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1. Introduction

In classical algebra, it is well known that the Krull dimension d of any Noetherian local ring R
with maximal ideal M is less than or equal to the dimension of M

M2 . If the equality holds, the ring is
called regular. One of the crucial results in the theory of regular rings states that any regular local ring
is an integral domain. If the dimension of R is zero, then its maximal ideal must be trivial and by
consequence R is a field. The same problem has been started to be investigated by Bordbar and
Cristea [5] in the theory of Krasner hyperrings. These are ring-like hypercompositional structures,
defined by Krasner in 1956, having the additive part a canonical hypergroup (this is a natural
generalization of the abelian group) and the multiplicative one a semigroup with a bilaterally
absorbing element 0, such that the multiplication distributes from both sides over the addition [11].
Inspired by the properties of the hyperpolynomials (they are defined in the same manner as
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polynomials, but with coefficients in a Krasner hyperring), Mittas [16] noticed that the multiplication
of hyperpolynomials is a hyperoperation and in 1973 he introduced a new class of hyperrings, called
superrings. Their additive part remains a canonical hypergroup, while the multiplicative one becomes
a semihypergroup with a bilateral absorbing element and the multiplication is distributive on both
sides with respect to the addition. Notice that this structure was then called by Ameri et al. [1] a
strongly distributive superring, which is in fact an additive-multiplicative hyperring in the sense of
Davvaz and Musavi [9]. The definition of the distributivity created some confusions in the
terminology, as explained in [10], that we will also clarify in the next section of this paper. If we relax
the conditions on the additive structure and consider it as a hypergroup, while the multiplicative part
remains a semihypergroup, we obtain the notion of (strong) general hyperring, introduced by
Vougiouklis [21]. The last type of hyperring is the multiplicative one, defined by Rota [19], where the
addition is a binary operation and the multiplication is a hyperoperation.

Inspired by similar investigations on classical algebra, Bordbar and Cristea have started the study
of regular local hyperrings [5], by defining the regular parameter elements in a commutative local
hyperring. They have shown that the dimension of a local hyperring R with maximal hyperideal M is
equal to the height of M. Since R

M is a hyperfield, the quotient hypermodule M
M2 becomes a vectorial

hyperspace, having the dimension greater than or equal to the dimension of the local hyperring R.
In the case of equality, the hyperring is called regular. In this paper we continue to investigate on
the properties of regular local hyperrings, with the aim to prove that any regular local hyperring is a
hyperdomain, i.e., a commutative hyperring without divisors of zero.

The structure of this paper is as follows. In the preliminary section we gather the basic notions
related to Krasner hyperrings, dimension of a Krasner hyperring, height of hyperideals, and
hypermodules. After shortly recalling the definitions of a regular local hyperring and regular
parameter elements, Section 3 focuses on the study of the relationship existing between the
dimensions of the vectorial hyperspaces M

M2 and M
M

2 related to a local Krasner hyperring R with

maximal hyperideal M, where M = M
<a> and a ∈ M \ M2. First, we prove that, if R is a regular local

hyperring, then R = R
<a> is regular local, too. Then we prove several properties concerning the

dimension of R, primary hyperideals, and the dimension of the vectorial hyperspace related to R and
R. These help us to state and prove the main result of this article: every regular local hyperring is a
hyperdomain (see Theorem 3.13). The article ends with a non-trivial example of a regular local
hyperring. The conclusive section summarizes the findings of this article and their impact on the
existing theory, as well as some new lines of research that this study could open.

2. Preliminaries

This section collects the main results about the Krasner hyperrings, that will help the reader to
better understand the topic. For a detailed description of the theory of Krasner hyperrings, we suggest
to consult the works [8, 12–15, 18].

A (Krasner) hyperring is a hypercompositional structure (R,+, ·) where

(1) (R,+) is a canonical hypergroup, i.e.,

(a) (∀a, b ∈ R⇒ a + b ⊆ R),
(b) (∀a, b, c ∈ R) (a + (b + c) = (a + b) + c),
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(c) (∀a, b ∈ R) (a + b = b + a),
(d) (∃0 ∈ R)(∀a ∈ R) (a + 0 = {a}),
(e) (∀a ∈ R)(∃ − a ∈ R) (0 ∈ a + x⇔ x = −a),
(f) (∀a, b, c ∈ R)(c ∈ a + b⇒ a ∈ c + (−b)).

