zz(()) ..... ,zn(O))) =

Proof. Define a closed ball set A, = {(21,22,--220) € G : (215225 -ees 2| S 7} : A ,

Tpi—q+l

ZB(P)Z( ) )"F(pl+2 Q)

and K = maxgeq [7%(6,0,0, .....,0)| . In order to prove ® (A,) C A,, let (z1, 22, ..., 2») € A,. Then, for
0 € J,by (3.4), we have

D% (21, 224 veves 20
< |g] +6° 174 (1F1(6, 21(0) ... 24(0)) — F1(6, 0,0, ..., 0)] + |F1(6,0,0, ..., 0)])

AR 2 Z il +67 1%

L5l prve
< |+ Bj(zl) : Z( ) p)”F(pl+2 )
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. «k ( ) p TP q+1
Bp) &\ i J(1-p) 'T(pi+2-q)

Thus

Z 1 (21, 22, o0, 20
Z [| 0| Lkr v ( ) piTpi—q+1
B(p) 4 (1-p)~'T(pi+2-q)

+Z 7(]( Z( ) piTpi—q+l
Bip) =\ i J(1-p'T(pi+2-q)
< Air+A, <.

||® (Z19Z2’ LX) Zn)”

IA

Hence @ (A,) C A,. For any (21,22, ..., Z0) (z’{,zz, ..... ,z,*,) € A.and 6 € J , we have

||q)k (Z19Z2, seeey Zn) - q)k (ZT, Z;, .....

Lk 4 v piTpi—q+l
B(p)z( i )(1 p) T (pi+2- q)]Z”Z]

Thus

|© 1y 22, s 20) = B (Z, T3 oo

<A12”Z1
Jj=1

Due to A; < 1, we conclude that ®@ a contraction on C (,R"). Therefore, due to Banach fixed point
Theorem, the model (1.1) has a unique fixed point (zy, 22, ...., 2,) € G. By the same way in Theorem 3.2,
one can prove that (z;, 22, ...., Z,) € H. In case ¢ = 1, the condition 7;(0, z;(0), ..., z,(0)) = 0 is needed
in order to guarantee that solution given by (2.3) will satisfy z;(0) = zg, k=1,2,.....,n However, in
case g # 1, one may note that z;(0) = zg without any restrictions. O

4. Ulam-Hyers stability

Definition 4.1. [30] The model (1.1) is UH stable if there exists a real number N =
max {Jt1, Mo, ...... , M} > 0 such that for each € = max{e, e, .....,€,} > 0 there exists a solution

(21,225 ey Zn) € G Of the inequality

[a5°DPZ(6) — Fi(0,21(0),22(6), ... %0 ()] < &, 4.1)
corresponding to a solution (z1, 22, ....,2,) € G of model (1.1) such that

11,225 ooy Z0) = (215 225 ooes T < Ne, feJ.

Remark 4.2. A function (21,2, .....,2,) € G satisfies the inequality (4.1) if and only if there exist a
small perturbation (z1, 22, ..., 2,) € G such that for k = 1,2, ....,n, we have

(1) {lzO) < &, € T.
(i) §PCDPZ(0) = Fi(0,21(6), ... 7, (0)) + z(6),0 € T
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Lemma 4.3. Let 0 < p < 1,q,v > 0. If a function (2,2, ....., 2,) € G satisfies the inequality (4.1), then
(21,225 --e-» 20) Satisfies the following integral inequalities

[71(6) =20 =5" PP F(0,Z1(0), ... 70 (0)] < &K,

where

1 v iTpi—q+1
K=—— Z( ; ) G- .
Bip) H\ 1 ] (A -p~ T(pi+2-q)
Proof. Indeed by Remark 4.2, we have the following model
05 D7) = Fu(0,71(6), . 7 (0)) + 2(0),6 € T,
Then, the solution of the above model is given as
Z(0) =7 +" I [Fi(0,71(6).22(6), ..., T (0) + 21(6)] -

It follows that
71(0) =20 =" PP Fu(0,Z1(0), ... 2 ()| < §°174" |2(0).

Hence
20 = Z) =0 P Fu(0,21(6), ..... % (0))] < € K.

O

Theorem 4.4. Assume that the preconditions of Theorem 3.3 are satisfied. Then the model (1.1) is UH
stable in C (J,R").

