AIMS Mathematics

2022, Issue 12: 20767-20780. doi: 10.3934/math.20221138
Research article

Regular local hyperrings and hyperdomains

• Received: 14 July 2022 Revised: 09 September 2022 Accepted: 14 September 2022 Published: 26 September 2022
• MSC : 20N20, 13E05

• This paper falls in the area of hypercompositional algebra. In particular it focuses on the class of Krasner hyperrings and it studies the regular local hyperrings. These are Krasner hyperrings $R$ with a unique maximal hyperideal $M$ having the dimension equal to the dimension of the vectorial hyperspace $\frac{M}{M^2}$. The aim of the paper is to show that any regular local hyperring is a hyperdomain. For proving this, we make use of the relationship existing between the dimension of the vectorial hyperspaces related to the hyperring $R$ and to the quotient hyperring $\overline{R} = \frac{R}{\langle a\rangle}$, where $a$ is an element in $M\setminus M^2$, and of the regularity of $\overline{R}$.

Citation: Hashem Bordbar, Sanja Jančič-Rašovič, Irina Cristea. Regular local hyperrings and hyperdomains[J]. AIMS Mathematics, 2022, 7(12): 20767-20780. doi: 10.3934/math.20221138

Related Papers:

• This paper falls in the area of hypercompositional algebra. In particular it focuses on the class of Krasner hyperrings and it studies the regular local hyperrings. These are Krasner hyperrings $R$ with a unique maximal hyperideal $M$ having the dimension equal to the dimension of the vectorial hyperspace $\frac{M}{M^2}$. The aim of the paper is to show that any regular local hyperring is a hyperdomain. For proving this, we make use of the relationship existing between the dimension of the vectorial hyperspaces related to the hyperring $R$ and to the quotient hyperring $\overline{R} = \frac{R}{\langle a\rangle}$, where $a$ is an element in $M\setminus M^2$, and of the regularity of $\overline{R}$.

 [1] R. Ameri, M. Eyvazi, S. Hoskova-Mayerova, Superring of polynomials over a hyperring, Mathematics, 7 (2019), 902. https://doi.org/10.3390/math7100902 doi: 10.3390/math7100902 [2] H. Bordbar, I. Cristea, Divisible hypermodules, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat., 30 (2022), 57–74. https://doi.org/10.2478/auom-2022-0004 [3] H. Bordbar, I. Cristea, About normal projectivity and injectivity of Krasner hypermodules, Axioms, 10 (2021), 83. https://doi.org/10.3390/axioms10020083 doi: 10.3390/axioms10020083 [4] H. Bordbar, I. Cristea, Height of prime hyperideals in Krasner hyperrings, Filomat, 31 (2017), 6153–6163. https://doi.org/10.2298/FIL1719153B doi: 10.2298/FIL1719153B [5] H. Bordbar, I. Cristea, Regular parameter elements and regular local hyperrings, Mathematics, 9 (2021), 243. https://doi.org/10.3390/math9030243 doi: 10.3390/math9030243 [6] H. Bordbar, I. Cristea, M. Novak, Height of hyperideals in Noetherian Krasner hyperrings, U.P.B. Sci. Bull., Ser. A, 79 (2017), 31–42. [7] H. Bordbar, M. Novak, I. Cristea, A note on the support of a hypermodule, J. Algebra Appl., 19 (2019), 2050019. https://doi.org/10.1142/S021949882050019X doi: 10.1142/S021949882050019X [8] B. Davvaz, V. Leoreanu-Fotea, Hyperring theory and applications, Palm Harbor, USA: International Accademic Press, 2008. [9] B. Davvaz, T. Musavi, Codes over hyperrings, Matematiski Vesnik, 68 (2016), 26–38. [10] S. Jančič-Rašovič, I. Cristea, Hypernear-rings with the defect of distributivity, Filomat, 32 (2018), 1133–1149. https://doi.org/10.2298/FIL1804133J doi: 10.2298/FIL1804133J [11] M. Krasner, Approximation des corps values complets de caracteristique $p\neq 0$ par ceux de caracteristique zero, Colloque d'Algèbre Supérieur, 19 (1956), 129–206. [12] M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. Math. Sci., 6 (1983), 307–312. https://doi.org/10.1155/S0161171283000265 doi: 10.1155/S0161171283000265 [13] C. G. Massouros, Free and cyclic hypermodules, Ann. Mat. Pura Appl., 150 (1988), 153–166. https://doi.org/10.1007/BF01761468 doi: 10.1007/BF01761468 [14] C. G. Massouros, On the theory of hyperrings and hyperfields, Algebra Logic, 24 (1985), 728–742. [15] G. Massouros, C. Massouros, Hypercompositional algebra, computer science and geometry, Mathematics, 8 (2020), 1338. https://doi.org/10.3390/math8081338 doi: 10.3390/math8081338 [16] J. Mittas, Sur certaines classes de structures hypercompositionnelles, Proc. Acad. Athens, 48 (1973), 298–318. [17] J. Mittas, Espaces vectoriels sur un hypercorp–Introduction des hyperespaces affines et euclidiens, Math. Balkanica, 5 (1975), 199–211. [18] A. Nakassis, Recent results in hyperring and hyperfield theory, Int. J. Math. Math. Sci., 11 (1988), 209–220. https://doi.org/10.1155/S0161171288000250 doi: 10.1155/S0161171288000250 [19] R. Rota, Strongly distributive multiplicative hyperrings, J. Geom., 39 (1990), 130–138. https://doi.org/10.1007/BF01222145 doi: 10.1007/BF01222145 [20] D. Stratigopoulos, Hyperanneaux non commutatifs: Hyperanneaux artiniens, centralisateur d'un hypermodule et theoreme de densite, C. R. Acad. Sc. Paris, 269 (1969), 889–891. [21] T. Vougiouklis, The fundamental relations in hyperrings. The general hyperfield, In: Algebraic hyperstructures and applications, Teaneck, NJ: World Scientific Publishing, 1991. https://doi.org/10.1142/9789814539555 [22] T. Vougiouklis, $H_v$-vector spaces, In: Algebraic hyperstructures and applications, Romania, Hadronic Press, Inc., Florida, 1994,181–190.
通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

2.2 3