(2) (R, ·) is a semigroup with a bilaterally absorbing element 0, i.e.,

(a) (a, b ∈ R⇒ a · b ∈ R),
(b) (∀a, b, c ∈ R) (a · (b · c) = (a · b) · c),
(c) (∀a ∈ R) (0 · a = a · 0 = 0).

(3) The multiplication strongly distributes bilaterally over the addition:

(∀a, b, c ∈ R) (a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a).

If moreover (R, ·) is commutative, i.e.,

(4) (∀a, b ∈ R) (a · b = b · a), then the hyperring is called commutative.

Finally, if (R, ·) is a monoid, i.e.,

(5) (∃1 ∈ R)(∀a ∈ R) (a · 1 = a = 1 · a), we say that R is with a unit element.

(6) A hyperring with a multiplicative identity 1, where every nonzero element is invertible, is called
a hyperfield.

Throughout this paper, R denotes a Krasner hyperring, called here by short, hyperring, unless
otherwise stated.

A nonempty set I of a hyperring R is called a right hyperideal if, for all a, b ∈ I and r ∈ R, we have
a − b ⊆ I and a · r ∈ I. Similarly, a left hyperideal is defined dually and a set I is called a hyperideal
if it is a left and right hyperideal of R. A proper hyperideal M of a hyperring R is called maximal if
M itself and R are the only hyperideals of R containing M. A hyperideal P of a hyperring R is called
prime if, for every pair of elements a and b of R, the fact that ab ∈ P implies either a ∈ P or b ∈ P.
Moreover, a nonzero hyperring R having exactly one maximal hyperideal is called a local hyperring. A
prime hyperideal P of R is called a minimal prime hyperideal over a hyperideal I of R if it is minimal
(with respect to the inclusion) among all prime hyperideals of R containing I. A prime hyperideal P is
called a minimal prime hyperideal if it is a minimal prime hyperideal over the zero hyperideal of R.

A hyperring R is called Noetherian if it satisfies the ascending chain condition on the hyperideals
of R, in the sense that, for every ascending chain of hyperideals I1 ⊆ I2 ⊆ I3 ⊆ . . ., there exists N ∈ N
such that In = IN , for every natural number n ≥ N.

The next result fixes the form of the hyperideals of a quotient hyperring.

Proposition 2.1. Let R be a commutative hyperring and I be a hyperideal of R. For any hyperideal J
of R such that I ⊆ J, the set J

I is a hyperideal of R
I . Moreover, for any arbitrary element r ∈ R, we have

r + I ⊆
J
I
⇐⇒ r ∈ J.

Let us recall now some results introduced and studied in [4, 6, 7] related to the dimension of a
hyperring. Let P be a prime hyperideal of a commutative hyperring R. The height of P, denoted by
htRP, is defined to be the supremum of the lengths of all chains

P0 ⊂ P1 ⊂ . . . ⊂ Pn
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of prime hyperideals of R, for which Pn = P, if this supremum exists, and it is ∞, otherwise. We say
that the dimension of a hyperring R, denoted by dimR, is the supremum of the lengths of all chains of
prime hyperideals of R. If R is a local hyperring with maximal hyperideal M, then dimR = htRM.

Proposition 2.2. Let R be a commutative Noetherian hyperring and I a proper hyperideal of R
generated by n elements. Then htRI ≤ n.

On a canonical hypergroup, endowed with an external operation using elements from a Krasner
hyperring, a structure of Krasner hypermodule [2, 3, 13] can be defined as follows.

Let R be a hyperring with unit element 1. An R-hypermodule M is a canonical hypergroup (M,+)
together with a map R × M −→ M defined by

(a,m) 7→ a · m = am ∈ M (2.1)

such that for all a, b ∈ R and m1,m2 ∈ M we have

(1) (a + b)m1 = am1 + bm1.

(2) a(m1 + m2) = am1 + am2.

(3) (ab)m1 = a(bm1).
(4) a0M = 0Rm1 = 0M.
(5) 1m1 = m1, where 0M denotes the zero element of the canonical hypergroup (M,+) and 0R the

zero element of the additive part of R, which is again a canonical hypergroup. Besides, if R is a
hyperfield, then M is called a vectorial hyperspace.