Proof. Let € = max{ey, e, ....., €} > 0 and
L v iTpi—q+1
Q= ( Y ) P . 4.2)
B(p) =\ )A-p)" T'(pi+2-9q)

Let (21,22, -..-.» 2n) € G be a functions satisfying the inequalities
ABCTW-q:V ~ -~ —~
05 D7 Z(0) — Fi(0.21(0).22(0), ... Zn (0))] < &,
and let (z1, 22, ...., 2,) € G be the unique solution of the following model

07 DP9z (0) = Fi(6,21(6), ... 2 (0)),
2(0) =Z1(0),k = 1,2, oo,

Now, in the light of Lemma 2.8, we have
2(0) = 2 +67 PP F(6,21(0), 22(0), ... 24 (0)),

Since z;(0) = 7:(0),(k = 1,2, .....,n), we get
a(6) =7+ P F(6, 21(0), 22(6), ...y 20 (0)),

AIMS Mathematics Volume 7, Issue 2, 2001-2018.
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Hence, from (3.4) and Lemma 4.3, then for each 6 € J, we have

b

n
-zl < K+ Qi Y |55 — 2
j=1

which implies

n
< D Ke+ D OlE T Z) = (@122, 20
k=1 k=1

For € = max {e, &, ....., €,} and
9 — nK ,
1 =20
we get
1(Z1, 225 coes Z0) = (215 225 e ZW)I| < Ne.
Hence the model (1.1) is U-H stable. O

5. Continuous dependence and 5-approximate solutions

In this section, we shall discuss the results of continuous dependence of solutions of the proposed
model (1.1) on initial conditions.

Definition 5.1. [29] A function (21,22, .....2,) € G satisfying the following fractional differential
inequality
(65 DP 9 24(6) — Fi(8.21(6), 22(6), -.... 24 ()| < 6,0 € T, (5.1)

and
2(0) = 23,

is called 6-approximate solutions of model (1.1).

Theorem 5.2. For p € (0,1),g > 0,ve Rand 1 = —ﬁ. Let ¥ : I X G — R be a continuous

function and satisfies Lipschitz condition 3.4, let (z1, 22, ...., Z,) and (z’{, Ly aveens z;) be a d-approximation
solutions of the model (1.1). If A # 0 and

mp mp . . My, I L o . Ly
npy My . . My, 1 by Ly . . Iy
= — s
A
myr My . . Ny, lnl ln2 . . lnn

where l;; € R,i,j=1,2,..nand
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where

Ly 1
Q. =—07” (1.,k=1,2,...n,
“~ B(p) 1 (1) "

then

||(Z1’Z2’ (XX] Zn) - (ZT’ Z;’ ceey Z;;)

< i Z Z by (6717161 + 62l +

k=1 r=1

),

Proof. Let (21,22, ey 20) » (ZT Ly wenens zjl) € G be an §-approximation solutions of the model (1.1). Then,
we have

%= 2

{ 05DP 5 (0) = Fil0.21(6),22(6). .o 22 (O))]| < 61,0 € T, 5.2)
SECDP2(60) = Fi(0,2(0). 25(0)s e 5 O)]| < 02,6 € T, ‘
and
z(0) = z§
Z:(0) = i,
k=1,2,...,n.

Applying g‘BI"’q’V on both sides of the above inequalities, and using Lemma 2.8, we get

|2(0) — 2 =18 1P 9 F(6,21(6), 22(6), .. 2, ()] < {51796,
2(0) — 75 —AP P9 F(6,25(0), 25(0), s 7, (O))] < 217975,

Using the fact [z] — |y| < |z —y| < |z] + [y], we get

SPIPTY (6] + 6, 2
|21(0) — 2 +5° P Fi(6,21(6), 22(6), ..., 20 ()]
+ [5:(0) — 25 +6° 1P Fu(0, 23(6), 25(0), ... 75, ()]

> [|a®) & +5 1 Fi0, 21(0), 220), ... 2 (6)]
- [40) - & +E 1 Fu6,21(0), 53(0), .. 2, )|
> |@® - 50) - (4 - =)

+ G‘BI”"]’V [Fi (0, 21(0), 22(6), ..., 2, (0)) — F1(0,21(0), 25(0), ...., 2, (0))]|
(2(0) - 0| - |24 - ")
+ [AB1P 9 [FiO, 21(0), 22(6), ovvs 20 (0)) — Fil, Z5(6), 25(6), -.ves 25, ()] -

\%

Then, we have

sup |z(6) — z;(0)|
0eg

e = =il

< 3Blp,q,v |51 + 52| + |Zg — Zék
FAPP | F (0, 20(0), 22(0), .20 (0)) — Fal0, 250, 5(0), .25 (O))
< SPIPOVIS) + 6| + |zl(‘) —zk
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n
0 ) ki 2
=1

Consequently, we have the following inequalities

n
* * ABYp.9q, 1 *1
(1-Qp) a1 - 2| - Z lei =zl < §5179" 161 + il + |25 — 2|
j=2
n
* * ABYp.9q, 2 *2
o) S [y o o L IR AR < |
j=1
Jj#2
n
ABYP.4» 3 3
(- |a-a-6 D -zl < § 19161 + 6+ |55 - 23]
=1
J#3
n—1
ABYP.4»
=)=z - > o=z < 6519 16 + 6l + | - =57 (5.3)
=1
Inequalities (5.3) can be writting as matrices as followes
mp mp miy, 21— 2 0PIV IS + 6o + |7 — 25
my My Moy 22, 0PI |8y + 65 + |75 — 2
<
my1 My Myp in — Z;F, z(ﬁ)lBIp,q,v 01 + 6] + Zg - Zz;n
By simple computations, the above inequality becomes
21— 2 hy o . . Ly 0PIV IS + 6o + 7 — 25!
22— Z; 1 by by . . by SBIp,q,v |01 + 0o| + ZS - Zgz
< — X
A
-z l l ABIPG |5y + 6| + |20 — 22"
Zn Zn n2 - - nn 0 1 2 ZO ZO
Since A # 0. This leads to
al.
1 x
e =zl < 3031 1o+ 6l + [z~ 25)
r=1
al.
2 :
22— 2| < Z’ (651797 16, + 63 + |G - 23)
r=1
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*