This definition was given by Stratigopoulos [20] and later, Mittas [17] relaxed the first axiom,
without changing the name of the structure, asking only the inclusion to be satisfied, i.e., (a + b)m1 ⊆

am1+bm1, in order to state that the product Fn of n-copies of a hyperfield F is an F-vectorial hyperspace
with the canonical addition and multiplication by scalars of the n-tuples of elements of F. Recently,
this structure has been re-named a weak hypermodule [15] (to not be confused with the Hv-modules,
where the weak distributivity [22] is involved: x · (y+ z)∩ x · y+ x · z , ∅ and (x+ y) · z∩ x · z+ y · z , ∅,
for any three elements x, y, z). In our paper we will use the initial definition given by Statigopoulous
and call the structure a Krasner hypermodule, or simply a hypermodule.

Let V be a vectorial hyperspace over a hyperfield F. A set A of elements of V is called:

(1) Linearly independent if for every finite set of vectors {v1, v2, . . . , vn} ⊆ A, 0 ∈
∑n

i=1 rivi implies
ri = 0 for all i such that 1 ≤ i ≤ n. If A is not linearly independent, then A is called linearly
dependent.

(2) Spanning set if each vector of V is contained in a linear combination from A. We say that V is the
span of A.

A basis for a vectorial hyperspace V over a hyperfield F is a set B ⊆ V which is both spanning set
and linearly independent. A vectorial hyperspace is finite-dimensional if it has a finite basis. The
number of elements in an arbitrary basis of a vectorial hyperspace is called the dimension of the
vectorial hyperspace and we denote it by vdimFV , where “v” stays for “vectorial hyperspace”. This is
to differentiate it from the dimension of a hyperring R, denoted simply by dimR.

We conclude this section by recalling one important result in hypermodule theory. It comes from the
original Nakayama’s lemma in classical algebra, that establishes the interactions between the Jacobson
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radical ideal of a commutative ring and its finitely generated module. In a commutative hyperring
R, the intersection between all maximal hyperideals is called the Jacobson radical of the hyperring,
denoted by Jac(R).

Lemma 2.3. [4] (Nakayama’s lemma) Let M be a finitely generated R-hypermodule and I a hyperideal
of R contained by the Jacobson radical Jac(R) of R. Then M = IM implies that M = {0}.

3. Regular local hyperrings and hyperdomains

The aim of this section is to show that every local regular hyperring is a hyperdomain. For doing
this, we use elements from hypermodule theory, where by a hypermodule we mean the structure defined
by Stratigopoulos, where the distributivity property is defined using the equality.

We start with the result about the relationship existing between the dimension of a local hyperring
with maximal hyperideal M and the dimension of the associated vectorial hyperspace M

M2 .

Theorem 3.1. [5] Let R be a local hyperring with maximal hyperideal M. Then

dimR ≤ vdim R
M

M
M2 .

This naturally leads to a new definition, the one of a regular hyperring, as follows.

Definition 3.2. [5] Let R be a local Noetherian hyperring with maximal hyperideal M. We say that R
is a regular hyperring when dimR = vdim R

M

M
M2 . Consider d = dimR. By regular parameter elements of

R we mean a set of d elements of R that generate an M-primary hyperideal of R.

Some properties of a finitely generated R-hypermodule over a local hyperring R are covered in the
next results.

Proposition 3.3. [5] Let R be a local hyperring with maximal hyperideal M and consider the hyperfield
F = R

M . Let N be a finitely generated R-hypermodule. Then the R-hypermodule N
MN has a natural

structure as a hypermodule over R
M as a F-vectorial hyperspace.

Moreover, let n1, n2, . . . , nt ∈ N. Then the following statements are equivalent.

(i) N is generated by n1, n2, . . . , nt.
(ii) The R-hypermodule N

MN is generated by the elements n1 + MN, n2 + MN, . . . , nt + MN.
(iii) The F-vectorial hyperspace N

MN is generated by the elements n1 + MN, n2 + MN, . . . , nt + MN.

Corollary 3.4. For a local hyperring R with maximal hyperideal M and dimR = d, the following
properties are fulfilled.

(i) The dimension of the R
M -vectorial hyperspace M

M2 is the number of elements in each minimal
generating set for the hyperideal M. Moreover, at least d elements are needed to generate M, and
R is a regular hyperring when the hyperideal M can be generated by exactly d elements.

(ii) Suppose that R is a regular hyperring and a1, a2, . . . , ad ∈ M. Using Proposition 3.3, the elements
a1, a2, . . . , ad generate M if and only if the elements a1 + M2, a2 + M2, . . . , ad + M2 in M

M2 form a
basis for this R

M -vectorial hyperspace. Equivalently, the elements a1 + M2, a2 + M2, . . . , ad + M2

form a linearly independent set.
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In the next theorem, we study the relationship between the dimensions of the two vectorial
hyperspaces related to a local hyperring.

Theorem 3.5. Suppose that R is a local hyperring with maximal hyperideal M. For an arbitrary
element a ∈ M \ M2, take R = R

⟨a⟩ , M = M
⟨a⟩ , and M2 = M2

⟨a⟩ . Moreover, suppose that the application
nat : R→ R is the natural surjective hyperring homomorphism defined, for each r ∈ R, as follows:

nat(r) = r + ⟨a⟩. (3.1)

Then, we have

vdim R
M

M
M2 = vdim R

M

M

M2
+ 1.

Proof. Since M is a unique maximal hyperideal of R, it follows that R is a local hyperring with M̄ its
maximal hyperideal. Hence, R

M
is a hyperfield and thus M

M2
is a R

M
-vectorial hyperspace. Suppose that

d = vdim R
M

M
M2

. Then, using Proposition 3.3, there exist the elements m1,m2, . . . ,md ∈ M such that their
images under the composition of the following two homomorphisms, i.e., the homomorphism g ◦ f , is
a basis for the R

M
-vectorial hyperspace M

M2
: For any i = 1, 2, . . . , d,

M
f
−→ M

g
−→

M

M2
, f (mi) = mi = mi+⟨a⟩, g(mi) = mi+M2. (3.2)

Moreover, Proposition 3.3 shows that the hyperideal M of R is generated by d elements m1,m2, . . . ,md.
This means that,

M=
d∑

i=1

⟨mi⟩=

d∑
i=1

Rmi=

d∑
i=1

R
⟨a⟩

(mi+⟨a⟩)=
(
∑d

i=1⟨mi⟩+⟨a⟩)
⟨a⟩

.

Then, based on Proposition 2.1, we can write

M =
d∑

i=1

⟨mi⟩ + ⟨a⟩.

In other words, the set {m1,m2, . . . ,md, a} is a generating set for M. Corollary 3.4 part (ii) shows that
the R

M -vectorial hyperspace M
M2 is generated by the elements m1+M2,m2+M2, . . . ,md +M2, a+M2. In

order to complete the proof, we need to prove that m1 +M2,m2 +M2, . . . ,md +M2, a+M2 are linearly
independent elements of M

M2 over the hyperfield R
M . For doing this, let r1+M, r2+M, . . . , rd+M, rd+1+M

be elements in R
M such that

(r1+M)(m1+M2) + · · ·+(rd+M)(md+M2)+(rd+1+M)(a + M2)=0 M
M2
. (3.3)

Since M is a hyperideal of R and M2 ⊆ M, we have

((r1 · m1) + M2) + · · · + ((rd · md) + M2) + ((rd+1 · a) + M2) = 0 M
M2
= M2,
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which means that

r1 · m1 + r2 · m2 + · · · + rd · md + rd+1 · a ∈ M2. (3.4)

Therefore, (
r1 · m1 + r2 · m2 + · · · + rd · md + rd+1 · a

)
+ ⟨a⟩ ∈ M2 =

M2

⟨a⟩
.

Since rd+1 · a ∈ ⟨a⟩, we have (
r1 · m1 + r2 · m2 + · · · + rd · md

)
+ ⟨a⟩ ∈ M2,

which means that

((r1 · m1) + ⟨a⟩) + ((r2 · m2) + ⟨a⟩) + · · · + ((rd · md) + ⟨a⟩) ∈ M2. (3.5)

Using (3.1), we know that (ri ·mi)+ ⟨a⟩ = nat(ri ·mi) and clearly nat(ri ·mi) = nat(ri) ·nat(mi). Thus,
we have the following equation in M

M2
:(

nat(r1) · nat(m1) + nat(r2) · nat(m2) + · · · + nat(rd) · nat(md)
)
+ M2 = M2,

equivalently with

(nat(r1) + M) · (nat(m1) + M2) + · · · + (nat(rd) + M) · (nat(md) + M2) = 0 M

M2
. (3.6)

Since M
M2

is a vectorial hyperspace over the hyperfield R
M

and using (3.2), it follows that {m1 +

M
2
,m2 + M

2
, . . . ,md + M

2
} is a generating set for the vectorial hyperspace M

M2
. Threfore the elements

m1 + M
2
,m2 + M

2
, . . . ,md + M

2
are linearly independent in R

M
. Based on (3.6) we conclude that

ri + M = 0 R
M
= M for 1 ≤ i ≤ d. Hence for each i, 1 ≤ i ≤ d, ri ∈ M and by using Proposition 2.1, we

have
r1, r2, . . . , rd ∈ M = 0 R

M
. (3.7)

Therefore in (3.3), for each i, 1 ≤ i ≤ d, ri+M = M = 0 R
M

. It is enough to show that rd+1 ∈ M because in
this case rd+1+M = M = 0 R

M
and therefore in (3.3) the elements m1+M2,m2+M2, . . . ,md+M2, a+M2

are all linearly independent.
For this goal, suppose that rd+1 < M. In this case, rd+1 should be a unit element of the hyperring R.