Zn_Zn

< ZZZ(ABIpqvlél

r=1

r)_

— 2
From the fact

1 220 eevns 20) = (2] 255 oo

n
=)l =zl
k=1

It follows that

(Zl,Zz, . ,Zn) - (ZT,ZZ, .....
[

< ; Zl lkr ABIpqv _ Zér)
< - Z Z L, (QBIP’q’V 16, 20— 2y ) . (5.4)
k=1 r=1

O
Remark 5.3. If 61 = 6, = 0 in the inequality (5.4), then (21,22, ..., 20) (Zl,zz, ..... ,z;‘l) are solutions of
the model (1.1) and the inequality (5.4) reduces to

||(Z1’Z2’ eosey Zn) - (ZT, Z;, .....

L3S

klrl

which provides the continuous dependence of the model (1.1). Also if zj = zi)" forall r = 1,2, ...,n, then

(Zl,Zz, --..,Zn) - (ZT,ZZ, .....
[

which provides the uniqueness of a solution of model (1.1).

6. An example

Consider the following model

ABCD3317,(8) = F1 (6, 21(8), 22(6),s s 2a(6))
ABCY)3.3-

0 2(0) 7—~2 (Ha Z](H), ZZ(G)’ () Zn(e)) P

N\'—‘

ABCD3312,(6) = F (6, 21(8), 22(6), -.... 24(6))
0=z eRk=1,2,...n

Here p = %q:%,vzl,a:O,Qzl,

0(1+ X%, ]2,0))
Fi (0,21(0), 22(0), ..., za(0)) = ,0€[0,11, (21,22, .. 2) €G-
30( 1+ 2%, 20|
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Clearly, F (0, z1(0), 22(6), ..., z,(8)) are continuous, F (0, z;(0), z2(0), ....., z,(0)) = 0 and

1
| (6, 21(8), 22(6), ...0 24(8)) = Fi (6,2} (6), Z5(6), ... Z,(0))| < 3 Z l2; -z,

=1

for all (21, 22, s 2u) + (2]2 231 - 25) € G Also

1 n
T2 (0.210). 22(0). ... @) < 5 [1 £ |z,-(9)|].

=1
Here L, = A; = ai = % forallk=1,2,..,nand j = 1,2, ...,n. Now, by simple calculation, we get

A~ 0.35, forg # 1,
"7\ 045, forg=1.

Thus all conditions of Theorem 3.3 are satisfied. Hence, model (1.1) has a unique solution on (0, 1].
Finally, for € = max {€, 6, ....., €} , we find that

|65 DP"Z(0) — F(6.21(0), 22(0), ... 2, (0))| < €.
is satisfied. Hence the model (1.1) is U-H stable with

”(%’1’5’ ’FZvn) - (ZI,Z27 ceey Zn)” < mE,
where
nK

N=——— >
I_ZZ=1QI<

0.

7. Conclusions

ABC fractional operators with multi-parameters ML kernels on certain time scales and the integral
equations expressed by them are some of the keys in developing fractional calculus. In this work, we
have obtained some existence, uniqueness, UH stability results for the fractional system (1.1) in the
frame of generalized FD in AB settings containing a multi-parameter ML kernel. As well, the data
dependence analysis and d-approximate solutions of the proposed system are discussed. Our approach
is based on some fixed point theorems and mathematical techniques. As an application, one example
has been provided in order to illustrate the validity of our results. We realized that, if ¢ # 1, then
the condition #;(0,z;(0), ...... ,22(0)) = 0,(k = 1,2, ...,n) not necessary to guarantee a unique solution.
The considered system has been investigated under the generalized ML law. Observed that in the
case of the classical ABC fractional operator, the requirement of the vanishing status condition of
the right-hand side of the dynamic system to full the initial data needs recuperation on the modeled
population. However, the nature of the generalized ML kernel managed to get rid of any restrictions on
the initial data. Due to the fractional operators used in this work have semigroup property and recently
proposed, the results obtained here are new and open the door for the researchers to study more real-
world problems in different fields. Besides, the results obtained in this work are very significant in
developing the theory of fractional analytical dynamics of different biological models.

So in the future, the same analysis can be extended to the system of delay equations under the
generalized fractional operator.

AIMS Mathematics Volume 7, Issue 2, 2001-2018.
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