From (3.4) and (3.7), we can conclude that rd+1a ∈ M2. Thus, a = a r−1
d+1 rd+1 ∈ M2 which contradicts

the hypothesis a ∈ M \ M2. Therefore, rd+1 ∈ M and the set {m1 + M2,m2 + M2, . . . ,md + M2, a + M2}

is a basis for M
M2

, equivalently with

vdim R
M

M

M
2 = d + 1.

□
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Theorem 3.6. [6] Let R be a commutative Noetherian hyperring, P a prime hyperideal of R and I a
proper hyperideal of R generated by n elements, such that I ⊆ P. Then:

ht R
I

P
I
≤ htRP ≤ ht R

I

P
I
+ n.

As a consequence of this theorem, we can state the next result.

Theorem 3.7. Suppose that R is a local regular hyperring with maximal hyperideal M and a ∈ M \M2

is an arbitrary element. Let R = R
⟨a⟩ and M = M

⟨a⟩ . Then R = R
⟨a⟩ is a regular hyperring.

Proof. Since R is a regular local hyperring with maximal hyperideal M, using Definition 3.2, we state
that

dimR = vdim R
M

M
M2 .

Moreover, the hyperring R is a local hyperring with maximal hyperideal M. Using Theorem 3.6, we
conclude that

htRM − 1 ≤ htRM.

Besides, R is a local hyperring, hence dimR = htRM. Applying Theorem 3.1 to the hyperring R, we get

dimR − 1 = htRM − 1 ≤ htRM = dimR ≤ vdim R
M

M

M
2 .

Using now Definition 3.2 and Theorem 3.5, we conclude that

vdim R
M

M

M
2 = vdim R

M

M
M2 − 1 = dimR − 1.

Thus,

dimR = vdim R
M

M

M
2 .

Therefore, R is a regular hyperring. □

In the following, we present two results on Noetherian hyperrings, needed in the proof of the
Theorem 3.10.

Proposition 3.8. Let R be a Noetherian hyperring, A be a hyperideal of R and B = ∩∞n=1An. Then,
B = AB.

Proof. If A = R, then it is clear that B = AB. So, assume that A is a proper hyperideal of R. A routine
verification shows that AB ⊆ B. Since AB ⊆ B ⊆ A , R, we conclude that AB is a proper hyperideal
of R.

R is a Noetherian hyperring, thus AB has a decomposition. Suppose that AB = P1∩P2∩· · ·∩Pn and
r(Pi) = Qi for 1 ≤ i ≤ n, is a minimal primary decomposition of AB. If there exists i, where 1 ≤ i ≤ n,
such that B ⊈ Pi, then we can choose an element b ∈ B\Pi. Besides, bA ⊆ AB = P1∩P2∩· · ·∩Pn ⊆ Pi.
Since Pi is a primary hyperideal and b < Pi, there exists m ∈ N such that A ⊆ Pm

i . Thus,

B = ∩∞n=1An ⊆ A ⊆ Pm
i ⊆ Pi.

This is a contradiction. Hence, for every i where 1 ≤ i ≤ n, we have B ⊆ Pi. This means that B ⊆ AB
and therefore AB = B. □
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Lemma 3.9. Let R be a Noetherian hyperring R and A be a hyperideal such that A ⊆ Jac(R). Then
∩∞n=1An = 0.

Proof. Suppose that B = ∩∞n=1An. Using Proposition 3.8, we have B = AB. Since R is a Noetherian
hyperring, B has a finitely generated R-hypermodule structure. Thus, using Lemma 2.3, we conclude
that B = 0. □

Theorem 3.10. Let R be a local hyperring with maximal hyperideal M. Suppose that R is not a
hyperdomain and P is a principal prime hyperideal of R. Then htRP = 0.

Proof. Suppose that P is a principal hyperideal of R generated by the element a and htRP , 0. Then,
there exists at least a prime hyperideal Q of R such that Q ⊂ P. If we show that, for all n ∈ N, Q ⊆ Pn

then, using Lemma 3.9, we conclude that Q = 0. We will prove this statement by induction on n. If
n = 1, take an arbitrary q ∈ Q. It is clear that q ∈ P and Q ⊆ P1. Suppose we have shown that q ∈ Pn.
Since P =< a >, there exists r ∈ R such that q = r · an ∈ Q. Since a < Q and Q is a prime hyperideal,
it follows that r ∈ Q. Hence, r ∈ P and q = ran ∈ Pn+1. Therefore, by induction on n, we conclude that

Q ⊆ ∩∞n=1Pn.

Lemma 3.9 shows that ∩∞n=1Pn = 0 and therefore Q = 0. In this case R should be a hyperdomain and
this is a contradiction. So htRP = 0. □

Corollary 3.11. Let R be a local hyperring with maximal hyperideal M. Suppose that R is not a
hyperdomain and P is a principal prime hyperideal of R. Then P is a minimal prime hyperideal.

Proposition 3.12. Suppose that P1, P2, . . . , Pn are hyperideals of a hyperring R such that at least n− 2
of them are prime hyperideals, where n ≥ 2. Let A be a hyperideal of R with the property

A ⊆ P1 ∪ P2 ∪ · · · ∪ Pn.

Then, A ⊆ Pi, for some i, 1 ≤ i ≤ n.

Proof. In order to prove the statement, we will use the mathematical induction method on n. First, for
n = 2 suppose that A ⊆ P1∪P2. If A ⊈ P1 and A ⊈ P2, then there exists x ∈ A\P1 and y ∈ A\P2. Since
x ∈ A \ P1 and A ⊆ P1 ∪ P2, we conclude that x ∈ P2 and similarly, y ∈ P1. Besides, A is a hyperideal
and x, y ∈ A, hence, x − y ⊆ A ⊆ P1 ∪ P2. For an arbitrary element z ∈ x − y, we have z ∈ P1 ∪ P2.
Thus, z ∈ P1 or z ∈ P2. Now suppose that z ∈ P1. Since z ∈ x − y, it follows that x ∈ z + y. Moreover,
z and y are elements of P1 and P1 is a hyperideal. Hence, x ∈ z + y ⊆ P1 which is a contradiction with
x ∈ A \ P1.

Similarly, the other possibility (z ∈ P2) leads us to another contradiction (y ∈ P2). Therefore, A ⊆ P1

or A ⊆ P2.
Assume that k ≥ 2 and that for n = k the result has been proved. Now we prove it for n = k + 1.

Then,
A ⊆ ∪k+1

i=1 Pi,

where k − 1 hyperideals of Pi, for 1 ≤ i ≤ k + 1, are prime. Suppose that P1 is one of the prime
hyperideals. If for each j, where 1 ≤ j ≤ k + 1, A ⊈ ∪k+1

i=1,i, jPi, then there exists a j ∈ A such that

a j ∈ A \ ∪k+1
i=1,i, jPi.
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Clearly, a j ∈ P j, for each 1 ≤ j ≤ k+ 1. Moreover, since P1 is a prime hyperideal and a2, a3, . . . , ak+1 <

P1 it follows that a2a3 · · · ak+1 < P1. Let define the set B as B = a1 + a2a3 · · · ak+1. Then B can not be a
subset of P1, because if B ⊆ P1, then

a2a3 · · · ak+1 ∈ B − a1 ⊆ P1,

that is a contradiction. Similarly, B can not be a subset of any Pt, where 2 ≤ t ≤ k + 1.
Since A is a hyperideal and a1, a2, . . . , ak+1 ∈ A, a routine verification shows that

B = a1 + a2a3 · · · ak+1 ⊆ A.

Let b ∈ B be an arbitrary element. Then b ∈ A and using the hypothesis A ⊆ ∪k+1
i=1 Pi, we conclude

that b ∈ P1 ∪ P2 ∪ · · · ∪ Pk+1. Thus, b ∈ P1 or b ∈ Pt for some t, where 2 ≤ t ≤ k + 1. In both case this
is a contradiction, because B can not be a subset of P1 or Pt for some t, where 2 ≤ t ≤ k + 1.

Therefore, at least for one j, with 1 ≤ j ≤ k + 1, we have A ⊆ ∪k+1
i=1,i, jPi and using the induction we

conclude that A ⊆ Pi for some i, with 1 ≤ i ≤ k + 1. □

Now we have all the elements to prove the main result of this article.

Theorem 3.13. Every regular hyperring is a hyperdomain.

Proof. Let R be a regular hyperring of dimension d with its maximal hyperideal M. We will use the
mathematical induction on d to prove this theorem. If d = 0, then using Definition 3.2 and
Corollary 3.4, it follows that vdim R

M

M
M2 = 0 and the number of the elements in each generating set for

M is 0. Hence M = 0 and R should be a hyperfield. Since every hyperfield is a hyperdomain, the
theorem is proved. Now suppose that d > 0 and every regular hyperring of dimension less than d is a
hyperdomain.

Suppose by absurd that R is not a hyperdomain. Then M2 ⊊ M because

0 < d = dimR = vdim R
M

M
M2 .

So there exists an element a ∈ M \ M2. Moreover, using Theorem 3.7, we conclude that the hyperring
R
<a> = R̄ is regular having the dimension d− 1. Thus, based on the induction assumption, the hyperring
R̄ is a hyperdomain. Therefore, the hyperideal < a > is prime. Theorem 3.10 indicates that ht < a >= 0
and so < a > is a minimal prime hyperideal.

Since R is a Noetherian hyperring it follows that every hyperideal of R has a finite set of minimal
prime hyperideals. Suppose that the set {P1, P2, . . . , Pn} is the set of minimal prime hyperideals of 0.
Then, for an arbitrary element a ∈ M \ M2, there exists i, 1 ≤ i ≤ n, such that < a >= Pi. Thus, we
conclude that

M \ M2 ⊆ P1 ∪ P2 ∪ · · · ∪ Pn.

In other words
M ⊆ M2 ∪ P1 ∪ P2 ∪ · · · ∪ Pn.

Using Proposition 3.12, we conclude that M ⊆ M2 or M ⊆ Pi, for some i, 1 ≤ i ≤ n. In both cases
we get a contradiction since we have shown that M2 ⊂ M and besides if M ⊆ Pi for some i, where
1 ≤ i ≤ n, then

dimR = htRM ≤ htPi = 0,

which contradicts our hypothesis. Therefore, R is a hyperdomin and the proof is complete. □
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In the next example, we construct a local hyperring which is also a principle hyperideal
hyperdomain, containing non-trivial regular parameter elements.

Example 3.14. Let R = {0, 1} ∪ { 1
pn | p is a prime number and n ∈ N}. First we endow the carrier set

R with a canonical hypergroup structure, by defining on R the following hyperoperation:

x + y =
{

max{x, y}, if x , y,
{r ∈ R | r ≤ x} = [0, x]R, if x = y.

(3.8)

It is clear that this is a commutative hyperoperation. Besides, also the associativity property holds.
Indeed, suppose that x, y and z are arbitrary elements of R. If x = y = z, then obviously,

x + (y + z) = (x + y) + z = [0, x]R.

If all three elements are different, then (x + y) + z = max{x, y} + z = max{x, y, z}. Similarly, we have
x + (y + z) = x +max{y, z} + z = max{x, y, z}. Thus, in this case, x + (y + z) = (x + y) + z.

Now suppose that x = y , z. Then we distinguish two possibilities.
Case I: z < x = y. Then

(x + y) + z = [0, x]R + z = ∪w∈[0,x]R(w + z). (3.9)

Since z,w ∈ [0, x]R, for the last equation in (3.9), we have

w + z =


[0,w]R, i f w = z,

z, i f w < z,

w, i f z < w.

Thus,
∪w∈[0,x]R(w + z) = [0,w]R ∪ {w ∈ R | z < w ≤ x} ∪ {z} = [0, x]R.

In a similar way one proves that x + (y + z) = [0, x]R, meaning that the associativity holds.
Case II: x = y < z. Then,

(x + y) + z = [0, x]R + z = ∪w∈[0,x]R(w + z) = z.

Besides, x + (y + z) = x + z = z, thus again the hyperoperation is associative.
It is a routine to verify that, for any x ∈ R, 0 + x = x + 0 = {x}. Moreover, since for each x ∈ R,

0 ∈ x + x = [0, x]R, we conclude that for every element x ∈ R, there exist an element y ∈ R such that
0 ∈ x + y.

Finally, we prove that for all x, y, z ∈ R,

z ∈ x + y =⇒ x ∈ z + y.

Suppose that z ∈ x + y and x , y. Thus z = max{x, y} and z + y = max{x, y} + y. Hence,

z + y = max{x, y} + y =

x + y, i f x > y,

y + y, i f x < y
=

x, i f x > y,

[0, y]R, i f x < y.
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In both cases, it results x ∈ z + y.
Now suppose that z ∈ x + y and x = y. Then from z ∈ x + y, it follows that z ∈ [0, x]R, meaning that

z ≤ x. Therefore,

z + y = z + x =

max{z, x}, i f x > z,

[0, x]R, i f x = z
=

x, i f x > z,

[0, x]R, i f x = z.

And again it results x ∈ z + y.
Therefore, (R,+) is a canonical hypergroup. We endow it now with the classical multiplication of

real numbers, which is associative and has the property that, for all x ∈ R, 0 · x = x · 0 = 0. In order to
show that (R,+, ·) is a Krasner hyperring, it is enough to prove that the multiplication distributes over
the addition, i.e., for all x, y, z ∈ R,

(x + y) · z = x · z + y · z. (3.10)

If z = 0, then Eq (3.10) is clear. So we suppose that z , 0. Thus z = 1
pk , for some k ∈ N. Now we have

two possibilities, the first one is x = y and the second one is x , y.
If x , y, then

(x + y) · z = max{x, y} · z =

x · z, i f x > y,

y · z, i f y > x,

while,

x · z + y · z = max{x · z, y · z} =

x · z, i f x > y,

y · z, i f y > x.

This means that equality (3.10) holds.
Now suppose that x = y , 0 (if x = y = 0, then the Eq (3.10) is clear). Thus, there exists k′ ∈ N

such that x = y = 1
pk′ and

(x + y) · z = [0, x]R · z = [0,
1
pk′ ]R ·

1
pk = [0,

1
pk+k′ ]R.

Besides,

x · z + y · z =
1

pk+k′ +
1

pk+k′ = [0,
1

pk+k′ ]R.

Therefore, the equality (3.10) holds and we conclude that (R,+, ·) is a Krasner hyperring.
Let search now for the structure of an arbitrary hyperideal of R. Suppose that I is a nonzero

hyperideal of R and take an arbitrary element a ∈ I. Using the hyperoperation defined by (3.8), we
conclude that a + a = [0, a]R ⊆ I. Thus, ∪a∈I[0, a]R ⊆ I, while the reverse inclusion is clear. Therefore,

I = ∪a∈I[0, a]R (3.11)

and each hyperideal I of R has the form ∪a∈I[0, a]R.

Moreover, if 1 ∈ I, then using (3.11), we get I = ∪a∈I[0, a]R = [0, 1]R = ⟨1⟩. If 1 < I, denote
A = {n ∈ N | 1

pn ∈ I}. In this case, A , ∅ and A ⊆ N. Thus, using the Least Principle Theorem, we
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know that A has a least element m0. Then we can check that I = ⟨ 1
pm0 ⟩. Therefore, every hyperideal of

R is a principle hyperideal.
Let

M = ⟨
1
p
⟩ = {0,

1
p
,

1
p2 ,

1
p3 , · · · }.

Then M is a maximal hyperideal because if N is another hyperideal of R such that M ⊆ N and N , R,
then there exists n0 ∈ N such that

N = ⟨
1

pn0
⟩ = {0,

1
pn0
,

1
pn0+1 ,

1
pn0+2 , · · · }.

It is clear that N ⊆ M. Thus, we conclude that M = N and M is a maximal hyperideal. Besides,
M is the only maximal hyperideal of R. Therefore, R is a local hyperring, which is also a principle
hyperideal hyperdomain, with dimR = htRM = 1 since 0 ⊂ M is the only chain of prime hyperideals
of R.

Finally, using Definition 3.2, we conclude that the element 1
p ∈ R is a regular parameter element of

R since M =< 1
p > and M is an M-primary hyperideal of R.

4. Conclusions

The main findings of this paper give us the possibility to raise some open questions. Theorem 3.13
states that each regular local hyperring is a hyperdomain. The first question that follows immediately
from this is whether a regular local hyperring is a hyperfield or not, or if it could contain a hyperfield
or not. It’s worth investigating on additional conditions under which the previous statement is true.
Moreover, in Theorem 3.7 we use an element a ∈ M \M2, to show that the quotient R = R

⟨a⟩ is a regular
local hyperring when R is a regular local hyperring. And now we raise the following question. Can we
get the same result if we use an element a in M \ M3 or generally M \ Mn, when n is a natural number
and Mn , 0? Besides, what can we say about the quotient R for an arbitrary element a ∈ M2?
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